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Trees of Primitive Pythagorean Triples

Kevin Ryde
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Abstract

All and only primitive Pythagorean triples are generated by three trees
of Firstov, among which are the UAD tree of Berggren et al. and the
Fibonacci boxes FB tree of Price and Firstov.

Alternative proofs are o�ered here for the conditions on primitive
Pythagorean triple preserving matrices and that there are only three trees
with a �xed set of matrices and single root.

Some coordinate and area results are obtained for the UAD tree. Fur-
ther trees with varying children are possible, such as �ltering the Calkin-
Wilf tree of rationals.
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1 Pythagorean Triples

A Pythagorean triple is integers A,B,C satisfying A2 +B2 = C2. These triples
can be parameterized by two integers p,q as from Euclid[8,9],

A = p2 − q2 A leg odd (1)

B = 2pq B leg even

C = p2 + q2 hypotenuse

p =
√

C+A
2 q =

√
C−A

2 converse

If A,B and p,q are treated as points in the plane with polar coordinates C, θ
and r, α respectively then they are related as

α

θ
p,q

C = r2

A,B

C = r2 square distance

θ = 2α double angle (2)

This is complex squaring giving 2α and r2,

(r eαi)2 = r2 e2αi

(p+ iq)2 = (p2 − q2) + 2pq i = A+Bi

Or the angle is since the ratio B/A written in terms of q/p is the tan double-
angle formula,

tan θ =
B

A
=

2pq

p2 − q2
=

2(q/p)

1− (q/p)2
=

2 tanα

1− tan2 α
= tan 2α (3)

Kalman[14] calls an acute angle θ �Pythagorean� if it occurs in a Pythag-
orean triangle A,B,C and notes that this corresponds to sin θ and cos θ both
rational.

1.1 Geometry

The usual geometric interpretation of p, q is that a Pythagorean triple divided
by hypotenuse C corresponds to a rational point on the unit circle. Then a
line drawn from the point back to x=−1, y= 0 has a rational slope and can be
written q/p.

A/C 1

B/C
q

p

slope q/p

α

α

2α

Figure 1:

rational points

on the unit circle(
A
C

)2
+
(
B
C

)2
= 1

q
p = B/C

A/C+1
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Angle α for p,q doubling to 2α for A,B is per Euclid book III proposition
20.

Other constructions which double an angle q/p can make a Pythagorean
triangle A,B,C too, possibly with some scale factor. Bonsangue [5] gives the
following form in a square of side p. Line EG is dropped down from E perpen-
dicular to line FZ.

F

E

Z

G

2α

α

α

A

B

C

q

p

q

p

1.2 Primitive Pythagorean Triples

A primitive triple has gcd(A,B,C) = 1. All triples are a multiple of some
primitive triple. For A,B,C to be a primitive triple with positive A,B, the
parameters p,q must be

p > q so p ≥ 2

q ≥ 1

p+ q ≡ 1 mod 2 opposite parity

gcd(p, q) = 1 coprime

(4)

A 3×3 matrix can be applied by left multiplication to transform a triple to
a new triple. m11 m12 m13

m21 m22 m23

m31 m32 m33

AB
C

 =

A′B′
C ′


A 2×2 matrix can do the same on p,q.(

a b
c d

)(
p
q

)
=

(
p′

q′

)
Palmer, Ahuja and Tikoo[20] give the following formula for the 3×3 matrix

corresponding to a 2×2.
(a2−c2)−(b2−d2)

2 ab− cd (a2−c2)+(b2−d2)
2

ac− bd ad+ bc ac+ bd

(a2+c2)−(b2+d2)
2 ab+ cd (a2+c2)+(b2+d2)

2

 (5)

They show the correspondence is one-to-one, so �nding triple preserving
matrices can be done in either 3×3 or 2×2. Generally the 2×2 is more convenient
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since it reduces primitive triples to pairs p,q coprime and not both odd.AB
C

 =

p2 − q2

2pq
p2 + q2



(
p
q

)

A′B′
C′

 =

p′2 − q′2

2p′q′

p′2 + q′2



(
p′

q′

)
3×3

2×2(
a b
c d

)

2 UAD Tree

The UAD tree by Berggren[3, 1934] and independently Barning[2, 1963], Hall
[12, 1970], Kanga[15, 1990] and Alperin[1, 2005], uses three matrices U,A,D to
make a tree of all primitive Pythagorean triples.

3,4,5
[2,1]

5,12,13
[3,2]

7,24,25
[4,3]

U

55,48,73
[8,3]

A

45,28,53
[7,2]

D

U

21,20,29
[5,2]

39,80,89
[8,5]

U

119,120,169
[12,5]

A

77,36,85
[9,2]

D

A

15,8,17
[4,1]

33,56,65
[7,4]

U

65,72,97
[9,4]

A

35,12,37
[6,1]

D

D

UAD tree, triples
and [p,q ] pairs

U =

1 −2 2
2 −1 2
2 −2 3

 A =

1 2 2
2 1 2
2 2 3

 D =

−1 2 2
−2 1 2
−2 2 3


=

(
2 −1
1 0

)
=

(
2 1
1 0

)
=

(
1 2
0 1

)
(6)

row-wise A leg = 3, 5, 21, 15, 7, 55, 45, 39, 119, 77, 33, 65, 35, . . . A321768

B leg = 4, 12, 20, 8, 24, 48, 28, 80, 120, 36, 56, 72, 12, . . . A321769

C leg = 5, 13, 29, 17, 25, 73, 53, 89, 169, 85, 65, 97, 37, . . . A321770

row-wise p = 2, 3, 5, 4, 4, 8, 7, 8, 12, 9, 7, 9, 6, . . . A321782

q = 1, 2, 2, 1, 3, 3, 2, 5, 5, 2, 4, 4, 1, . . . A321783

The pairs shown [2,1] etc are the p,q parameters for each triple. The matrices
multiply onto a column vector of the triplet or pair. For example 15,8,17 and
4,1 in the second row descends by the U branch to

U

15
8
17

 =

33
56
65

 U

(
4
1

)
=

(
7
4

)
The 2×2 UAD matrices send a given p,q to the disjoint regions in �gure 2.
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U p′ = 2p− q < 2p = 2q′ so p′ < 2q′ (7)

A p′ = 2p+ q > 2p = 2q′

p′ = 2p+ q < 3p = 3q′ so 2q′ < p′ < 3q′ (8)

D p′ = p+ 2q > 3q = 3q′ so p′ > 3q′

A leg

B leg A = 3
4
B

A = 4
3
B

U

A matrix

D

p

q p=q

p=2q

p=3q

U

A

D

Figure 2: UAD tree regions of A,B legs and p,q points

Point 2,1 is on the p= 2q line and is the tree root. Thereafter p= 2q does
not occur since it would have common factor q. The line p= 3q is never touched
at all since 3,1 is not opposite parity and anything bigger would have common
factor q.

A,B leg points are double the angle of a p,q as per (2), so a ratio for p,q
becomes a ratio for the A,B legs too and hence the 3×3 UAD matrices fall in
corresponding disjoint regions. If p = kq then, as from the double-angle (3),

B/A =
2(q/p)

1− (q/p)2
=

2/k

1− (1/k)2
from q/p = 1/k

A =
k2 − 1

2k
B

k= 2 gives A = 3
4B U matrix region

k= 3 gives A = 4
3B A matrix region

Figure 3 shows how the 2×2 matrices transform a vertical line of p,q points.
The dashed line k, 1 through k, k−1 becomes the solid lines by the respective
U,A,D matrices.

p

q

k 2k 3k

k

p=q p=2q

p=3qU A

D

Figure 3:

UAD tree,
line

transformations

D is a shear, as can be seen from its matrix ( 1 2
0 1 ). The line for D is longer
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but has the same number of coprime not-both-odd points as the original dashed
line.

U is a rotate +90◦ then shear across to p = 2q. This shear is the same as D.

U =

(
1 2
0 1

)(
0 −1
1 0

)
rotate then shear (9)

= D

(
0 −1
1 0

)
A is the same as U but with a re�ection to go to the right. This re�ection(

1 0
0 −1

)
gives the negative determinant det(A) = −1.

A = U

(
1 0
0 −1

)
mirror then same as U (10)

= D

(
0 −1
1 0

)(
1 0
0 −1

)
mirror, rotate, shear

= D

(
0 1
1 0

)
Repeated matrix U is the left-most side of the tree. These p, q and resulting

triples A,B,C are

Uk
(

2
1

)
=

(
k+2
k+1

)
(11)

Uk

3
4
5

 =

 2k + 3

2(k+1)(k+2)

2(k+1)(k+2) + 1

 =


3, 5, 7, 9, 11, . . .

4, 12, 24, 40, 60, . . .

5, 13, 25, 41, 61, . . .

A046092

A099776

This family of triples was known to Pythagoras[8] and is all those with leg
di�erence C −B = 1. In the p, q parameterization, such a di�erence requires

p2 + q2 − 2pq = (p− q)2 = 1 so p− q = 1

so a single index k su�ces for p and q. Since gcd(k+2, k+1)=1, all these triples
are primitive. In �gure 2, they are the line of p,q points immediately below the
p=q diagonal. In A,B, the double-angle sends them to beside the B axis as a
parabola B = 1

2 (A2 − 1) for A odd ≥ 3.

Repeated matrix A is the middle of each tree row. These p, q and resulting
triples are

Ak
(

2
1

)
=

(
Pellk+2

Pellk+1

)
=

{
2, 5, 12, 29, 70, . . .

1, 2, 5, 12, 29, . . .

Ak

3
4
5

 =

2Pellk+2Pellk+1 − (−1)k

2Pellk+2Pellk+1

Pell2k+3

 =


3, 21, 119, 697, . . .

4, 20, 120, 696, . . .

5, 29, 169, 985, . . .

A046727

A046729

A001653

where Pellk is the Pell numbers. Matrix A is precisely their recurrence,

Pellk = 2Pellk−1 + Pellk−2 starting Pell0 = 0, Pell1 = 1 (12)

= 0, 1, 2, 5, 12, 29, 70, 169, 408, . . . A000129
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Leg C is the odd Pells by a usual identity Pell 2k+2 + Pell 2k+1 = Pell2k+3.

Leg A is what are sometimes called Pell oblongs. A little recurrence manip-
ulation shows (13).

PellOblongk = (Pellk+1 + Pellk) (Pellk+1 − Pellk)

= 2Pellk+1Pellk + (−1)k (13)

= 1, 3, 21, 119, 697, 4059, 23661, . . . A084159

(−1)k means leg di�erence |A − B | = 1. Triples with such a leg di�er-
ence were set as a challenge by Fermat (as related for instance by Mack and
Czernezkyj[17]). Fermat's solution is the A matrix descent. Forget and Larkin
[11] work though this leg di�erence requirement in terms of solutions to the Pell
equation since in p,q the di�erence requires p2−q2 − 2pq = ±1 which is a Pell
equation d2 − 2q2 = ±1 for d = p−q.

In �gure 2, these A,B points are immediately each side of the 45◦ leading
diagonal A=B which is the middle of the A matrix region. There are relatively
few such since Pellk grows rapidly. The half angle in p,q is 22.5◦ in the middle
of the 2×2 A matrix region by angle, which is slope

Pellk+1

Pellk+2
→
√

2− 1 = 0.414213 . . . A188582

Repeated matrix D is the right-most side of the tree. These p, q and resulting
triples are

Dk

(
2
1

)
=

(
2k+2

1

)
(14)

Dk

3
4
5

 =

(2k+2)2 − 1

4(k+1)

(2k+2)2 + 1

 =


3, 15, 35, 63, 99, . . .

4, 8, 12, 16, 20, . . .

5, 17, 37, 65, 101, . . .

A000466

A053755

This family of triples was known to Plato[8] and is all those with leg di�er-
ence C −A = 2. In the p, q parameterization, such a di�erence requires

p2 + q2 − (p2 − q2) = 2q2 = 2 so q = 1

And then p, q not both odd means p must be even. Even p has gcd(2k+2,
1) = 1 so is primitive. In �gure 2, this is the line of p,q points immediately
above the p axis. In A,B, the double-angle sends them to above the A axis as
a shallow parabola A = 1

4B
2 − 1.

2.1 UAD Tree Row Totals

Theorem 1. In the UAD tree, the total leg di�erence dk =
∑
B−A in tree

row k is dk = (−1)k.

Proof. Depth 0 is the single point A=3, B=4 and its leg di�erence is B−A = 1
= (−1)0.

Let (A1, B1, C1), . . . , (An, Bn, Cn) be the triples at depth k−1. The children
of those points, at depth k, are then
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U

A1

B1

C1

 , A

A1

B1

C1

 , D

A1

B1

C1

 , . . . , U

AnBn
Cn

 , A

AnBn
Cn

 , D

AnBn
Cn


Their total isαkβk

γk

 = (U+A+D)

A1

B1

C1

+ · · ·+

AnBn
Cn

 =

1 2 6
2 1 6
2 2 9

αk−1βk−1
γk−1


So the di�erence

dk = βk − αk
= (2αk−1 + βk−1 + 6γk−1)− (αk−1 + 2βk−1 + 6γk−1)

= αk−1 − βk−1
= −dk−1

The following diagram shows the geometric interpretation of this in a plot of
legs A and B. The leg di�erence A−B is the distance from the leading diagonal
A=B.

B

A

A=B

A,B

parent

U child

A child

D child

A+B

A+B

UAD children

leg di�erence

symmetry

For the U and D children, the leg di�erence is A+B of the original parent
point A,B, each side of the leading diagonal.

A′U = A− 2B + 2C U matrix child legs

B′U = 2A−B + 2C

B′U −A′U = A+B U child leg di�erence

A′D = −A+ 2B + 2C D matrix child legs

B′D = −2A+B + 2C

B′D −A′D = −(A+B) D child leg di�erence

The leg di�erences of U and D are opposite sign and so cancel out in the
total,

(B′U −A′U ) + (B′D −A′D) = 0

Matrix A mirrors a given A,B leg pair across the leading diagonal. It changes
the sign of the leg di�erence but not the magnitude. On further descent, this
mirroring applies to both the U and D children so their leg di�erences continue
to cancel in further tree levels.

A′A = A+ 2B + 2C A matrix child legs
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B′A = 2A+B + 2C

B′A −A′A = −(B −A)

The initial triple 3,4,5 with leg di�erence 4− 3 = 1 alternates 1 and −1 as
the A matrix is repeatedly applied to it at each tree level. For all other children,
the leg di�erences cancel out.

Theorem 2. In the UAD tree, total p and total q in row k are successive terms
of the Pell sequence (12),

ptotalk =
∑

at depth k

p = Pell2k+2 even Pell

= 2, 12, 70, 408, 2378, 13860, 80782, . . . A001542

qtotalk =
∑

at depth k

q = Pell2k+1 odd Pell

= 1, 5, 29, 169, 985, 5741, 33461, . . . A001653

Proof. Depth 0 is the single point p=2, q=1 so that ptotal0 = 2 = Pell2 and
qtotal = 1 = Pell1.

Let p1, q1, . . . , pn, qn be the points at depth k. The children of these points,
at depth k+1 are

U

(
p1
q1

)
, A

(
p1
q1

)
, D

(
p1
q1

)
, . . . , U

(
pn
qn

)
, A

(
pn
qn

)
, D

(
pn
qn

)
Their sum is(
ptotalk+1

qtotalk+1

)
= (U +A+D)

((
p1
q1

)
+ · · ·+

(
pn
qn

))
=

(
5 2
2 1

)(
ptotalk
qtotalk

)
qtotalk+1 = 2ptotalk + qtotalk is the Pell recurrence (12).
ptotalk+1 = 5ptotalk + 2qtotalk is the Pell recurrence Pell2k+4 in terms of

Pell2k+2 and Pell2k+1,

Pell2k+4 = 2Pell2k+3 + Pell2k+2

= 2(2Pell2k+2 + Pell2k+1) + Pell2k+2

= 5Pell2k+2 + 2Pell2k+1

2.2 UAD Tree Iteration

The points of the UAD tree can be iterated row-wise by a method similar to
what Newman[19] gave for the Calkin-Wilf tree. At a given p,q, a division �nds
how many trailing D, and from that go up, across, and back down.

h, q

p,q p′,q′

D−k Uk

U−1 A
Figure 4:

p,q with k ≥ 0

steps of D down from

U child h,q
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Theorem 3. The next point after p,q going row-wise across the UAD tree, and
from the end of a row to the start of the next, is

(
p′

q′

)
=



(
1
2p+ 2

1
2p+ 1

)
if q = 1(

p+ 2q − 1
2 (m+3)r

p − 1
2 (m+1)r

)
if m odd

(
1
2p + 1

2 (m+1)r

1
2p− q + 1

2 (m−1)r

)
if m even

(15)

where m and r are quotient and remainder from division of p by q,

m = bp/qc, remainder r = p−m.q range 0 ≤ r < q (16)

Proof. If h,q in �gure 4 is the root 2,1, rather than a child, then p,q is per (14)(
p
q

)
= Dk

(
2
1

)
=

(
2k + 2

1

)
Its next p′, q′ is the �rst of the next row, which is the �rst case in (15)(

p′

q′

)
= Uk+1

(
2
1

)
=

(
k + 3
k + 2

)
=

(
1
2p+ 2
1
2p+ 1

)
Otherwise, k ≥ 0 many descents down from h,q is(

p
q

)
= Dk

(
h
q

)
=

(
h+ k.2q

q

)
Dividing p = h+ k.2q by q at (16) determines k.
If h,q is a U child then q < h < 2q per (7) so the division gives m odd and

k= 1
2 (m−1), h= r+q. At h,q, go up U then down A and down k steps of U.

This is the second case in (15)

Uk .A.U−1
(
h
q

)
=

(
(m+2)q − 1

2 (m+1)r

mq − 1
2 (m−1)r

)
=

(
p+ 2q − 1

2 (m+3)r

p − 1
2 (m+1)r

)
If h,q is an A child then 2q <h< 3q per (8) so the division gives m even and

k = 1
2m− 2, h= r+ 2q. At h,q, go up A then down D and down k steps of U,

Uk .D.A−1
(
h
q

)
=

( 1
2mq + 1

2 (m+2)r
1
2 (m−2)q + 1

2mr

)
=

( 1
2p + 1

2 (m+1)r
1
2p− q + 1

2 (m−1)r

)
At (15), the division when q=1 gives r=0. This is the only case r=0, since

gcd(p, q) = 1 for a primitive triple. So r=0 can be used to distinguish the end-
of-row case if preferred. It can be noticed the resulting m= p would be the m
even case, however that does not give the necessary 1

2p+2, 1
2p+1 and hence a

separate q=1 case.
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2.3 UAD Tree Low to High

A complete ternary tree has 3k points at depth k. Positions across the row
can be written in ternary with k digits. The tree descent U,A,D at each vertex
follows those digits from high to low, ie. most signi�cant to least signi�cant, and
multiply on the left for each digit.

If digits are instead taken low to high then �gure 5 shows how the tree
branches remain in the separate regions of �gure 2. This can be thought of
recursively as the tree at a given point being a copy of the whole tree with the
matrices which reach that point applied.

p

q

2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5
p=q

Figure 5:

UAD tree branches,

digits low to high

Theorem 4. The p parameter across each row of the UAD tree is the same for
ternary digits high to low or low to high. This is since for any product of the
2×2 U,A,D matrices,

X = x1 x2 · · ·xk−1 xk each xi = U orA orD

the reversed product Rev(X) = xk xk−1 · · ·x2 x1 is given by

Rev

((
a b
c d

))
=

(
2c+ d 2a+ b− 4c− 2d
c a− 2c

)
(17)

Proof. The empty product is the identity matrix and for it Rev
(
( 1 0
0 1 )

)
= ( 1 0

0 1 )
which is per (17). Proceed then by induction, supposing the theorem is true for
all products up to k matrices. Further xk+1 =U on the right of X =

(
a b
c d

)
is

Rev(X.U) =

(
3c+ 2d 3a+ 2b− 6c− 4d
2c+ d 2a+ b− 4c− 2d

)
= U .Rev(X)

So the reversal formula holds for another U. For the A and D matrices
similarly Rev(X.A)=A.Rev(X) and Rev(X.D)=D.Rev(X), and so any product
of k+1 matrices.

The p parameter is from
(
a b
c d

)
or Rev

(
a b
c d

)
applied to ( 2

1 ). They give the
same p = 2a+b,(

a b
c d

)(
2
1

)
=

(
2a+ b
2c+ d

)
Rev

((
a b
c d

))(
2
1

)
=

(
2a+ b
a

)
(18)
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The q parameter at (18) is respectively 2c+d and a which are not identical,
and indeed q does di�er variously between low to high and high to low for depth
≥ 2.

In Rev at (17), the coe�cients for a, b, c, d are found by considering what
they must do for a selection of particular X matrices. Suppose the top left
element of Rev is αa + βb + γc + δd. Then for example X = U.A = ( 3 2

2 1 ) and
its reversal A.U = ( 5 ...

.. ... ) requires

α.3 + β.2 + γ.2 + δ.1 = 5

The 6 combinations of U,A,D pairs give 6 equations in 4 unknowns. Some
linear algebra shows they have a unique solution for each entry in Rev . The
task in the theorem is then to show Rev works for any X, not just those used
to �nd the coe�cients.

3 UArD Tree

A variation on the UAD tree can be made by applying a left�right mirror image
under each A matrix. Call this UArD. The three children at each node are the
same but the order is reversed when under an odd number of A descents.

UArD tree, p,q pairs
2,1

3,2

U

5,2

A

4,1

D

4,3

U

8,3

A

7,2

D

9,2

D

12,5

A

8,5

U

7,4

U

9,4

A

6,1

D

U

· · ·

AD D

· · ·

AU U

· · ·

AD

13,2

D

20,9

A

16,9

U

19,12

U

29,12

A

22,5

D

18,5

D

21,8

A

11,8

U U

· · ·

AD D

· · ·

AU U

· · ·

AD

The entire sub-tree under each A is mirrored. Under an even number of A
matrices, the mirrorings cancel out to be plain again. For example the middle
12,5 shown is under A,A and so its children are U-A-D again.

The e�ect of these mirrorings is to apply matrices by ternary re�ected Gray
code digits high to low. For example the row shown at depth 2 goes

U-A-D, D-A-U, U-A-D

Theorem 5. Across a row of the UArD tree, the p,q points take steps alternately
horizontal (q unchanged) and diagonal (same increment p and q).

The steps can be illustrated in the row at depth 2. (hdist2 and ddist2 are
for theorem 6 below.)
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4,3 8,3

7,2 9,2

12,58,5

7,4 9,4

6,1

Figure 6:

UArD steps of p,q

in row at depth k=2

hdist2 = 4+2+4+2 = 12

ddist2 = 1+3+1+3 = 8

Proof. A step between U and A children is always horizontal since

A

(
p
q

)
− U

(
p
q

)
=

(
2q
0

)
(19)

A step between A and D children is always diagonal since

A

(
p
q

)
−D

(
p
q

)
=

(
p− q
p− q

)
(20)

A UArD row steps between children in sequence either U-A-D or D-A-U and
with each always followed by its reversal.

p, q

U

U A D

A

D A U

D

U A D

When going across a D-D gap, the common ancestor is U-A since D is at the
right edge of the plain sub-tree beneath U and the left edge of the re�ected sub-
tree beneath A. This U-A ancestor is a horizontal step (19). The D descents
multiply on the left and preserve the horizontal step and its distance since
horizontal p to p+x has

D

(
p+ x
q

)
−D

(
p
q

)
= D

(
x
0

)
=

(
1 2
0 1

)(
x
0

)
=

(
x
0

)
(21)

When going across a U-U gap, the common ancestor is A-D since U is the
right edge of the re�ected sub-tree beneath A and the left edge of the plain
sub-tree beneath D. This A-D ancestor is a diagonal step (20). The U descents
multiply on the left and preserve the diagonal and its distance since

U

(
p+ x
q + x

)
− U

(
p
q

)
= U

(
x
x

)
=

(
2 −1
1 0

)(
x
x

)
=

(
x
x

)
(22)

So sequence U-A-D-D-A-U-U-A-D etc across a row takes steps alternately
horizontal and diagonal.

Theorem 6. In row k of the UArD tree, the total distance of horizontal p,q
steps is an even index Pell number,

hdistk = Pell2k even Pells

and the total distance (in one coordinate) of diagonal p,q steps is the sum of
Pell numbers with alternating signs
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ddistk = Pell2k − Pell2k−1 + · · ·+ Pell2 − Pell1

= 6ddistk−1 − ddistk−2 + 2 starting ddist0,1 = 0, 1

= 0, 1, 8, 49, 288, 1681, 9800, . . . A001108

Proof. Take a p,q point at depth k−1 and let h and d be the horizontal and
diagonal distances between its three children. The diagonal distance d is the
change in each coordinate.

p, q

2p− q, p

U

2p+ q, p

A

p+ 2q, q

D

h = (2p+q)− (2p−q) = 2q d = (p+2q)− (2p+q) = p− q

hdistk is U-A step h = 2q, where q is each from depth k−1, plus the D-D
steps between triples at depth k. Per (21), D-D steps are U-A steps propagated
down from preceding depth levels. So hdist is 2q of all points in all depth levels
< k. Final Pell2k is the usual sum of odd Pells,

hdistk =
∑

depths
0 to k−1

2q = 2

k−1∑
i=0

qtotal i = 2

k−1∑
i=0

Pell2i+1 = Pell2k

ddistk is the A-D steps d = p− q, where p,q is each from k−1, plus the U-U
steps between triples at depth k. Per (22), U-U steps are A-D propagated down
from preceding depth levels. So ddist is p−q of all points in all depth levels <k.

ddistk =
∑

depths
0 to k−1

p− q =

k−1∑
i=0

ptotal i − qtotal i =

k−1∑
i=0

Pell2i+2 − Pell2i+1

The UArD row lines variously overlap. The k=2 sample in �gure 6 has one
such overlap. The following diagram shows all row lines plotted together. They
continue above and right.

. . .

. . .

UArD tree
row lines
of p,q

The pattern of gaps can be seen by separating the horizontals and diagonals.
The diagonals are always on odd di�erences p−q since p,q are opposite parity.
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q

p

2

3

4

5

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

horizontals
lengths 2q−2 = 2, 4, 6, 8, . . .

with gaps 2

diagonals
lengths p−q−2 = 1, 3, 5, 7, . . .

with gaps 2

q

p1

3

5

7

11

15

19

23

4 6 8 12 16 20 24 28

UArD tree horizontal and diagonal steps of p,q

Theorem 7. When all UArD tree row lines are plotted, the horizontals are
length 2q′− 2 with gap 2 in between and the diagonals are length p′− q′− 2 with
gap 2 in between.

Proof. As from theorem 5 above, horizontal lines arise from the U child to A
child of a p,q parent. The D matrix on them in subsequent tree levels preserves
the length. The D matrix preserves the child q′ but shears the line across so
that it repeats in the following way,

( p
q

)
parent

U(
2p−q

p

) A(
2p+q

p

) DU(
4p−q

p

) DA(
4p+q

p

) D2U(
6p−q

p

) D2A(
6p+q

p

)
line
2q

gap
2(p−q)

total 2p

When the parent point is q = p−1, the gap is 2(p−q) = 2 and the lines are
length 2(p− 1) which with q′ = p is 2q′ − 2.

Other parent points with the same p give line endings 2p ± q so they are
centred at 2p, 4p, etc. The longest line is q = p− 1 and it overlaps all others.

Also from theorem 5, diagonal lines arise from the A child to D child of a
given p,q parent. The U matrix on them in subsequent tree levels preserves the
direction and length. U also preserves the d′ = p′ − q′ diagonal position but
shifts it up in the following way.

( p
q

)
parent

D =
(

p+2q
q

)
A =

(
2p+q

p

)
UD =

(
2p+3q
p+2q

)
UA =

(
3p+2q
2p+q

)U2D =
(

3p+4q
2p+3q

)
U2A =

(
4p+3q
3p+2q

)

gap 2q

line p−q
odd

total p+q
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When the parent is q=1, the gap 2q=2 and the lines are length p−q = p−1.
Measured from the child d′ = p′− q′, this is p′− q′− 2 = p+ 2q− q− 2 = p− 1.

Lines from other parent p,q which fall on the same diagonal are centred on
the line midpoint W . The longest is when p− q is the maximum which is q=1
and this longest line overlaps all others.

W =
(

(3p+3q)/2
(p+q)/2

)
D( pq ) =

(
p+2q
q

)
= W −

(
(p−q)/2
(p−q)/2

)
A( pq ) =

(
2p+q
p

)
= W +

(
(p−q)/2
(p−q)/2

)
3.1 UArD Tree Low to High

The mirroring in UArD can be taken low to high too. The Gray code is applied
�rst, then digits are taken low to high. The mirroring under each A compensates
for the re�ection in the A matrix (10).

n ternary Gray matrices

0 000 000 U.U.U ( 2
1 ) = ( 5

4 )
1 001 001 U.U.A
2 002 002 U.U.D
3 010 012 U.A.D

 re�ect4 011 011 U.A.A
5 012 010 U.A.U
6 020 020 A.A.U
7 021 021 A.A.A
8 022 022 A.A.D
· · ·
26 333 333 D.D.D ( 2

1 ) = ( 8
1 )

A

B

p

q

2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

4

6

8

10

p=q

Figure 7: UArD tree rows, digits low to high

Theorem 8. The A,B legs and the p,q points in a row of the low-to-high UArD
tree go clockwise when plotted as points.

Proof. In row 0 there is a single point p=2, q=1.
For a subsequent row, the new matrices U,A,D multiply on the left and so

copy the previous row p,q points into their respective matrix regions as from
�gure 2, which is also in the manner of the low-to-high branches �gure 5.
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q

p

U copy
A copy

D copy

The D copy is a shear and so maintains the clockwise order. The U copy is
a rotate and shear (9) and so also maintains clockwise order.

The A copy includes a re�ection so reverses to anti-clockwise. But for UArD,
the points under A are mirrored so clockwise order is restored.

The A,B legs, as points, are at double the angle of the corresponding p,q per
(3). So A,B points go clockwise too.

3.2 UArD Tree Row Area

The row lines of the UArD low to high (�gure 7) do not intersect preceding rows
and so give the shape of an expanding region of p,q or A,B coverage by the tree.
This area is the same for all UAD tree forms, only the order of points within
a row di�ers. The area of this expanding region, in p,q, can be calculated as
follows.

Theorem 9. For the UAD tree in p,q coordinates, the area rk between row k
and k+1, and the total area Rk up to row k, are

rk = 5.3k − 3 area between rows k and k+1

= 2, 12, 42, 132, 402, 1212, 3642, 10932, . . . 2×A134931

Rk =

k−1∑
i=0

ri = 5
2 (3k−1)− 3k total area to row k

= 0, 2, 14, 56, 188, 590, 1802, 5444, 16376, . . .

Proof. The area between row 0 and row 1 is the initial parallelogram 2,1�4,1�
5,2�3,2 of area 2 which is r0 = 5.30 − 3 = 2.

2,1 4,1

3,2 5,2
initial parallelogram
area = 2

For a subsequent row, the area between rows k and k+1 is three copies of
the preceding k−1 to k area transformed by multiplication on the left by U,A,D.
Those transformations don't change the area. Between the copies are two gaps
show below by dashed lines.
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U A

D

The upper gap U to A is a parallelogram. The right edge of the U block is
U.Dk. The left edge of the A block is A.Dk since A is a re�ection. The result
is area 4.

U.Dk

(
2
1

)
=

(
4k + 3
2k + 2

)

U.Dk+1

(
2
1

)
=

(
4k + 7
2k + 4

)

A.Dk

(
2
1

)
=

(
4k + 5
2k + 2

)

A.Dk+1

(
2
1

)
=

(
4k + 9
2k + 4

)

area=4

width = 2

height = 2

The lower gap A to D is a parallelogram. The upper edge of the D block is
D.Uk. The lower edge of the A block is A.Uk since A is a re�ection. The result
is area 3.1− 1.1 = 2.

A.Uk

(
2
1

)
=

(
3k+5
2k+2

)
A.Uk+1

(
2
1

)
=

(
3k+8
k+3

)

D.Uk

(
2
1

)
=

(
3k+4
k+1

)
area=2

3 1

1

1

D.Uk+1

(
2
1

)
=

(
3k+7
k+2

)

So the gaps are 4 + 2 = 6 and the area between rows is thus per the theorem

rk = 3rk−1 + 6

A recurrence for the total area R using (23) is

Rk = r0 +

k−1∑
i=1

(3ri−1 + 6) (23)

= 2 + 6(k − 1) + 3Rk−1 = 3Rk−1 + 6k − 4

The parallelograms making up the rows are a tiling of the eighth of the plane
p > q ≥ 1 using parallelograms of areas 2 and 4, but the repeated shears soon
make them very elongated.
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3.3 UArD as Filtered Stern-Brocot

The Stern-Brocot tree enumerates all rationals p/q ≥ 1. It can be �ltered to
pairs p > q ≥ 1 not-both-odd to give primitive Pythagorean triples. Katayama
[16] shows this is the UArD tree low-to-high.

2,1

3,2

4,3

5,4

6,5 9,7

7,5

11,8 10,7

5,3

8,5

11,7 13,8

7,4

12,7 9,5

3,1

5,2

7,3

9,4 12,5

8,3

13,5 11,4

4,1

7,2

10,3 11,3

5,1

9,2 6,1

1,1

. . .

Figure 8: Stern-Brocot tree �ltered to p > q not-both-odd

Every third node is odd/odd when read by rows wrapping around at each row
end. Those nodes can be removed to leave the nodes shown boxed in �gure 8.
The two children of a removed node are adopted by their grandparent to make
a ternary tree.

The Stern-Brocot tree applies matrices by bits of the row position taken
low-to-high. This means left and right sub-trees are de�ned recursively by a
matrix L or R multiplied onto the points of the entire tree.

tree

L.tree

L =

(
1 0
1 1

)
1/(1 + 1/tree)

R.tree

R =

(
1 1
0 1

)
1 + tree

The equivalence to UArD by Katayama can be outlined as follows. The
sub-tree at 3,2 is R.L.tree and has same structure as the sub-tree at 2,1. Map
from 2,1 to 3,2 using a matrix U. This is seen to be the U matrix of the UAD
tree.

U . R.tree = R.L.tree

U . R = R.L

U = R.L.R−1 =
(
2 −1
1 0

)
Similarly mapping 2,1 to 4,1 is the D matrix of the UAD tree.

D . R.tree = R.R.R.tree

D = R.R = ( 1 2
0 1 )

The not-both-odd points of the sub-tree under 5,2 have a left-to-right mir-
roring. Swapping p↔ q performs such a mirroring in the Stern-Brocot tree.
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Apply that �rst with matrix S = ( 0 1
1 0 ) and then descend. Mapping 2,1 to 5,2

is then by a matrix A as follows and which is seen to be the A matrix of the
UAD tree.

A . R.tree = R.R.L.S.tree

A.R = R.R.L.S

A = R.R.L.S.R−1 = ( 2 1
1 0 )

If the �ltered tree is read left to right then that reading includes the mirroring
under each A. For example under 5,2 points 9,4�12,5�8,3 are sub-trees D�A�U.
That mirroring is per UArD. The clockwise order of pairs in the Stern-Brocot
rows corresponds to the clockwise order in the UArD rows of theorem 8.

4 FB Tree

Firstov[10] and Price[22] independently give another tree using a di�erent set
of three matrices M1,M2,M3 (in Price's naming).

3,4,5
[2,1]

5,12,13
[3,2]

9,40,41
[5,4]

M1

35,12,37
[6,1]

M2

11,60,61
[6,5]

M3

M1

15,8,17
[4,1]

21,20,29
[5,2]

M1

55,48,73
[8,3]

M2

39,80,89
[8,5]

M3

M2

7,24,25
[4,3]

13,84,85
[7,6]

M1

63,16,65
[8,1]

M2

15,112,113
[8,7]

M3

M3

FB tree, triples
and [p,q ] pairs

M1 =

 2 1 −1
−2 2 2
−2 1 3

 M2 =

2 1 1
2 −2 2
2 −1 3

 M3 =

2 −1 1
2 2 2
2 1 3


=

(
1 1
0 2

)
=

(
2 0
1 −1

)
=

(
2 0
1 1

)
(24)

Matrix M1 is all p odd. Matrices M2 and M3 are p even and in disjoint
regions M3 above and M2 below the p= 2q line.

M2 p′ = 2p > 2p− 2q = 2q′ p′ > 2q′ (25)

M3 p′ = 2p < 2p+ 2q = 2q′ p′ < 2q′

When p is even, leg A ≡ 3 mod 4. When p is odd, leg A ≡ 1 mod 4.
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A leg

B leg A = 3
4
B

M1
all

A ≡ 1

M3
A ≡ 3

M2
A ≡ 3

p

q p=q

p=2q

M3
p even

M2
p even

M1
all

p odd

FB tree, regions of p,q

Figure 9 shows how the matrices transform a vertical line of points k, 1
through k, k−1 out to bigger p,q.

p
k 2k

q

k

2k
p=q

p=2qM1

M2

M3

Figure 9:

FB tree

line transformations

M3 is the simplest, just a shift up to point p,p.

M3 =

(
1 0
0 1

)
+

(
1 0
1 0

)
M2 is the same as M3 but negating q �rst so it's mirrored to go downwards

instead.

M2 = M3

(
1 0
0 −1

)
negate to mirror q, then M3

M1 is a horizontal shear, followed by a vertical stretch.

M1 =

(
1 0
0 2

)(
1 1
0 1

)
shear then stretch

Repeated M1 is the left-most side of the tree. These p, q and resulting triples
are

M1 k
(

2
1

)
=

(
2k + 1

2k

)
(26)

M1 k

3
4
5

 =

 2k+1 + 1

2k+1(2k + 1)

2k+1(2k + 1) + 1

 =


3, 5, 9, 17, 33, . . .

4, 12, 40, 144, 544, . . .

5, 13, 41, 145, 545, . . .

A000051

A028403

A085601

Draft 8 page 21 of 43

http://oeis.org/A000051
http://oeis.org/A028403
http://oeis.org/A085601


(26) has p= q+1 like matrix U at (11), but only p= 2k+1, not all integers,
so a subset of U repeatedly.

Repeated M2 is the middle of each tree row. These p, q and resulting triples
are

M2 k
(

2
1

)
=

(
2k+1

Jacobsthalk+1

)

M2 k

3
4
5

 =

4k+1 − Jacobsthal 2k+1

2k+1Jacobsthalk+1

4k+1 + Jacobsthal 2k+1

 =


3, 15, 55, 231, 903, . . .

4, 8, 48, 160, 704, . . .

5, 17, 73, 281, 1145, . . .

A015249

A054881

1
2 A108924

where the Jacobsthal numbers are

Jacobsthalk = 1
3

(
2k − (−1)k

)
= 0, 1, 1, 3, 5, 11, 21, 43, 85, . . . A001045

The A leg values are sometimes called Jacobsthal oblongs since they're not
squares but rather consecutive product

4k+1 − Jacobsthal 2k+1 = Jacobsthalk+2 Jacobsthalk+3

Repeated M3 is the right-most side of the tree. These p, q and resulting
triples are

M3 k
(

2
1

)
=

(
2k+1

2k+1 − 1

)
(27)

M3 k

3
4
5

 =

 2k+2 − 1

2k+2(2k+1 − 1)

2k+2(2k+1 − 1) + 1

 =


3, 7, 15, 31, 63, . . .

4, 24, 112, 480, 1984, . . .

5, 25, 113, 481, 1985, . . .

A000225

A059153

A092440

(27) has p= q+1 like M1 above and like matrix U at (11), but only p= 2k+1,
not all integers, so M3 repeatedly has leg di�erence C − B = 1 and is another
subset of U repeatedly.

5 UMT Tree

A third tree by Firstov[10] is formed by a further set of three matrices. Call it
UMT. U is from the UAD tree. M2 is from the FB tree. The third matrix is
T = M1 .D.

3,4,5
[2,1]

5,12,13
[3,2]

7,24,25
[4,3]

U

35,12,37
[6,1]

M2

65,72,97
[9,4]

T

U

15,8,17
[4,1]

33,56,65
[7,4]

U

55,48,73
[8,3]

M2

45,28,53
[7,2]

T

M2

21,20,29
[5,2]

39,80,89
[8,5]

U

91,60,109
[10,3]

M2

105,88,137
[11,4]

T

T

UMT tree, triples
and [p,q ] pairs
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U =

1 −2 2
2 −1 2
2 −2 3

 M2 =

2 1 1
2 −2 2
2 −1 3

 T =

−2 3 3
−6 2 6
−6 3 7


=

(
2 −1
1 0

)
=

(
2 0
1 −1

)
=

(
1 3
0 2

)
(28)

= M1 .D

The matrix sum is the same as in UAD and so like theorem 2 the total p
and q at depth k of the UMT are the Pell numbers.

U + M2 + T =

(
5 2
2 1

)
= U +A+D

Matrix U is all points p < 2q (7). Matrix M2 is points p > 2q with p even
(25). Matrix T is points p > 2q with p odd since

T p′ = p+ 3q > 4q = 2q′ so p′ > 2q′ (29)

Together M2 and T are all points p > 2q.

A leg

B leg B = 4
3
AU

M2
A ≡ 3
mod 4

T
A ≡ 1
mod 4

p

q p=q

p=2q

U

M2 p even
T p odd

Figure 10: UMT tree, regions of p,q

Theorem 10 (Firstov). The UMT tree visits all and only primitive Pythagorean
triples without duplication.

Proof. It's convenient to work in p,q pairs. The tree visits only primitive Pyth-
agorean triples because for a given p,q each of the three children p′,q′ satisfy the
PQ conditions (4). For U,(

p′

q′

)
= U

(
p
q

)
=

(
2 −1
1 0

)(
p
q

)
=

(
2p− q
p

)
p′ = 2p− q = p+ (p− q) > p = q′ since p > q

q′ = p ≥ 1

gcd(p′, q′) = gcd(2p− q, p) = gcd(q, p) = 1

p′ + q′ = 3p− q ≡ p+ q ≡ 1 mod 2

For M2, (
p′

q′

)
= M2

(
p
q

)
=

(
2 0
1 −1

)(
p
q

)
=

(
2p
p− q

)
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p′ = 2p > p− q = q′

q′ = p− q ≥ 1 since p > q

gcd(p′, q′) = gcd(2p, p− q)
= gcd(p, p− q) since p− q odd
= gcd(p, q) = 1

p′ + q′ = 3p− q ≡ p+ q ≡ 1 mod 2

For T, (
p′

q′

)
= T

(
p
q

)
=

(
1 3
0 2

)(
p
q

)
=

(
p+ 3q

2q

)
p′ = p+ 3q > 2q = q′

q′ = 2q ≥ 1 since q ≥ 1

gcd(p′, q′) = gcd(p+ 3q, 2q)

= gcd(p+ 3q, q) since p+ 3q odd

= gcd(p, q) = 1

p′ + q′ = p+ 5q ≡ p+ q ≡ 1 mod 2

No pair is duplicated in the tree because the children of U are above the
p = 2q line (7) whereas M2 and T are below (25) (29). Then M2 gives p even
whereas T gives p odd. Therefore two paths ending with a di�erent matrix
cannot reach the same point.

Conversely, every pair p′,q′ occurs in the tree because it can be reversed
according to its region and parity.

if p′ < 2q′ then

(
p
q

)
= U−1

(
p′

q′

)
=

(
0 1
−1 2

)(
p′

q

)
=

(
q′

2q′ − p′
)

if p′ < 2q′, p′ even, q′ odd

(
p
q

)
= M2−1

(
p′

q′

)
=

(
1/2 0
1/2 −1

)(
p′

q

)
=

(
p′/2

p′/2− q′
)

if p′ < 2q′, p′ odd, q′ even

(
p
q

)
= T−1

(
p′

q′

)
=

(
1 −3/2
0 1/2

)(
p′

q′

)
=

(
p′ − 3q′/2
q′/2

)
The parent p,q satis�es the p,q conditions (4).

For reversing U have p′ < 2q′ which is p′ ≤ 2q′ − 1.

q = 2q′ − p′ = q′ − (p′ − q′) < q′ = p so p > q

q = 2q′ − p′ ≥ 2q′ − (2q′ − 1) = 1

gcd(p, q) = gcd(q′, 2q′ − p′) = gcd(q′, p′) = 1

p+ q = 3q′ − p′ ≡ p′ + q′ ≡ 1 mod 2

p = q′ < p′

For reversing M2 have p′ > 2q′ which is p′ ≥ 2q′ + 2 since p′ is even.

q = p′/2− q′ < p′/2 = p so p > q

q = p′/2− q′ ≥ (2q′ + 2)/2− q′ = 1

gcd(p, q) = gcd(p′/2, p′/2− q′) = gcd(p′/2, q′)

= gcd(p′, q′) = 1 since p′ even, q′ odd
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p+ q = p′ − q′ ≡ p′ + q′ ≡ 1 mod 2

p = p′/2 < p′

For reversing T have p′ > 2q′ and q′ is even.

p = p′ − 3q′/2 > 2q′ − 3q′/2 = q′/2 = q

q = q′/2 ≥ 1 since q′ even

gcd(p, q) = gcd(p′ − 3q′/2, q′/2) = gcd(p′, q′/2)

= gcd(p′, q′) = 1 since q' even

p+ q = p′ + 3q′/2− q′/2 = p′ + q′ ≡ 1 mod 2

p = p′ − 3q′/2 < p′

Each ascent has p < p′ so repeatedly taking the parent this way is a sequence
of strictly decreasing p which must eventually reach the root 2,1. The matrix
to reverse goes according to the region and parity of p′,q′ which are where the
respective matrices descend.

U,M2,T transform a vertical line of points k, 1 through k, k−1 out to bigger
p,q as follows

p
k 2k 3k 4k

q

k

2k p=q p=2q

U

M2

T UMT tree

line transformations

U is described with the UAD tree �gure 3. M2 is described with FB tree
�gure 9.

T shears p across by 3 to give 4k and then doubles q to put it on even points.

T =

(
1 0
0 2

)(
1 3
0 1

)
shear then stretch q

For T, the line endpoint k, k−1 becomes 4k−3, 2k−2. This longer line still
has the same number of coprime not-both-odd points as the original.

Repeated T is the right-most side of the tree. These p, q and resulting triples
A,B,C are

T k
(

2
1

)
=

(
3.2k − 1

2k

)
=

{
2, 5, 11, 23, 47, . . .

1, 2, 4, 8, 16, . . .

A055010

A000079

T k

3
4
5

 =

(2k+2 − 1) (2k+1 − 1)

(3.2k − 1).2k+1

10.4k − 6.2k + 1

 =


3, 21, 105, 465, . . .

4, 20, 88, 368, . . .

5, 29, 137, 593, . . .

A134057

A093357
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These points are p = 3q − 1 so immediately above a line p=3q in �gure 10,
but only those p = 3.2k−1. In A,B, the double-angle sends them to immediately
above a line B = 3

4A. Leg di�erence C − A = 2q2 = 22k+1 is odd powers of 2,
since in general

T k
(
p
q

)
=

(
p′

q′

)
=

(
p+ 3(2k−1)q

2kq

)
C −A = (p′ 2 + q′ 2)− (p′ 2 − q′ 2) = 2q′ 2 = 22k+1q2

6 Triple Preserving Matrices

The set of all matrices which preserve primitive Pythagorean triples are charac-
terized in 2×2 form by Firstov[10]. The conditions are stated in slightly di�erent
form here below in theorem 11.

A primitive triple preserving matrix is to send a p,q point to a new p′,q′

satisfying the PQ conditions (4), and without duplication meaning that two
di�erent p,q do not map to the same child p′,q′.(

a b
c d

)(
p
q

)
=

(
p′

q′

)
Palmer, Ahuja and Tikoo[20] give a set of conditions on a,b,c,d which are

su�cient, but not necessary. As they note, their R-3 determinant condition ∆
= ad − bc = ±1 is su�cient, but not necessary. ∆=±1 ensures that gcd(p, q)
= 1 implies gcd(p′, q′) = 1 over all integers, but for Pythagorean triples only p,q
of opposite parity need be considered.

For p,q opposite parity, a determinant ∆ = ±2r (41) maintains gcd(p′, q′)
= 1. The argument in this part of the proof largely follows an answer by Thomas
Jager[13] for the all integers case (on n×n matrices). A little care is needed that
the p,q constructed to induce a common factor obeys p > q ≥ 1 not-both-odd.

Matrices M1, M2, M3 (24) and T (28) have ∆ = ±2. Higher powers of 2
occur from products of those matrices (and believe also from matrices not a
product of others).

det(Mr) = (detM)r = ±2r

Theorem 11 (variation of Firstov). Conditions (30) through (41) are necessary
and su�cient for a matrix M =

(
a b
c d

)
to preserve p,q pairs without duplication,

and hence for its corresponding 3×3 matrix to preserve primitive Pythagorean
triples without duplication.

a, b, c, d integers (30)

a ≥ 1 (31)

c ≥ 0 (32)

a > c (33)

a+ b ≥ 1 so b ≥ −a+ 1 (34)

c+ d ≥ 0 so d ≥ −c (35)

a+ b ≥ c+ d (36)

gcd(a, c) = 1 (37)
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gcd(b, d) = 1 (38)

a+ c ≡ 1 mod 2 opposite parity (39)

b+ d ≡ 1 mod 2 opposite parity (40)

ad− bc = ±2r, r ≥ 0 determinant (41)

The identity matrix ( 1 0
0 1 ) preserves p,q pairs without duplication and satis�es

the conditions.
The GCD is taken as gcd(n, 0) = |n| in the usual way. So gcd(a, c) = 1 and

a≥ 1 together mean

if c = 0 then can only have a = 1 (42)

Similarly gcd(b, d) = 1 means

if d = 0 then can only have b = ±1

Proof of Theorem 11. First the necessity, that if a matrix sends all good p,q to
good p′,q′ and never duplicates p′,q′ then its a,b,c,d are as described.

Consider p=2, q=1 and p=3, q=2,(
a b
c d

)(
2
1

)
=

(
2a+ b
2c+ d

)
=

(
p′1
q′1

)
(
a b
c d

)(
3
2

)
=

(
3a+ 2b
3c+ 2d

)
=

(
p′2
q′2

)
These are solved for a,b,c,d in terms of p′1, p

′
2, q
′
1, q
′
2

a = 2p′1 − p′2 = integer

c = 2q′1 − q′2 = integer

b = −3p′1 + 2p′2 = integer

d = −3q′1 + 2q′2 = integer

p′1, p
′
2, q
′
1, q
′
2 are all integers so a,b,c,d are all integers (30).

Consider p = 2k, q = 1,(
a b
c d

)(
2k
1

)
=

(
2ka+ b
2kc+ d

)
=

(
p′

q′

)
Must have a ≥ 0 otherwise big enough k gives p′ < 2. Similarly c ≥ 0 (32)

otherwise q′<1. Must have a≥c otherwise big enough k gives p′≤q′. But cannot
have both a= 0 and c= 0 otherwise constant p′= b, q′= d is duplicated, so a≥1
(31). b and d must be opposite parity (40) so that p′ and q′ are opposite parity.
If b,d have a common factor g = gcd(b, d) > 1 then k= g gives that common
factor in p′,q′, so must have gcd(b, d) = 1 (38).

Consider p = 2k+1, q = 2k,(
a b
c d

)(
2k + 1

2k

)
=

(
2k(a+ b) + a
2k(c+ d) + c

)
=

(
p′

q′

)
Must have a+b≥0 otherwise big enough k gives p′<2. Similarly c+d≥0 (35)

otherwise q′<1. Must have a+b ≥ c+d (36) otherwise big enough k gives p′≤q′.
But cannot have both a+b= 0 and c+d= 0 otherwise constant p′ = c, q′ = d is
duplicated, so a+b ≥ 1 (34). a and c must be opposite parity (39) so that p′
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and q′ are opposite parity. Since a,c are opposite parity, cannot have a= c so
a ≥ c above becomes a > c (33). If a,c have a common factor g = gcd(a, c) > 1
then k = g gives that common factor in p′,q′, so must have gcd(a, c) = 1 (37).

The determinant ∆ = ad− bc 6= 0 because if it was 0 then ad = bc and with
a ≥ 1, gcd(a, c) = 1 and gcd(b, d) = 1 could only have d= c and b= a. In that
case (

a a
c c

)(
2
1

)
=

(
3a
3c

)
has common factor 3 in p′,q′ if c 6= 0 or has q′= 0 if c= 0. Therefore ∆ 6= 0.

Let δ be the odd part of the determinant so

∆ = ad− bc = δ2r δ odd

Since gcd(a, c) = 1, there exist integers x, y with

−xc+ ya = 1 since a,c coprime (43)

Consider p,q pair

p = xd− yb+ δk some integer k

q = 1

Choose k the same parity as xd− yb so as to make p even (since δ is odd).
Choose k big enough positive or negative to give p ≥ 2 (possible since δ 6= 0).
The resulting p,q gives

p′ = a(xd− yb+ δk) + b

= xad− yab+ aδk + b

= xad− (1 + xc)b+ aδk + b since ya = 1 + xc (43)

= x(ad− bc) + aδk

= xδ2r + aδk multiple of δ

q′ = c(xd− yb+ δk) + d

= xcd− ybc+ cδk + d

= (ya− 1)d− ybc+ cδk + d since xc = ya− 1 (43)

= y(ad− bc) + cδk

= yδ2r + cδk multiple of δ

δ is a common factor in p′,q′ and so must have δ=±1 and therefore ∆ =
ad− bc = ±2r (41).

As a remark, this p,q pair arises from M and its adjoint (inverse times de-
terminant), (

a b
c d

)(
d −b
−c a

)
=

(
∆ 0
0 ∆

)
(
a b
c d

)(
d −b
−c a

)(
x
y

)
=

(
x∆
y∆

)
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(
a b
c d

)((
d −b
−c a

)(
x
y

)
+

(
δk
0

))
=

(
x∆ + aδk
y∆ + cδk

)
This is common factor δ in p′,q′ on the right, provided the vector part on

the left (
d −b
−c a

)(
x
y

)
+

(
δk
0

)
=

(
p
q

)
is an acceptable p,q pair or can be made so. One way to make it so is q=1 by
x,y from gcd(a, c) = 1 and then p ≥ 2 and even using k.

gcd(a, c) = 1 gives a whole class of solutions to −cx+ ay = 1 = q,

x = x0 + fa integer f

y = y0 + fc

Taking a di�erent f adds f (ad−bc) to p. This is a multiple of the determin-
ant and so maintains factor δ in the resulting p′. Could choose f to make p≥ 2,
but if ∆ is even then f cannot force p to even. It's necessary to have k and the
odd part δ for that.

Now for su�ciency, ie. that if the conditions of the theorem hold then
(
a b
c d

)
sends all good p,q to good p′,q′ (4) without duplication.

p′ = ap+ bq

= ap+ (1− a)q a+ b ≥ 1 (34) so b ≥ 1− a
= a(p− q) + q

≥ 2 since a ≥ 1 (31)

If c= 0 then c+d ≥ 0 (35) means d ≥ 0. Determinant ad − bc = ±2r 6= 0
means not c=0, d=0, so d≥ 1 giving

q′ = cp+ dq

= dq ≥ 1

If c > 0 then

q′ = cp+ dq

= cp+ (−c)q c+d ≥ 0 (35) so d ≥ −c
= c(p− q) ≥ 1

For the relative magnitude of p′ and q′,

p′ = ap+ bq

= a(p− q) + (a+ b)q

> c(p− q) + (c+ d)q a > c (33) and a+b ≥ c+d (36)

= cp+ dq = q′

For the parity of p′ and q′,

p′ + q′ = (a+ c)p+ (b+ d)q
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≡ p+ q mod 2 by a+c ≡ 1 (39), b+d ≡ 1 (40)

≡ 1 (44)

Any p′,q′ is reached from just one p,q since ∆ 6= 0 means M is invertible so
p,q is uniquely determined by p′,q′.

Since gcd(p, q) = 1, there exist integers x,y satisfying

xp+ yq = 1 as p,q coprime

and the inverses for p,q in terms of p′,q′ give

x(dp′ − bq′)/∆ + y(−cp′ + aq′)/∆ = 1

(xd− yc)p′ + (−xb+ ya)q′ = ±2r by ∆ = ±2r (41)

which is integer multiples of p′,q′ adding up to ±2r. So gcd(p′, q′) must be a
divisor of 2r. But p′,q′ are opposite parity (44) so one of them is odd which
means gcd(p′, q′) is odd and the only odd divisor of 2r is gcd(p′, q′) = 1.

Since a,c are opposite parity (39), and b,d are opposite parity (40), there are
4 possible combinations of odd/even among the matrix terms. All 4 occur in
the trees.

The parity of the terms control whether the child p′,q′ either keeps, swaps,
or has �xed parity.

Combination

(
E O
O E

) (
O E
E O

) (
E E
O O

) (
O O
E E

)
Matrices U, A D M2, M3 M1,T

swap parity keep parity always always
PQ p′ ≡ q p′ ≡ p p′ even p′ odd

q′ ≡ p q′ ≡ q q′ odd q′ even

Determinant odd odd even even
∆ = ±1 ∆ = ±1 ∆ = ±2r ∆ = ±2r

r ≥ 1 r ≥ 1

7 No Other Trees

Firstov[10] shows that the only trees which can be made from a �xed set of
matrices are the UAD, FB and UMT. The proof o�ered here takes points
according to increasing p whereas Firstov goes by sum p+q. The conditions of
the theorem allow for any number of matrices but it happens that the trees all
have 3 matrices each.

Lemma 1. A triple preserving matrix
(
a b
c d

)
, other than the identity matrix,

advances p, ie. p′ = ap+ bq > p.

Proof. If a= 1 then a > c ≥ 0 (33)(32) means c= 0, and a + b ≥ 1 (34) means
b ≥ 0. If b= 0 then gcd(b, d) = 1 (38) and c + d ≥ 0 (35) together mean d= 1
which is the identity matrix ( 1 0

0 1 ). So if a= 1 then a non-identity matrix has
b ≥ 1 and
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p′ = ap+ bq ≥ p+ q > p

Otherwise if a ≥ 2 then

p′ = ap+ bq

≥ ap+ (1− a)(p− 1) by b ≥ 1− a (34) and p− 1 ≥ q > 0

= p+ a− 1

> p a ≥ 2

Theorem 12 (Firstov). The UAD, FB and UMT trees are the only trees which
generate all and only primitive Pythagorean triples in least terms without du-
plicates using a �xed set of matrices from a single root.

Proof. By lemma 1, the matrices always advance p. So a given p′,q′ at 3,2
onwards must have as its parent some p,q with smaller p. The following cases
consider the ways points up to 5,2 can be reached, culminating in the diagram
of �gure 11 on page 34.

2,1

3,2

4,1

4,3

5,2

p
1 2 3 4 5

q

1

2

3

Case. 2,1 to 3,2 � U and M1(
a b
c d

)(
2
1

)
=

(
3
2

)
(45)

a+ (a+b) = 3 (46)

c+ (c+d) = 2

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

1 2 1 0 2 2 matrix M1

2 1 -1 0 fails gcd(a, c) = 1 (37)
2 1 -1 1 1 0 matrix U(

a b
c d

)
is to send ( 2

1 ) to ( 3
2 ) per (45). This is written in terms of a, a+b and

c, c+d (46) since those terms are ≥ 1 and ≥ 0. The table headings are reminders
of the conditions on those quantities (31),(34), (32),(35).

The solutions are listed in the table by increasing a and then increasing c as
long as a > c (33). The b column is derived from a and a+b. The d column is
derived from c and c+d.

The note beside each combination is either the matrix name or how the
values fail the matrix conditions. For example the middle row of the table
above fails gcd(a, c) = 1 (37). This GCD failure is of the �if c=0 then only a=1�
kind (42). This a and c also fail opposite parity (39).
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Case. 2,1 to 4,1 � M2 and D(
a b
c d

)(
2
1

)
=

(
4
1

)
a+ (a+b) = 4

c+ (c+d) = 1

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

1 3 2 0 1 1 matrix D

2 2 0 0 fails gcd(a, c) = 1 (37)
2 2 0 1 0 -1 matrix M2

3 1 -2 0 fails gcd(a, c) = 1 (37)
3 1 -2 1 0 fails a+ c ≡ 1 mod 2 (39)

Case. 2,1 to 4,3 � M3 and X1(
a b
c d

)(
2
1

)
=

(
4
3

)
a+ (a+b) = 4

c+ (c+d) = 3

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

1 3 2 0 3 3 fails ad− bc = ±2r (41)

2 2 0 0 fails gcd(a, c) = 1 (37)
2 2 0 1 2 1 matrix M3

3 1 -2 0 3 fails gcd(a, c) = 1 (37)
3 1 -2 1 2 fails a+b ≥ c+d (36)
3 1 -2 2 1 -1 matrix X1 = U .U

X1 =

(
3 −2
2 −1

)
= U .U (47)

As a remark, in general any matrix with c=0 such as ( 1 2
0 3 ) in the �rst line

of the table must not have g = gcd(a+b, d) > 1 odd (here g= 3), otherwise
p = g+1, q = 1 leads to a common factor g in p′, q′.(

a b
0 d

)(
g + 1

1

)
=

(
ag + (a+b)

d

)
=

(
ag + s′g
d′g

)
a+b = s′g and d = d′g

Case. 2,1 to 5,2 � matrices A, T, X2(
a b
c d

)(
2
1

)
=

(
5
2

)
a+ (a+b) = 5

c+ (c+d) = 2

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

1 4 3 0 2 2 matrix T

2 3 1 0 fails gcd(a, c) = 1 (37)
2 3 1 1 1 0 matrix A

3 2 -1 0 fails gcd(a, c) = 1 (37)
3 2 -1 1 fails a+ c ≡ 1 mod 2 (39)
3 2 -1 2 0 -2 matrix X2 = M1 .M2

4 1 -3 0 fails gcd(a, c) = 1 (37)
4 1 -3 1 1 0 fails gcd(b, d) = 1 (38)
4 1 -3 2 fails a+ c ≡ 1 mod 2 (39)
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X2 =

(
3 −1
2 −2

)
= M1 .M2 (48)

Case. 3,2 to 4,1 � no matrices(
a b
c d

)(
3
2

)
=

(
4
1

)
a+ 2(a+b) = 4

c+ 2(c+d) = 1

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

2 1 -1 1 0 -1 fails b+ d ≡ 1 mod 2 (40)

Case. 3,2 to 4,3 � matrix U only(
a b
c d

)(
3
2

)
=

(
4
3

)
a+ 2(a+b) = 4

c+ 2(c+d) = 3

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

2 1 -1 1 1 0 matrix U

Case. 3,2 to 5,2 � no matrices(
a b
c d

)(
3
2

)
=

(
5
2

)
a+ 2(a+b) = 5

c+ 2(c+d) = 2

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

1 2 -1 0 1 1 fails b+ d ≡ 1 mod 2 (40)

3 1 -2 0 fails gcd(a, c) = 1 (37)
3 1 -2 2 0 -2 fails b+ d ≡ 1 mod 2 (40)

Case. 4,1 to 5,2 � M1 only(
a b
c d

)(
4
1

)
=

(
5
2

)
3a+ (a+b) = 5

3c+ (c+d) = 2

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

1 2 1 0 2 2 matrix M1

Case. 4,3 to 5,2 � no matrices(
a b
c d

)(
4
3

)
=

(
5
2

)
a+ 3(a+b) = 5

c+ 3(c+d) = 2

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

2 1 -1 2 0 fails a > c (33)

As a remark, in general no matrix can give a unit step diagonally down from
just under the leading diagonal like 4,3 to 5,2 here and case 3,2 to 4,1 above.
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p= q

k+1, k

k+2, k−1

(
a b
c d

)(
k + 1
k

)
=

(
k + 2
k − 1

)
a+ (a+b)k = k + 2

c+ (c+d)k = k − 1
with k ≥ 3

which has a single solution,

a ≥ 1 a+b ≥ 1 b c ≥ 0 c+d ≥ 0 d

2 1 −1 k−1 0 −(k−1)

If k≥ 3 then this solution fails a > c (33), as per 4,3 to 5,2. If k= 2 (or for
that matter any k even) then this solution fails b+d ≡ 1 mod 2 (40) as per 3,2
to 4,1.

Figure 11 summarises the above cases. These are the only ways to go to
each point shown.

2,1

3,2

4,1

4,3

5,2
U,M1

M2,D

M3,X1

A,T,X2

U

M1

Figure 11:

possible p,q

point descents

X1 = U .U (47) goes 2,1 to 4,3 by U twice. X2 = M1 .M2 (48) goes 2,1 to
5,2 by M2 then M1. It is this order because the matrix multiplication is on the
left so X2 ( pq ) = M1 .M2 ( pq ) is step by M2 �rst then M1.

3,2 is reached from 2,1 by either U or M1. Suppose �rstly it is M1. M1
repeated goes

2, 1 → 3, 2 → 5, 4 → · · · as at (26)

So 4,1 and 4,3 are not visited. Consider 4,1 �rst. The candidates for its
parent are

2,1 to 4,1 M2 or D
3,2 to 4,1 none

It cannot be D since M1 and D overlap at 7,2.

M1

(
6
1

)
= D

(
3
2

)
=

(
7
2

)
M1 and D overlap
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M1 and M2 together visit

2,1

3,2

5,4

6,1
M1

4,1

5,2

8,3M2

Point 4,3 is still not visited. The candidates for its parent are

2,1 to 4,3 M3 or X1
3,2 to 4,3 U

Its parent cannot be U since U overlaps with M1 at 3,2 (both U and M1
send 2,1 to 3,2).

U

(
2
1

)
= M1

(
2
1

)
=

(
3
2

)
U and M1 overlap (49)

Neither can it be X1 because X1 overlaps M1 at 5,4,

M1

(
3
2

)
= X1

(
3
2

)
=

(
5
4

)
M1 and X1 overlap

So when M1 is included the only possible combination is M1,M2,M3 which
is the FB tree.

Return to instead take U for 2,1 to 3,2. Repeated U goes

2, 1→ 3, 2→ 4, 3→ 5, 4→ · · · as at (11)

Point 4,1 is the smallest p not visited. The candidates for its parent are

2,1 to 4,1 M2 or D
3,2 to 4,1 none

Take �rst U and M2. Together they visit

2,1

3,2

4,3

6,1
U

4,1

7,4

8,3M2

5,4

The smallest p not visited yet is 5,2. The candidates for its parent are

2,1 to 5,2 A, T, X2
3,2 to 5,2 none
4,1 to 5,2 M1
4,3 to 5,2 none

(50)

M1 is excluded because it overlaps with U at 3,2 per (49).
A is excluded because it overlaps with M2 at 8,3.

A

(
3
2

)
= M2

(
4
1

)
=

(
8
3

)
A and M2 overlap
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X2 is excluded because it overlaps with U at 11,6,

U

(
6
1

)
= X2

(
4
1

)
=

(
11
6

)
X2 and U overlap (51)

So when U and M2 are in the tree the only combination is U,M2,T which is
the UMT tree.

Return to U and D. Together they visit

2,1

3,2

4,3

7,2
U

4,1

7,4

6,1D

5,4

Again the smallest p not visited is 5,2 and its parent candidates are per (50).
M1 and X2 are excluded because they overlap U by (49),(51). T is excluded

because it overlaps D at 11,6,

D

(
3
2

)
= T

(
4
1

)
=

(
7
2

)
D and T overlap

So when U and D are included the only combination is UAD by Berggren
etc.

It might be noted for the proof that only some of the conditions on triple
preserving a,b,c,d from theorem 11 are needed.

It would be enough here to have the ranges of a,b,c,d giving the 29 matrices
which are the rows of the case tables, then for each of the 18 failing matrices
exhibit a particular p,q which makes a bad p′,q′. Those p,q would follow the
general conditions but be just particular integer values.

8 Calkin-Wilf Tree Filtered

The tree of rationals by Calkin and Wilf[7] arranges the Stern diatomic sequence
into tree rows which descend as

p,q

p, p+ q p+ q, q

The diatomic sequence goes in a repeating pattern of odd and even

O O E O O E O O E O O E . . .

So when taking adjacent pairs every third is odd/odd, and is to be �ltered
out for the purpose of Pythagorean triples.

O/O, O/E, E/O, O/O, O/E, E/O, O/O, O/E, E/O . . .

Removing the odd/odd points leaves two tree roots 1,2 and 2,1.
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1,1

1,2

1,3

1,4

1,5 5,4

4,3

4,7 7,3

3,2

3,5

3,8 8,5

5,2

5,7 7,2

2,1

2,3

2,5

2,7 7,5

5,3

5,8 8,3

3,1

3,4

3,7 7,4

4,1

4,5 5,1

The orphaned children can be adopted by their grandparent to make a 3-
point descent. The rule for the children then varies according to whether the
parent p is odd or even. It happens that the D matrix (6) is one of the legs.

if p odd, q even if p even, q odd
p,q

p, 2p+ q(
1 0
2 1

)
= D matrix
transposed

2p+ q, p+ q(
2 1
1 1

) p+ q, q(
1 1
0 1

)
p,q

p, p+ q(
1 0
1 1

) p+ q, p+ 2q(
1 1
1 2

) p+ 2q, q(
1 2
0 1

)
= D matrix

Points p > q and p < q are intermingled in the tree. Each left leg has p < q
and each right leg has p > q.

The p < q points give leg A = p2− q2 < 0. For example 1,2 becomes −3,4,5.
So two copies of the primitive triples are obtained, one with A positive and the
other A negative. If desired, the negatives could instead be taken to mean swap
A and B giving triples such as 4,3,5 which is A even, B odd. That would be all
positive primitive triples with A,B both ways around.

9 Parameter Variations

9.1 Parameter Di�erence

Triples can also be parameterized by d,q where d is a di�erence d = p− q.

d ≥ 1, odd integer

q ≥ 1, any integer

gcd(d, q) = 1

A = d2 + 2dq A leg odd

B = 2dq + 2q2 B leg even

C = d2 + 2dq + 2q2 hypotenuse

d =
√
C −B q =

√
C−A

2

The e�ect is to shear p,q coordinates left to use the whole �rst quadrant.
This for example changes the UArD tree steps (theorem 5) from diagonals to
verticals.
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(
d
q

)
= H

(
p
q

)
where shear H =

(
1 −1
0 1

)

q

p

p = q

p = 2q

d (odd)
1 3 5 7 9 11 13 15

q

d = 0
p = q

d = q
p = 2q

shear for d = p− q

Tong[23] takes d,q as a symmetric parameterization of all triples. It is sym-
metric in that d and q can be swapped to give a conjugate triple.(

q
d

)
= Jdq

(
d
q

)
conjugate, where swap Jdq =

(
0 1
1 0

)
Primitive triples with q odd have a primitive conjugate. Primitive triples

with q even do not have a primitive conjugate since it would be d even.
Braza, Tong and Zhan[6] consider 3×3 matrix transformations on Pythag-

orean triples and show that the only invertible transformation is an L which
corresponds to the d,q conjugate operation.

L =

 1
2 1 − 1

2
1 −1 1
1
2 −1 3

2


L can be had from the 2×2→ 3×3 formula (5), which is for p,q, by expressing

the conjugate operation in p,q,

Jpq = H−1.Jdq .H =

(
1 0
1 −1

)
then L = 2to3(Jpq )

Jpq transforms p,q to p, p−q. Geometrically, this is a reversal of the q val-
ues within a column. The swap of d,q is a reversal in an anti-diagonal which
corresponds to a column in p,q.

9.2 Parameters Sum and Di�erence

Triples can also be parameterized by sum s = p+q and di�erence d = p−q.

s > d ≥ 1, integers, both odd

gcd(s, d) = 1

A = sd A leg odd

B = (s2 − d2)/2 B leg even (52)

C = (s2 + d2)/2 hypotenuse

s =
√
C +B d =

√
C −B
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s,d is the original parameterization in Euclid[9] and also noted for instance
by Mitchell [18]. In Euclid, s is a length AB and a point C on that line de�nes
d. From there p is the midpoint (mean) of A and C at D. q is the distance to
that midpoint.

A BC

D = midpoint AC

D

s = AB
d = BC

p = BD = (s+ d)/2
q = AD = DC = (s− d)/2

Algebraically, the di�erence of two squares in the A leg of p,q (1) and in the
B leg of s,d (52) each suggest taking sum and di�erence, which gives respectively
the other parameterization.

A = p2 − q2 = (p− q)(p+ q)

B = 1
2 (s2 − d2) = 1

2 (s− d)(s+ d)

The geometric interpretation of s,d coordinates is to transform a column in
p,q to a downward diagonal

p
1 3 5 7 9 11

q p=q d

s
1 3 5 7 9 11 13 15 17 19 21

s=d transformation

for
s = p+q
d = p−q

Points in the eighth of the plane x> y ≥ 1 with gcd(x,y) = 1 are either opp-
osite parity or both odd. They are never both even since that would be common
factor 2. p,q are the opposite parity points. s,d are the both-odd points. The
sum and di�erence is a one-to-one mapping between the two classes.

Write the mapping as a matrix

F =

(
1 1
1 −1

)
so

(
s
d

)
= F

(
p
q

)
The U,A,D matrices transformed to act on s,d are D,A,U.

Usd = F.U.F−1 = D

Asd = F.A.F−1 = A

Dsd = F.D.F−1 = U

In the geometry of �gure 1, a pair s,d is a slope from the Y axis at y=−1,
rather than the X axis at x=−1.
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1−1

−1

B/C

A/C

q

p

proportion

α

α

2α

d

s
β

β =
π

4
− α

β

2β

unit circle
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