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Iterations of the Terdragon Curve

Kevin Ryde
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Abstract

Various results on the terdragon curve, including coordinates, area,
boundary, enclosure sequence, convex hull, centroid, moment of inertia,
some trees, fractionals, and some results on the alternate terdragon curve.
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Notation

Various coordinates and other expressions use complex 3rd, 6th and 12th roots
of unity, usually to express directions.

ω3 = − 1
2 + 1

2

√
3i = e2πi/3 3rd root of unity, 120◦

ω6 = 1
2 + 1

2

√
3i = e2πi/6 = ω3 + 1 6th root of unity, 60◦

ω12 = 1
2

√
3 + 1

2 i = e2πi/12 12th root of unity, 30◦

0 1

ω3 ω6

ω12

A few formulas have terms going in a repeating pattern of say 4 values
according as an index k ≡ 0 to 3 mod 4. It's convenient to write them as for
example

[5, 8, −5, 9] values according as k mod 4

meaning 5 when k ≡ 0 mod 4, or 8 when k ≡ 1 mod 4, etc. Likewise periodic
patterns of other lengths, usually at most 8.

Periodic patterns like this can also be expressed using powers of −1 or i or
other roots of unity, but except in simple cases that tends to be less clear than
the values.

1 Terdragon Curve

The terdragon curve by Davis and Knuth[3] is de�ned recursively as a repeated
replacement of each line segment by 3 segments in an �S� shape

0 1 =⇒ 0

1

2

3

The curve touches at vertices. The following diagram has the vertices cham-
fered o� to better see the turns and joins.

start

end

k=0

start

end

k=1

start

end

k=2

start

end

k=3

start

end

k=4

n = 34 = 81

at z = − 9
2 + 9

2

√
3
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1.1 Plane Filling

Davis and Knuth show the terdragon is non-crossing and plane �lling from the
revolving cubic representations of its vertices. This can also be seen geometri-
cally.

Theorem 1 (Davis and Knuth). The terdragon curve touches at vertices but
does not cross itself.

Proof. Consider an in�nite triangular grid with unit line segments connecting
the points. Each line segment expands to the base pattern as follows. The
corners of the new line segments are chamfered o� here to show how they meet
the expansions from other lines but do not cross.

Figure 1: segment expansions

The expanded segments are the same grid pattern rotated by 30◦.
Any subset of the full grid expands to a new bigger set with the number

of crossings unchanged. The terdragon curve begins with a single line segment
which is such a subset with no crossings and so on repeated expansions has no
crossings.

The expansion replaces each line segment with a rhombus shaped three seg-
ments. This is a classical tiling pattern [9].

Theorem 2 (Davis and Knuth). Six copies of the terdragon curve arranged at
60◦ angles �ll the plane.

Proof. The initial 6 line segments expand
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Take the central 2×2 hexagon. With two expansions it grows

The dashed outline is a 4×4 hexagon at the origin. Each 2×2 hexagon (possibly
overlapping) grows to at least 4×4. By repeated expansion they grow to an
arbitrarily large hexagon at the origin.

See end of section 10.1 for the actual diameter of 6 arm �lling.

1.2 Turn Sequence

Number points of the terdragon curve starting n=0 at the origin. Per Davis
and Knuth, the replications give a turn sequence which is 120◦ turns according
to the lowest non-0 digit of n in ternary,

turn(n) =

{
+1 if LowestNonZero(n) = 1

−1 if LowestNonZero(n) = 2
n ≥ 1 (1)

= −(−1)LowestNonZero(n)

= + − ++ −− + − ++ − ++ −− + −− + − ++ −− + − ++ − . . .

turn(3n) = turn(n), turn(3n+1) = 1, turn(3n+2) = −1 (2)

LowestNonZero(n) = 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, . . . n ≥ 1 A060236

Or next turn,

turn(n+1) =

{
+1 if LowestNonTwo(n) = 0

−1 if LowestNonTwo(n) = 1
n ≥ 0 (3)

= (−1)LowestNonTwo(n)

LowestNonTwo(n) = 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, . . . n≥0 o�set A080846

3k−1 consists entirely of 2-digits and is taken to have a 0 above the highest
so LowestNonTwo(3k−1) = 0.

turn(n) and turn(n+1) are related simply by n+1 changing low 2s into low
0s and increment the digit above.

· · · d+1 0 · · · 0n+1

· · · d 2 · · · 2n ternary digits, d 6=2

LowestNonTwo(n) = LowestNonZero(n+1) − 1

On a binary computer, it can be convenient to represent ternary digits in 2
bits each. Arndt[1] gives an example iterating turn like this with bits 00, 01, 10
to represent 0, 1, 2 respectively and a loop for carry propagation.
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Another possibility is bits 00, 01, 11. This allows a binary increment to
propagate a carry through 2s. If it increments 01 to 10 then a normalize from
10 up to 11 is necessary. Representing ternary 1 by bits 01 (rather than 10)
allows the lowest non-0 digit to be determined by bit above lowest 1-bit, which
can be found by bit-twiddling.

nbits has bits 00, 01, 11 representing ternary digits 0, 1, 2 A023713

turn(nbits) =

{
+1 if BitAboveLowestOne(nbits) = 0

−1 if BitAboveLowestOne(nbits) = 1

increment(nbits) = PostIncFix (nbits + 1) (4)

PostIncFix (n) = BITOR(n, BITAND(1010...1012, RIGHTSHIFT(n)))

BitAboveLowestOne(n)=

{
0 if BITAND(n,MaskAboveLowestOne(n)) = 0

1 if BITAND(n,MaskAboveLowestOne(n)) 6= 0

=0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, . . . A038189

MaskAboveLowestOne(n) = BITXOR(n, n−1) + 1 n ≥ 1

= 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 32, ... A171977

These bit operations are best suited to n in a single machine word. In a big
number, masks etc on the whole number would act on a lot of unchanged bits
(since carry rarely propagates very far). For a big number represented in words,
�xing can stop where the carry stops.

Predicates for left and right turns are

TurnLpred(n) =

{
1 if n≥1 and LowestNonZero(n) = 1

0 otherwise

= 1,0,1,1,0,0,1,0,1,1,0,1,1,0,0,1,0,... n≥1 A137893

TurnRpred(n) =

{
1 if n≥1 and LowestNonZero(n) = 2

0 otherwise

= 0,1,0,0,1,1,0,1,0,0,1,0,0,1,1,0,1,... n≥1 A080846

Generating functions for these sequences follow by considering the ternary
digits of those n which are a left or right turn. A left turn is k low zeros then
digit 1 so n = 3k +m.3k+1 for integer m. Generating function 1/(1−x3k+1

) is
1 at m.3k+1 then multiply x3

k

to add 3k. Similarly a right turn is k low zeros
then digit 2 so n = 2.3k +m.3k+1 which is multiply by x2.3

k

to add 2.3k,

gTurnLpred(x) =

∞∑
k=0

x3
k

1− x3
k+1 gTurnRpred(x) =

∞∑
k=0

x2.3
k

1− x3
k+1 (5)

With turn(n) = TurnLpred(n) − TurnRpred(n), a generating function for
turn is their di�erence. Factor 1−x3k cancels from numerator and denominator,
though replications in 3k+1 blocks are then less clear.
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gturn(x) =

∞∑
k=0

x3
k

− x2.3
k

1− x3
k+1 =

∞∑
k=0

x3
k

1 + x3
k

+ x2.3
k (6)

Paul D. Hanna in OEIS A080846 gives a generating function for TurnRpred
based on a generating function for net directions (dir ahead in section 1.3).
Shifting it to the numbering here so �rst turn n=1 term x1 is

gTurnRpred(x) = 1
2

x

1−x
− 1

2

∑
k≥0

x3
k

1 + x3
k

+ x2.3
k

This can be thought of as changing turn form (6) values from ±1 to 0,1 by

TurnRpred(n) = 1
2

(
1− turn(n)

)
If a generating function for just an initial part of the sequence is required

then stopping the sum (either form) at k su�ces for n < 3k+1 where the next
term would begin (a left turn at k+1 low zeros and digit 1 above).

On expanding the curve, 2 new turns LR are inserted into each segment. A
segment is before each existing turn.

L

LR LR

R

LR

L

LR

L

LR . . . new turns

. . . existing turns
Figure 2

The new R and L each side of an existing turn make a run either RR or LL
with the existing turn according to whether it is R or L. So run lengths in the
turn sequence are an initial 1 then pairs either 1,2 or 2,1 according as turn = +1
or−1 respectively. With an index m starting m=0 for the �rst run,

TurnRun(m) =


1 if m=0 (left turns)
3
2 + 1

2 turn(m2 ) if m even ≥2 (left turns)
3
2 −

1
2 turn(m+1

2 ) if m odd (right turns)

=

{
1 if m=0
3
2 + 1

2 (−1)
m turn(

⌈
m
2

⌉
) if m ≥ 1

= 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, . . .

turn = +1, −1, +1, +1, −1, −1, +1,

gTurnRun(x) = − 1
2 + 3

2

1

1−x
+ 1

2

(
1− 1

x

)
gturn(x2)

For �nite curve k, the run lengths end with a �nal 1 which is per the initial
1. The curve is the same in 180◦ rotation, so the run length sequence for �nite
k is a palindrome.

The n which is the start of a run follows from �gure 2 turns too. In each
LR, the left n ≡ 1 mod 3 is the start of a run unless preceded by an existing
turn L. The right at n ≡ 2 mod 3 is always the start of a run. With index m
starting m=0 for the �rst run again,

TurnRunStart(m) = 1 +

m−1∑
j=0

TurnRun(j)
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= 3
2m+

{
1− TurnLpred( 32m) if m even
1
2 if m odd

=
⌈
3
2m
⌉
+

{
1 if m=0

TurnLpred(m) if m even ≥ 2
(7)

= 1, 2, 3, 5, 7, 8, 9, 11, 12, 14, 16, 17, 19, . . .

Form (7) eliminates factor 3
2 on even m by �rstly factor of 3 is no change

since turn(3n) = turn(n). Then 2. 12m instead of 1
2m is turn(2n) = −turn(n)

since factor 2 �ips the lowest non-zero 1↔ 2. This swaps to TurnRpred , and
then 1−TurnRpred is back to TurnLpred , for m 6=0.

Theorem 3. The o�set dNextL(n) from n to the next n which is a left turn
is given by the low ternary digits of n in the following patterns, where 2 means
zero or more 2-digits. High 0 digits are understood on n as necessary.

dNextL(n) =


1 if n = ... 02

2 if n = ...021 or ...122

3 if n = ...121

(8)

=


1 if n ≡ 0 mod 3

2 + TurnRpred(n+2) if n ≡ 1 mod 3

1 + TurnRpred(n+1) if n ≡ 2 mod 3

(9)

=

{
2 + TurnRpred(n+2) if n ≡ 1 mod 3

1 + TurnRpred(n+1) if n 6≡ 1 mod 3
(10)

And dNextR o�set to the next right turn,

dNextR(n) =


1 if n = ... 12

2 if n = ... 0

3 if n = ...022

=


2 if n ≡ 0 mod 3

1 if n ≡ 1 mod 3

2 + turn(n+1) if n ≡ 2 mod 3

(11)

=

{
2 if n ≡ 0 mod 3

2 + turn(n+1) if n 6≡ 0 mod 3
(12)

dNextL(n) = 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, . . .

dNextR(n) = 2, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 3, 2, 1, 1, 2, . . .

Proof. Segment expansion inserts a new pair of turns LR after each existing
point n=0 onwards. With existing points X and Y, dNextL steps are
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X

L R

Y

L R
dNextL

new turns

existing turns, X,Y each either L or R

+1 +2 or +3

+1 or +2

0n ≡ 1 2 0 1 2 mod 3

X always steps +1 to the �rst L. That L steps to Y if Y is an L or to the
second L otherwise. TurnRpred(n+2) is the possible extra 1 to add for this.
Similarly R to Y or L according to TurnRpred(n+1), and hence (9).

For the two case (10), n≡0 has TurnRpred(n+1) = 0 always, allowing it to
combine with n≡2.

dNextL(X) before expansion determines whether Y is L or R. If +1 then
it is step +1 to L at Y, and otherwise a bigger step because Y not L. So a
morphism expansion can be written as follows with 1 or not 1 determining the
new steps at n ≡ 1, 2 mod 3 (steps either 2, 1 or 3, 2).

dNextL = 1 → 1, 2, 1 2 → 1, 3, 2 3 → 1, 3, 2 starting 1

Such expansions are a state machine by ternary digits of n from high to low.
Some state machine manipulations to reverse gives low to high and which are
the digit patterns at (8). Those patterns can also be seen just by considering
possible combinations of low digits of n and what increment is needed to reach
LowestNonZero = 1.

+1 +2 +3

start

0,2
1

0

1
2

0

1

2

Figure 3: dNextL(n) state machine,
ternary high to low

+1

+1

+2

+1

+2

+3

start

low to high

0

1

2

0

1 2

0

1 2

For dNextR, similar X and Y existing points and steps are

X

L R

Y

L R new turns

existing turns, X,Y each either L or R
dNextR

+2

+1

+1 or +3

0n ≡ 1 2 0 1 2 mod 3

X always steps +2 to the R for the �rst LR pair. The L of that pair always
steps +1 likewise. R steps to Y if that is an R or to the R of the secont LR pair
otherwise, so +1 or +3 depending on the turn at Y, and hence (11).

For the two case (12), n≡ 1 mod 3 has turn(n+1) =−1 always, allowing it
to combine with n≡ 2.

Again a morphism expansion can be written based on X having been 1 or
not 1 and hence Y being R or not. Then state machine reversal low to high for
the digit patterns.

dNextR = 1 → 2, 1, 1 2 → 2, 1, 3 3 → 2, 1, 3 starting 2
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+1

+2

+3

start

0

1

2

0
1,2

0
1

2

Figure 4: dNextR(n) state machine,
ternary high to low

+2

+3

+1

+2

+3
start

low to high

0

1

2

0

1

2

Second Proof of Theorem 3. A mechanical approach can be made using state
machines for TurnLpred and TurnRpred . dNextL(n) = 1 is at those n where
n+1 is L. This is next turn left per (3), and is a pair �any,L� at n.

dNextL(n) = 2 is a triplet �any,R,L� at n, so an R at n+1 and make some
state machine manipulations for a test of L at n+2, which is the digit strings
of left turns all subtract 2. The intersection of R next and L second next is all
the dNextL = 2.

Similarly dNextL(n) = 3 is four �any,R,R,L� at n.
dNextR is similarly any,R, any,L,R, any,L,L,R.

Arithmetically, the cases of one or two following opposite R or L can be
written out

dNextL(n) = 1 + TurnRpred(n+1) + TurnRpred(n+1).TurnRpred(n+2)

= 1 + TurnRpred(n+1) .
(
1 + TurnRpred(n+2)

)
dNextR(n) = 1 + TurnLpred(n+1) .

(
1 + TurnLpred(n+2)

)
Exactly one of dNextL(n) = 1 or dNextR(n) = 1, and which one goes ac-

cording to whether turn(n+1) is L or R. The other is then 2 or 3 according to
turn(n+2).

When n is known to be a left turn, its lowest non-zero digit is 1, so in �gure 3
low to high, digit 2 at the start state does not occur. So arithmetically just two
cases in (9). E�ectively this is simply n≡1 always step +2 to the following n≡0
and there TurnRpred to see if it's not L and so step +1 more.

dNextL(n) =

{
1 if n ≡ 0 mod 3

2 + TurnRpred(n+2) if n ≡ 1 mod 3
for left turn n

Similar applies in dNextR, in that it never has lowest digit 1, but the states
and cases are not reduced.

Generating functions for dNextL and dNextR follow from (9) and (11).

gdNextL(x) =
1 + 2x+ x2

1− x3
+
( 1

x
+

1

x2

)
gTurnRpred(x3) (13)

= (1 + x)

(
1 + x

1− x3
+

1

x2

∞∑
k=1

x2.3
k

1− x3
k+1

)
(14)

gdNextR(x) =
2 + x+ 2x2

1− x3
+

1

x
gturn(x3) (15)
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=
2 + x+ 2x2

1− x3
+

∞∑
k=1

x3
k−1

1 + x3
k

+ x2.3
k (16)

The o�sets n+2 and n+1 used in the TurnRpred and turn cases each go to
the same following 0 mod 3 and that 0 mod 3 is a factor of 3 which is no change
to the turn sequence. So the whole turn sequence can be spread (by x3) and
replicated for (13),(15). In (14),(16), that spread is by starting the sums at
k=1.

Factor 1+x on the whole of (14) is, in the usual way for a generating function,
sum pairs of terms of the rest. That rest is

slnz (n) =


1 if n ≡ 0 mod 3

LowestNonZero(n+2) if n ≡ 1 mod 3

0 if n ≡ 2 mod 3

(17)

= 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, . . .

dNextL(n) = slnz (n) + slnz (n−1) (18)

gdNextL(x) = (1+x) gslnz (x)

The cases at (17) are LowestNonZero(n+2) except that n+2 ≡ 1,2 mod 3
are result 0, 1 instead. The two slnz at (18) give cases equivalent to dNextL
form (9). For n=0, slnz (−1) = 0 is per its n≡2 case.

The converse slnz in terms of dNextL is an alternating sign sum, either by
expanding repeatedly or the usual way for generating function factor 1/(1+x).

slnz (n) = dNextL(n)− slnz (n−1)
= dNextL(n)− dNextL(n−1) + dNextL(n−2)− · · · ± dNextL(0)

Consecutive n = 3h+1, 3h+2 in dNextL have their TurnRpred testing the
same 3h+3 which then cancel due to the alternating signs. The constant parts
of a block of 3 in dNextL similarly cancel 1−2+1 = 0, leaving just the top-most
one or two terms,

slnz (n) =


dNextL(n) if n ≡ 0 mod 3

dNextL(n)− dNextL(n−1) if n ≡ 1 mod 3

0 if n ≡ 2 mod 3

Theorem 4. The m'th left or right turn point n is given by the following re-
currences, for turns indexed by m and �rst turn m=0,

TurnLeft(m) =


1 if m=0

3k + TurnLeft
(
m− 1

2 (3
k+1)

)
if m < 3k, m6=0

2.3k + TurnLeft
(
m− 3k

)
if m ≥ 3k

(19)

where for m≥1 have biggest k with 1
2 (3

k + 1) ≤ m
= 1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, . . . A026225
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TurnRight(m) =


3k + TurnRight

(
m− 1

2 (3
k−1)

)
if m < 3k−1

2.3k if m = 3k−1
2.3k + TurnRight

(
m− 3k

)
if m ≥ 3k

(20)

where k biggest 1
2 (3

k − 1) ≤ m
= 2, 5, 6, 8, 11, 14, 15, 17, 18, 20, 23, 24, . . . A026179

Proof. In an expansion level k, there are 3k segments and 3k − 1 turns between
them. Since the curve is symmetric in 180◦ rotation, there are half lefts and
half rights 1

2 (3
k − 1) each.

The recurrences follow from how many turns of each direction in each sub-
part and between. Expansion level k+1 comprises the following sub-parts for
level k≥ 1.

O L

R L

part 0

part 1

part 2

m = 1
2
(3k−1)

m = 1
2
(3k+1)

m = 3k

m = 1
2
(3k+1−1)

m
range

TurnLeft parts

k+1, sub-parts k≥ 1

Part 0 has 1
2 (3

k−1) left turns so that the L after it is m = 1
2 (3

k−1) and the
�rstm within part 1 ism = 1

2 (3
k+1). Taking k as the biggest with 1

2 (3
k+1) ≤ m

is then m ranging from the �rst turn in part 1 to the L after part 2, inclusive.
The m which is the �rst L in part 2 is the number of L preceding there,

which is 2. 12 (3
k−1)+ 1 = 3k. Comparing m to 3k thus determines whether it is

in part 1, or after.
For part 1, subtracting its start 1

2 (3
k+1) reduces to an m within part 0.

1
2 (3

k+1) ≤ m ≤ 3k − 1 part 1

0 ≤ m− 1
2 (3

k+1) ≤ 1
2 (3

k−3)

For part 2 and the L following it, subtracting the �rst m = 3k in part 2
reduces to an m which is in part 0 or the L following it.

3k ≤ m ≤ 1
2 (3

k+1 − 1) part 2

0 ≤ m− 3k ≤ 1
2 (3

k−1)

These reductions reach case m=0 eventually, which is the �rst L at n=1.
Similarly TurnRight , but its m range does not take in either of the L.

O L

R L

part 0

part 1

part 2

m = 1
2
(3k−1)

m = 3k − 1
m = 3k

m
range

TurnRight parts

k+1, sub-parts k≥ 1
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The R between parts 1 and 2 is m=3k−1 and is an exception in the cases
since part 0 ends with an L not the desired R.

As noted, TurnLeft always ends in its m=0 case TurnLeft(0) = 1. If that is
made 0 instead then the result is TurnLeft(m)−1 which is the segment number
whose end is the m'th turn left, or equivalently the point number where the
next point n+1 is the m'th left.

Theorem 5. n = TurnLeft(m) can be calculated by the following digit procedure

n ← 2m

for each ternary digit position high to low in n
if digit = 1 then n ← n− 1

n ← n+ 1 (21)

And n = TurnRight(m) can be calculated by the following digit procedure

n ← 2m+ 2

for each ternary digit position high to low in n
if digit = 1 then n ← n+ 1

The digit tested at each digit position is in the successively modi�ed n, not
just the original 2m or 2m+2.

Proof. These procedures are implicit in the recurrences (19). For TurnLeft ,
consider the recurrence acting on a p= 2m instead of m. Such doubling is

TurnLeft2 (p) = TurnLeft(m) where p= 2m

=


1 if p=0

3k + TurnLeft2 (p− 3k − 1) if 3k ≤ p < 2.3k

2.3k + TurnLeft2 (p− 2.3k) if p ≥ 2.3k

where k biggest 3k + 1 ≤ p (22)

The e�ect of the procedure is to hold the TurnLeft result so far in the high
ternary digits of n, and p in the low digits.

result pn = ternary Figure 5

khigh low

p is always even so condition (22) is the same as 3k ≤ p so the TurnLeft2
cases are on high ternary digit 1 or 2 in p.

Case p ≥ 2.3k is ternary digit 2 subtracted from p and added to the result,
so no change to the combined n.

Case 3k ≤ p < 2.3k is ternary digit 1 subtracted from p and added to the
result, and an additional −1 on p, so decrease to n − 1. This decrement does
not modify the 1 digit moved to the result since p is even so it has at least two
1 digits and any borrow stops at the lowest of them. The smaller new p is even
again since it is an even amount 3k+1 subtracted altogether from p.

Case p=0 result 1 is the �nal n+1 in the procedure. The procedure works
through all 0 digits of p, leaving them unchanged, and applies this +1 last.
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For TurnRight , consider its recurrence (20) acting on a p = 2m+2,

TurnRight2 (p) = TurnRight(m) where p= 2m+2

=


3k + TurnRight (p− 3k + 1) if p < 2.3k

2.3k if p = 2.3k

2.3k + TurnRight (p− 2.3k) if p > 2.3k

where k biggest 3k + 1 ≤ p

Again n is high result digits and low p as in �gure 5, and p is even so the
cases are ternary digit 1 or 2 of p.

Case p<2.3k is ternary digit 1 and it adds additional +1 to p. This increment
does not modify the 1 digit moved to the result since again p is even so has at
least two 1 digits and any carry will stop at the lowest of them.

Cases p≥ 2.3k are ternary digit 2 put to the result unchanged. For p=2.3k,
the recurrence stops. The procedure continues but the low digits of p=2.3k are
0s which the procedure leaves unchanged.

In a ternary computer, testing for digit 1 is simple. In a binary computer, it
may be desirable to use a vector of ternary digits and apply increments or decre-
ments there, either with an explicit carry loop or bit twiddling. The increment
and bit twiddling at (4) suits the TurnRight procedure. A similar decrement
and bit twiddling PostDecFix would suit the TurnLeft procedure. In both cases
the increment and decrement can be applied to ternary digits for the procedure
tests to examine, and simultaneously to an ordinary n which will be the result.

Both TurnLeft and TurnRight are close to 2m, roughly speaking since the
number of each is the same at the end of an expansion level. Or algebraically in
(19),(20) a 1

2 (3
k±1) subtracted from m is 3k added to n, and in part 2 similarly

3k subtracted from m is 2.3k added to n. O�sets from 2m can be expressed

TurnLeftOff (m) = 2m− TurnLeft(m) (23)

= −1,−1, 0,−1,−1, 0, 0, 1, 0,−1,−1, 0,−1,−1, . . .
TurnRightOff (m) = TurnRight(m)− 2m

= 2, 3, 2, 2, 3, 4, 3, 3, 2, 2, 3, 2, 2, 3, . . .

Substituting into (19),(20) gives recurrences

TurnLeftOff (m) =


−1 if m=0

TurnLeftOff
(
m− 1

2 (3
k+1)

)
+ 1 if m < 3k

TurnLeftOff
(
m− 3k

)
if m ≥ 3k

where k biggest 1
2 (3

k + 1) ≤ m

TurnRightOff (m) =


TurnRightOff

(
m− 1

2 (3
k−1)

)
+ 1 if m < 3k−1

2 if m = 3k−1
TurnRightOff

(
m− 3k

)
if m > 3k−1

where k biggest 1
2 (3

k − 1) ≤ m

In part 2, the L and R turns between parts 0,1 and 1,2 balance, so o�sets
are unchanged on descending. In part 1 the preceding L is an extra, making
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smaller TurnLeft . The o�sets thus grow according to how many middle parts,
and in particular

TurnLeftOff (m) ≥ −1
TurnRightOff (m) ≥ 2

See ahead at (40),(41) for new highs in the o�sets.
The increments between successive turns L or R are

dTurnLeft(m) = TurnLeft(m+1)− TurnLeft(m)

= 2−
(
TurnLeftOff (m+1)− TurnLeftOff (m)

)
= 2, 1, 3, 2, 1, 2, 1, 3, 3, 2, 1, 3, 2, 1, 2, 1, 3, . . . A026141

dTurnRight(m) = TurnRight(m+1)− TurnRight(m)

= TurnRightOff (m+1)− TurnRightOff (m) + 2

= 3, 1, 2, 3, 3, 1, 2, 1, 2, 3, 1, 2, 3, 3, 1, 2, 3, . . . A026181

The expansions in �gure 2 show these increments are always 1, 2 or 3. The
m'th such increment can be expressed by recurrences by expanding TurnLeft or
TurnLeftOff etc.

dTurnLeft(m) =


2, 1 if m = 0, 1

dTurnLeft
(
m− 1

2 (3
k+1)

)
if m < 3k−1

3 if m = 3k−1
dTurnLeft

(
m− 3k

)
if m ≥ 3k

where k biggest 1
2 (3

k + 1) ≤ m and k ≥ 1

dTurnRight(m) =



3 if m = 0

dTurnRight
(
m− 1

2 (3
k−1)

)
if m < 3k−2

1 if m = 3k−2
2 if m = 3k−1

dTurnRight
(
m− 3k

)
if m ≥ 3k

(24)

where k biggest 1
2 (3

k − 1) ≤ m and k ≥ 1

In these recurrences, nothing is accumulated, just descend down m by parts
until reaching one of the 1, 2 or 3 cases.

For dTurnLeft , case m=3k−1 is the L of the last LR pair in part 1. It must
step across the R between parts 1 and 2, so dTurnLeft = 3 there.

For dTurnRight , case m=3k−1 is the R between parts 1 and 2, and m=3k−2
preceding that is R of the last LR pair in part 1.

The cases at (24) correspond to the recurrence given by Neil Sloane in
A131989 (indexed there starting from 1). That sequence is de�ned by run
lengths in a symbol substitution

∗ → ∗ ∗ | ∗ starting from ∗ ∗ | ∗
run lengths = 2, 3, 1, 2, 3, 3, 1, 2, 1, 2, . . . A131989

This is the terdragon curve expansion with ∗ as a segment and | as the R
turn between parts 1 and 2. The sequence values are the lengths of runs of ∗
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separated by |, and thus steps between successive R turns. The run lengths
include the initial two ∗∗ at the start of the symbol sequence as a run 2. That
would be a step from the origin n=0 to the �rst R at n=2, which dTurnRight
here does not include. (The ∗ and | symbols as integers 1, 2 are A133162.)

Sloane also in A131989 gives an expansion where copies of the sequence are
concatenated and the terms each side of the �rst join are added together. That
�rst join is a new left turn so sum the distances each side to be between right
turns.

2 3 1 2 1 2 3 1 2 1 2 3 1 2 1
...

�rst join
sum

dTurnRight three copies,
extra initial 2 �nal 1

Dekking gives a morphism for the sequence by repeated expansions,

A131989 = 1→ 2, 1 2→ 2, 3, 1 3→ 2, 3, 3, 1 starting from 2 (25)

reached by considering return words in the symbol sequence. In the curve these
correspond to runs of 1, 2 or 3 segments between the L turns. The expansions of
the return words correspond to inserting LR into each segment and consequent
new runs. Notice in (25) each term expands to 2, 3, 1 where 3 means 0, 1 or 2
many 3s.

Another approach can be made for dTurnLeft and dTurnRight (the latter
without the initial 2 which A131989 has) by considering LR each side of an
existing turn.

Theorem 6. The dTurnLeft sequence is the turn sequence mapped

L → 2, 1 R → 3 (26)

and the dTurnRight sequence is the turn sequence mapped

L → 3 R → 1, 2 (27)

Proof. On expansion, each existing turn in the curve gains a new pair LR before,
per �gure 2. The steps between successive lefts or rights each side of an existing
turn are

L R
L

L R

2 1

L R
R

L R

3

dTurnLeft

L R
L

L R

3

L R
R

L R

1 2

dTurnRight

new turns

existing turn

For dTurnLeft , in the second-last expansion level identify a 2,1 pair with
each L and a 3 with each R.

For dTurnRight , similarly in the second-last expansion level identify 3 with
each L and a 1,2 pair with each R.

The e�ect of (26) is to insert an extra symbol 1 after each L, or the e�ect
of (27) is to insert an extra symbol 2 after each R (or in both cases a symbol
before if preferred).

The turn sequence expansion per �gure 2 is
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turn = L → L,R, L R → L,R, R starting from L

Substituting (26) and (27) into this is

dTurnLeft = 2, 1 → 2, 1, 3, 2, 1 3 → 2, 1, 3, 3 starting from 2, 1

dTurnRight = 3 → 3, 1, 2, 3 1, 2 → 3, 1, 2, 1, 2 starting from 3

The expanding pairs 2,1 or 1,2 can be split at any point to become expansions
of individual symbols. For example,

dTurnLeft = 1 → 1 2 → 2, 1, 3, 2 3 → 2, 1, 3, 3 starting from 2

dTurnRight = 1 → 3, 1, 2, 1 2 → 2 3 → 3, 1, 2, 3 starting from 3

These highlight the way dTurnLeft has a 1 after every 2, and vice versa in
dTurnRight . The start for dTurnLeft can be just 2 as long as the split makes 2
expand to more than just itself.

Theorem 7. d = dTurnLeft(m) can be calculated by the following procedure

n ← 2m and d ← 2

for each ternary digit position high to low in n

if digit = 0 then if d = 0 then d ← 3

else d ← 2 (28)

if digit = 1 then d ← 0 and n ← n− 1

if digit = 2 and d 6= 0 then d ← 1 (29)

Proof. This procedure �nds TurnLeft by calculating n from m as in the proce-
dure of theorem 5, and puts the resulting digits of n through dNextL.

dTurnLeft(m) = dNextL
(
TurnLeft(m)

)
The �nal n←n+1 step (21) of the TurnLeft procedure is eliminated by using

the digits of n−1, ie. the digits before that �nal step, to determine dNextL(n).
Some state machine manipulations can apply a decrement to the digit strings
of dNextL in �gure 3 giving

d=1

d=1 ′

d=2

d=2 ′

d=3

start

d=0

dNextL(n), for n≥ 1,

by state machine on

ternary digits of n−1
high to low

0 1

2

0

1
2

0 1

2

0

1

2

0

1

2

This state machine is for any n, but TurnLeft is only left turn n so only
n−1 from such an n will be a �nal state. State d=2′ is a �nal state for n−1 =
...1 which is n = ...2 not a left turn. State d=1′ is a �nal state for n−1 =
...12, where the underline means zero or more repetitions, which is n = ...20
and likewise not left. So their di�erent d=1 or d=2 results do not need to be
distinguished. They are combined as special d=0 in the procedure.
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Digit 0 in the state machine goes from d=0 to d=3 or from anywhere else to
d=2, and hence (28).

Digit 1 goes from anywhere to the special d=0.
Digit 2 stays in d=0, or anywhere else goes to d=1, hence (29).

As a remark, digit 1 from anywhere goes to d=0 and that state always
eventually goes to d=3, but it does not su�ce to have digit 1 go directly to d=3
because the result of a following digit 0 is di�erent according to whether in d=0
or d=3.

The digit string cases are as follows. The n−1 column is the digits seen by
the procedure,

n−1 n dTurnLeft(n) next n
. . . 022 . . . 100 +1 . . . 101
. . . 020 . . . 021 +2 . . . 100
. . . 120 . . . 121 +3 . . . 201

Theorem 8. d = dTurnRight(m) can be calculated by the following procedure

n ← 2m+ 2 and d ← 2

for each ternary digit position high to low in n
if digit = 0 then d ← 2

if digit = 1 then d ← 1 and n ← n+ 1

if digit = 2 and d = 2 then d ← 3

Proof. Similar to theorem 7, this procedure �nds TurnRight by calculating n
from m as in theorem 5 and puts the digits of n through dNextR,

dTurnRight(m) = dNextR
(
TurnRight(m)

)
The digit and d steps are dNextR �gure 4 state machine high to low.

Sequences dTurnLeft and dNextL are related by inserting into dTurnLeft the
successive steps down which are non-lefts skipped, 1→ 1, 2→ 2,1, 3→ 3,2,1,
and an initial 1 at the start for dNextL(0)= 1. The same for dTurnRight to
dNextR, and for it initial 2, 1.

1.3 Direction

The total turn is a count of ternary 1 digits since each �1� sub-part is rotated
+120◦ and sub-parts �0� and �2� are unchanged.

dir(n) =

n−1∑
j=0

turn(j)

= count ternary 1 digits in n (30)

= 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 1, 2, 1, . . . A062756

gdir(x) =
1

1− x
gturn(x) (31)
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=

∞∑
k=0

x3
k

− x2.3
k

(1− x) (1− x3
k+1

)
(32)

=

∞∑
k=0

x3
k

(1− x) (1 + x3
k+1

+ x2.3
k+1

)
(33)

Generating function (31) is the usual factor 1/(1−x) for cumulative turns.
In (32), each term is a generating function which has coe�cient 1 where n has
a 1-digit at position k in n, so summing to count 1-digits. (33) has a factor
1− x3k cancelled between numerator and denominator.

Some of the structure of dir can be illustrated in a plot.

0 1 3 9 27 81

1

2

3

4

5

n

dir(n)

Blocks of n= 3k to 3.3k−1 are shown scaled to the same width (and linear
within them) in order to see successive re�nements. The next block is the same
overall shape of its predecessor but adds a middle-third excursion up in each n
(being those n with a new low 1-digit).

The successive new highs are where n is entirely 1 digits.

DirMaxN k = AllOnesk = 1
2 (3

k − 1)

= ternary 11...11 of k many digits

= 0, 1, 4, 13, 40, 121, 364, 1093, . . . A003462

The number of left and right turns from 1 to n inclusive are

TurnsL(n) =

n∑
j=1

TurnLpred(n)

= 0, 1, 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, . . . A189674

TurnsR(n) =

n∑
j=1

TurnRpred(n)

= 0, 0, 1, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, . . . A189672

Generating functions are again factor 1/(1−x) for cumulative left or right
predicate,

gTurnsL(x) =
1

1−x
gTurnLpred(x) =

∞∑
k=0

x3
k

(1− x) (1− x3
k+1

)

gTurnsR(x) =
1

1−x
gTurnRpred(x) =

∞∑
k=0

x2.3
k

(1− x) (1− x3
k+1

)

Draft 15 page 18 of 124

http://oeis.org/A003462
http://oeis.org/A189674
http://oeis.org/A189672


All turns are left or right so total lefts plus rights is simply n. The di�erence
lefts minus rights is net dir for (35). In the generating functions, this di�erence
is gdir form (32).

TurnsL(n) + TurnsR(n) = n (34)

TurnsL(n)− TurnsR(n) = dir(n) (35)

Sum and di�erence of (34),(35) are

TurnsL(n) = 1
2

(
n+ dir(n)

)
TurnsR(n) = 1

2

(
n− dir(n)

)
Clark Kimberling in OEIS A189674 and A189672 gives the following recur-

rences, with the �rst adapted here to TurnsL numbered �rst turn at n=1,

TurnsL(n) = TurnsL
(⌊n

3

⌋)
+
⌊n+2

3

⌋
TurnsR(n) = TurnsR

(⌊n
3

⌋)
+
⌊n+1

3

⌋
(36)

These forms can be seen from the turn expansions in �gure 2 (and general
morphism expansions like A189674, A189672). TurnsL(bn/3c) counts lefts in
the �existing turns�. Each point is preceded by a new pair LR so +bn/3c further
lefts. When n ≡ 1, 2 mod 3 the new L following the last �existing� is to be
included too, so total +b(n+2)/3c. Similarly TurnsR, but for it the following
new R is only when n ≡ 2 mod 3, so +b(n+1)/3c.

TurnLeft from theorem 4 and TurnsL are inverses in the sense that

TurnsL
(
TurnLeft(m)

)
= m+ 1

The left turn at n = TurnLeft(m) increments TurnsL so this n is the smallest
for which TurnsL(n) = m+1, or equivalently n−1 is the greatest for which
TurnsL(n−1) = m. Similarly TurnRight and TurnsR.

The TurnLeft procedure in theorem 5 �nds, for given m, the least solution
n to

TurnsL(n) = m+ 1
1
2

(
n+ dir(n)

)
= m+ 1 (37)

n = 2m+ 2− dir(n) (38)

The successive decrements in the procedure e�ectively adjust for count of
1-digits, which is dir , in order to satisfy (38). Of course the correctness of
the procedure depends on a decrement for a given 1-digit not upsetting higher
1-digits already considered.

The procedure for TurnRight �nds in a similar way

n = 2m+ 2 + dir(n) (39)

These relations show too TurnLeftOff and TurnRightOff from (23) are

TurnLeftOff (m) = dir(n)− 2 where n = TurnLeft(m)

TurnLeftRight(m) = dir(n) + 2 where n = TurnRight(m)

Draft 15 page 19 of 124

http://oeis.org/A189674
http://oeis.org/A189672
http://oeis.org/A189674
http://oeis.org/A189672


New highs in TurnLeftOff are new highs in dir among left turn n. dir is a
maximum when n = 11...11 ternary and this is a left turn. For k many ternary
digits, its index m per (37) is

m = 1
2 (AllOnesk + k)− 1 for k≥ 1 (40)

= 1
4 (3

k + 2k − 5)

= 0, 2, 7, 21, 62, 184, 549, . . . −1+A047926

New highs in TurnRightOff are new highs in dir among right turn n. To
be a right turn is lowest non-zero digit 2, so take low digit 2 so n = 11...112
ternary. For k many ternary digits, its index m per (39) is

m = 1
2 (AllOnesk + 1− (k−1))− 1 for k≥ 1 (41)

= 1
4 (3

k − 2k − 1)

= 0, 1, 5, 18, 58, 179, 543, . . . A000340

These o�sets are the maximum number of decrements or increments made
by the TurnLeft and TurnRight procedures in theorem 5. In both cases for n
of k digits they make at most k−1 decrements or increments in their respective
loops, and the n and m where that maximum occurs is unique.

dir(n) mod 3 is a net direction East, North West or South West. This net
angle su�ces for drawing etc.

0

1

2

dir(n) mod 3

= 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 0, 2, 1, . . .

= 0 at n = 0, 2, 6, 8, 13, 18, 20, 24, 26, . . .

= 1 at n = 1, 3, 5, 7, 9, 11, 15, 17, 19, . . .

= 2 at n = 4, 10, 12, 14, 16, 22, 28, 30, 32, . . .

On expansion, each middle part is 1 greater direction, with wrap-around.
(Philippe Deléham has this in OEIS A062756 for the full dir , no wrap-around.)

dir mod 3 = 0 → 0, 1, 0 1 → 1, 2, 1 2 → 2, 0, 2 starting from 0

1.4 Coordinates

It's convenient to calculate terdragon curve coordinates in complex numbers
using ω3 or ω6 roots of unity and a base b which is the end of a 3-segment unit
expansion. The roots of unity act as rotations by 120◦ or 60◦.

b = ω3 + 2 = ω6 + 1 base

0

ω3 ω6 b
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Per Davis and Knuth, and counting vertices starting n=0 at the origin, point
number n is given by ternary digits of n = ak−1 . . . a2a1a0.

digit(a) = 0, 1, ω6 for a = 0, 1, 2

point(n) = bk−1 digit(ak−1) high digit (42)

+ bk−2 digit(ak−2) ω
dir(ak−1)
3

+ bk−3 digit(ak−2) ω
dir(ak−1 ak−2)
3

· · ·

+ b1 digit(a1) ω
dir(ak−1 ak−2...a2)
3

+ b0 digit(a0) ω
dir(ak−1 ak−2 ...a2 a1)
3 low digit

= 0, 1, ω6, 1+ω6, 2ω6, ω6, ω6, −1 + 2ω6, 2ω6, −1 + 3ω6, . . .

= 0, 1, 1
2+

1
2

√
3i, 3

2+
1
2

√
3i, 1+

√
3i, 1

2+
1
2

√
3i,
√
3i, 1+

√
3i, 1

2+
3
2

√
3i, . . .

Digits can be taken high to low as

point(3kak + nk−1) = bk digit(ak) + point(nk−1) .ω
dir(ak)
3

ak is the highest digit and is located per the base pattern scaled by bk.
The nk−1 digits below it go in direction dir(ak) by multiplying ω3. Repeated
expansion is

point(n) = bk digit(ak) (43)

+ ω
dir(ak)
3

(
bk−1 digit(ak−1)

· · ·
+ ω

dir(a2)
3

(
b1 digit(a1)

+ ω
dir(a1)
3

(
b0 digit(a0)

)))
Digits can be taken low to high by segment replacement,

point(3n1 + a0) = point(n1).b + ω
dir(n1)
3 .digit(a0) (44)

a0 is the low ternary digit and n1 the digits above it. dir(n1) is the seg-
ment direction before expansion, so rotating the new base �gure. This direction
depends on all of n1. Evaluating the nested (43) from innermost to outermost
builds it successively by multiplying each direction onto all below.

For computer calculation, integer coordinates x, y representing x+yω3 can
be maintained. Or x+yω6 if preferred. Multiplication by ω3, ω6 or b are then
various integer additions or subtractions of x, y.

It's also possible to calculate with an x, y representing 1
2 (x+y

√
3i) so that y

is a purely imaginary term (vertical). In this case x, y are integers x ≡ y mod 2,
ie. both even or both odd. The e�ect of plotting those x, y directly on an
integer grid, without 1

2 or
√
3 factors, is to �atten to right triangles height 1

base 2 (instead of equilateral triangles).

Draft 15 page 21 of 124



0,0

1,1

2,0

0,2
3,3

x, y as 1
2
(x+ y

√
3i)

for terdragon k=2
(45)

This form can be useful for a graphics display using every second pixel of
a square grid. It avoids uneven spacing at small scales. If a factor

√
3 for

equilateral triangles is used then it's necessary to round to an integer pixel and
at resolutions near a few pixels this rounding becomes noticeable.

A grid of every second integer position is the same as a square grid rotated
45◦. A further possible integer coordinate system is to take triangles on a 45◦

angle. This corresponds to integers x, y representing points xω6+y ω3.

0,0
3,0

x, y as xω6 + yω3

for terdragon k=2

The low to high point formula (44) can be reversed to calculate n for a given
segment. Suppose a segment is at z = point(n) in direction d = 0, 1, 2 ≡ dir(n)
mod 3.

unpoint (z, d) d = 0, 1, 2
loop

if z=0 then arm = 2d end loop

if z=ω6, d≡2 then arm = 1 end loop

if z=−1, d≡0 then arm = 3 end loop

if z=ω6, d≡1 then arm = 5 end loop

a =

 0 if z ≡ 0 mod b
1 if z ≡ 1 mod b
2 if z ≡ ω6 mod b

ternary digit a

d ← d− dir(a) mod 3

z ←
(
z − digit(a) .ωd3

)
/b

n digits low to high ← a

end loop

if arm even then n
if arm odd then 3k−n
where k is the number of digits of n generated

z mod b determines the low ternary digit a of n since all terms of point(n)
except the lowest are multiples of b, and in that low term ω3 ≡ 1 mod b so

z ≡ digit(a0) mod b

The direction factor in (44) is all digits except a0,

dir(ak...a1) = d− dir(a0)
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Then the low digit is subtracted, b divided out, and the procedure repeated
for the second lowest digit a1, etc.

For segments in the terdragon curve starting in direction d=0 this ends with
location z=0 and direction d=0.

For segments in a 120◦ rotated curve z.ω3, the procedure also ends with z=0
but direction d=1. This is since ω3 ≡ 1 mod b so that factor ω3 does not change
digits generated from z, and the initial d includes +1 for the rotation. Similarly
segments in a 240◦ rotated curve z.ω2

3 reach z=0 and direction d=2.
For segments in a 60◦ rotated curve,

point(n).ω6 = bk.ω6 + point(3k−n).ω 2
3

Geometrically this is starting at a 60◦ endpoint bk.ω6 and going in direction
d=2.

0
bk

bk.ω6

So the procedure gives digits of a 240◦ curve point(3k−n).ω 2
3 , and loop

ending z=ω6. Similarly for 180◦ and 300◦ rotated curves as arms 3 and 5.
Notice these odd arms all take segment direction d as 0, 120, 240, the same as
the even arms. For the odd arms this is reverse along those arms, but the arm
is not known until the end of the procedure.

If calculations are made in coordinates x+yω3 then low digit a is simply

a = 0, 1, 2 ≡ x+y mod 3

If using x+yω6 then a similar x−y mod 3. Or every second point coordi-
nates of (45) is −x mod 3

The geometric interpretation of the procedure is to �nd which rhombus
shaped expansion from �gure 1 contains the segment, then step back to the
multiple of b which is its start. The rhombus tiling and directions are a repeat-
ing pattern and, depending on the x, y coordinate style used, can also be done
in a 12×12 table lookup.

. . . . . .

. . . . . .

0
1

2

1.5 Other N

Each curve location z is visited 1, 2 or 3 times. Applying the unpoint procedure
above for d=0, 1, 2 gives the n which are those visits. For a given n, the other
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n1, n2 at the same location can be calculated from the ternary digits of n without
going via the location.

Theorem 9. For n≥ 1, the other n1 and n2 at the same location are given by
the ternary digits of n put low to high though the following state machine.

S1

S2L1

L2 R1

R2

unch

unch

unch

unch

start δ=1

start δ=2

0
1 2

0
1 2

0

1
2

0

1

2 0

1

2

0
1

2

out +1 mod 3

out +1 mod 3out −1 mod 3

out −1 mod 3

Figure 6:

other(n, δ)

by ternary

digits

low to high

other(n, δ) = start in S δ, output digits ±1 mod 3 in L,R

other(n, 1) = 0, 2, 5, 6, 17, 1, 15, 4, 11, 18, . . .

arm = 0, −1, 0, −1, −1, 1, 0, 0, 0, −1, . . .
other(n, 2) = 0, 5, 1, 15, 7, 2, 3, 17, 14, 45, . . .

arm = 0, −1, 1, −1, 0, 0, 1, −1, 0, −1, . . .

The start state is S1 or S2 for δ=1, 2 respectively for other direction dir(nδ)
≡ dir(n) + δ mod 3. In states L1,R1 the output digit is the n digit +1 mod 3.
In states L2,R2 the output digit is the n digit −1 mod 3. In S states the output
digits are n digits unchanged, as are all further digits after reaching �unch�.

One additional high 0 is reckoned on n. The �nal state is L2, R2, or unch.
If �nal L2 then this is a left turn on the right boundary and the further visit

is in arm −1. The output is reversed nδ = 3k−output to count from the origin,
where k is the number of digits.

If �nal R2 then this is a right turn on the left boundary and further visit in
arm 1. The output is again reversed nδ = 3k− output to count from the origin.

Proof. Suppose m is the same location as n but direction +δ, and a certain dz
o�set away from n,

dir(m) ≡ dir(n) + δ mod 3 (46)

point(m) = point(n) + ω
dir(n)
3 .dz

Factor ω dir(n)
3 on dz makes dz relative to the direction of segment n, like a

low term of point formula (42). This allows step (48) to require only the low
digit of n.

The digits of m are to be determined from δ, dz and the digits of n. Let a
be the low digit of n and c be the low digit of m so that

n = 3n′ + a m = 3m′ + c

From the low digit point formula (44), a and c are related by

ω
dir(m′)
3 . digit(c) ≡ ω

dir(n′)
3 . digit(a) + ω

dir(n)
3 . dz mod b (47)
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ω3 ≡ 1 mod b so all factors of ω3 can be ignored, leaving c determined by a
and dz . New direction di�erence δ′ is those two low digits dropped from (46)

δ′ = δ − dir(c) + dir(a)

New location o�set is the low digits taken o� (44). The whole m′ is not
known yet, but dir(m′) ≡ dir(n′) + δ′ mod 3 is enough for its ω3 power.

dz ′.ω
dir(n′)
3 = point(m′)− point(n′)

=
(

point(m)− ωdir(m′)
3 .digit(c)

)
/b

−
(

point(n)− ωdir(n′)
3 .digit(a)

)
/b

=
(

dz .ω
dir(n)
3 − ωdir(n′)+δ′

3 .digit(c) + ω
dir(n′)
3 .digit(a)

)
/b

dz ′ =
(

dz .ω
dir(a)
3 − ω δ

′

3 .digit(c) + digit(a)
)
/b (48)

From (47), the bracketed part of (48) is a multiple of b.
These steps begin from dz =0 initially so m and n are the same location,

and δ = 1or 2 other direction. The possible digits a= 0, 1, 2 from n then give
the following transitions between δ, dz combinations, and output digit c related
to a. These are per �gure 6.

δ=1
dz = 0

δ=2
dz = 0

δ=2
dz = 1

c ≡
a+ 1

δ=1
dz = ω6

c ≡
a− 1

δ=1
dz = 1

c ≡
a+ 1

δ=2
dz = ω6

c ≡
a− 1

δ=0
dz = 0

δ=0
dz = 0

start

start

0

1 2

0

1 2

0

1

2

0

1

20,1,2 0

1

2

0

1

2

0,1,2

δ=0, dz=0 gives c = a unchanged from there onwards.
A high 0 digit on n goes to state L2 or R2, or from R1 it goes to unchanged.

The latter is when m is bigger than n, representing a further visit to the same
location in a higher curve level.

In states L2 or R2, high 0 digits on n loop. To see the rule for these as
adjacent arms, �rst for L2 suppose n had an extra high digit 2, so it goes to
�unch�, with new high c = a−1 = 1 on m.

0 1

2

m

n

So the other visit to n is at m along a curve directed from 1. Taking 2 as
the origin means it is 3k −m along a curve directed away from that 2, in arm
−1 at −60◦.
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For R2 suppose n has an extra high digit 1, so it goes to �unch�, with new
high c = a−1 = 0. Taking 1 as the origin, this is m in the 0 curve which is
3k −m away from 1 in arm 1 at +60◦.

L states are for n a left turn and R for n a right turn. They are reached
from the S starts by lowest non-zero digit 1 or 2 respectively as per turn at (1).

Right boundary single-visited points are always left turns, otherwise non-
overlapping plane �lling would not be possible. So arm −1 is from R when high
0s on n don't reach �unch�. Conversely left boundary points are right turns and
arm +1 is from L. So the arm is either 0 when within the curve or −turn(n)
when adjacent arm.

The states of �gure 6 and outputs can be expressed arithmetically using δ
and the lowest non-zero digit of n,

other(n, δ) for δ = 1or 2

digits n = akak−1...a0 and extra high ak+1 = 0

output digits ck+1ckck−1...c0

at = lowest non-zero of n

ct...c0 ← at...a0 unchanged

loop j = t+1 to k+1

cj = 0, 1, 2 ≡ (aj − δ.at) mod 3 (49)

δ ← δ + dir(aj)− dir(cj) (50)

end loop

if δ ≡ 0 mod 3 then nδ = ck+1...c0, same arm

if δ ≡ 1 mod 3 then nδ = 3k+1 − ck+1...c0, arm −1
if δ ≡ 2 mod 3 then nδ = 3k+1 − ck+1...c0, arm +1

For δ at (50), taking dir of a single digit is simply 1 or 0 according as digit 1
or not. δ can be kept mod 3 at all stages.

at is the transition digit out of S states. Its use as δ.at at (49) �ips the sense
of δ for the R states. For example from S1 which is δ=1, an at=1 goes to L2
and at=2 goes to R1. Multiplying at gives −δ.at ≡ 2,1 to add for the output
digit in those respective states.

The new nδ can have up to 1 extra ternary digit over what n has. This is
output digit ck+1 and the input ak+1 taken as 0.

If δ=0 is reached in the loop then all further digits are unchanged cj=aj .
δ=0 means cj=aj at (49) so dir(cj)− dir(aj) = 0 at (50), maintaining δ=0. If
δ=0 initially then is no change other(n, 0) = n.

The L and R state δ, dz segments are located
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z z+1

z + ω6

z + ω6

n

δ=1, dz=1 R1R2 δ=2, dz=ω6

δ=2, dz=1 L1L2 δ=1, dz=ω6

Figure 7:

adjacent

segments

Starting from these states gives, from n, the segment numbers of those seg-
ments. If in an adjacent arm then the reversal is 3k−1 − output for segment
rather than point.

Similar initial δ, dz can be used for other segments or points at further loca-
tions relative to n. Bigger dz may extend further than just one adjacent arm,
going into other of the 6 arms which �ll the plane.

Adjacent segment numbers as in �gure 7 can be found by digits high to low
(instead of low to high). Suppose a segment n has segment numbers s and e on
its right. Expansion is a new low digit on n, and on the other segments, is

n

es

=⇒ n0
n1

n2

e0

s1
s2

Figure 8:

right side
segment
expansion

For example new low 0 on n means new adjacent segments are s with new
low 2 or 1. The new segments for a given low digit of n are

n digit s′ e′

0 s2 s1
1 e0 n2
2 n1 e0

(51)

Initial n=0 is no digits yet,

n=0
start

e=1s=2

arm −1 start

initial

s=2, e=1

Initial s=2, e=1 are segments in arm −1, on the right, directed towards the
origin. Or instead start s=0 and an extra high 0 on n to step in (51) to 2, 1
(initial e being unused by this). A segment in arm −1 directed away from the
origin is reversal 3k−1− output . After all digits of n are processed, an adjacent
arm is identi�ed by having high initial 1 or 2, above the digits of n.

other visits at the point of a left-turn n are given by one further low digit
expansion. A further low 1 digit or 100...00 sequence on all of n, s, e are their
middle common point. e is in direction δ=1 and s in direction δ=2. So for
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other(n) go high to low, not including the 1 which is lowest non-zero, and copy
that 1 and low 0s to s and e.

Similar high to low holds for left side segments, and from them other of right
turn n. The pattern of new low digits is the same as in (51), but which of n, s, e
they take di�ers.

left

side
segments n

es

n digit s′ e′

0 s2 n1
1 n0 s2
2 e1 e0

(52)

In tables (51),(52), some entries copy n for the new s′ or e′. This is where
the output digits are to be n unchanged. This is somewhere at or above where
the low to high of theorem 9 would be in �unch�.

Theorem 10. Di�erences
∣∣n − other(n, δ)

∣∣ which occur are sums of distinct
powers of 3 with alternating signs,∣∣n− other(n, δ)

∣∣ = 3k0 − 3k1 + 3k2 − · · ·+ (−1)t 3kt (53)

where k0>k1>k2> · · ·>kt ≥1

= 3, 6, 9, 18, 21, 24, 27, 54, 57, . . . 3×A306556

Proof. Consider the segment number next around a unit triangle,

n

m

m

left side

right side

segment m

next around a unit triangle

either left side or right side

Here �next� around the triangle means n in its segment direction, and the
followingm either +120◦ on the left side unit triangle or −120◦ on the right side.
One of these sides is where the curve turns, so that one of them is m=n+1. The
other side, when there is a segment there, can be a bigger or smaller segment
number.

The claim will be that di�erence m−n is a sum of the following form, and
that all such sums with p0 < k occur in curve k.

m− n = (−1)t3p0 · · ·+ 3pt−1 − 3pt−1 + 3pt (54)

powers p0 > · · · > pt−1 > pt=0

low term +30 = +1, signs alternating above there

= positives 1, 7, 19, 25, 55, 61, 73, 79, . . . A055246

negatives −2,−8,−20,−26,−56,−62,−74,−80, . . . − A190640

In curve k=1, the only m−n di�erence occurring is +1, which is of this form.
Segments n and m expand
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Figure 9

n

m

3n
3n+1

3n+2

3m

3m+1
3m+2

P
left
side

n

m

3n

3n+1
3n+2

3m

3m+1

3m+2

P

right
side

New sides 3n, 3n+1 are di�erence +1, as are 3n+1, 3n+2, and likewise
3m, 3m+1 and 3m+1, 3m+2.

On the left side, the remaining new di�erence is 3n+2 to 3m,

3m− (3n+2) = 3(m−n− 1) + 1 (55)

3(m−n − 1) is sum (54) with its low +1 term removed and the rest raised
by a factor of 3 so all p powers increment. Final +1 in (55) restores the low +1
term.

On the right side, the remaining new di�erence is

(3n+2)− (3m+1) = −3(m−n) + 1

Factor −3 increments each p power and �ips their sign, then +1 introduces
a new low +1 term. Notice this introduces a pt−1 =1 term in the sum, whereas
the left side (55) skips such a term.

These power increments either making or skipping pt−1 =1 build all forms
(54) in curve k+1.

For point di�erences, and in the manner of �gure 8, or the new point P
here in �gure 9, expansion of sides of a unit triangle gives a new double or
triple visited point. For segment n, the middle point on the right is 3n+1. Two
segment sides expanding to there are point di�erence

(3m+1)− (3n+1) = 3(m− n)

and thus the di�erence form (54). On further expansion, the point visits are 3×
each, so give any low kt in (53).

Second Proof of Theorem 10. Di�erences can also be calculated from the other
digit transformation of theorem 9. This shows where the di�erence powers fall
in the other digit transformation.

The states of �gure 6 loop on digit 0 or digit 2. For δ=1 the digit runs which
loop and their resulting outputs are net ±1,
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. . . 022...22 100...00 10...0n

high lowL1 L2

or 2 go
to unch

or 1 go
to unch

. . . 100...00 022...22 10...0n1

+1−1+1

n . . . 200...00 122...22 20...0

high lowR2 R1

or 1 go
to unch

or 0 go
to unch

. . . 122...22 200...00 20...0n1

+1−1+1

(56)

For δ=2 the runs are the same, but starting opposite lowest L1 and R2.
The states alternate and hence the signs for the increment.

δ=1 can go to low run either R1 or L2, giving it either +1 or −1 lowest
term. δ=2 low run R2 or L1 likewise. So δ=1 and δ=2 give the same set of
di�erences.

turn = 1 goes to low R1,L1 always, but with an odd number of runs its
highest can be −1 too and the absolute value �ips all signs so that again turn = 1
or turn =−1 are the same set of di�erences.

Triangle side di�erences (54) in ternary are

m−n = ternary . . . 0 or 2 . . . 1 triangle next side di�erence

high low

≥ 0 digits

This is each pair of terms 3x − 3y giving a run of ternary 022...22, and �nal
+1 term a single 1 digit. Negatives m−n < 0 this way too, with in�nite high 2s
for a �3's complement� negative.

Or negatives written with a − sign are a low 2 digit instead

m−n = ternary − . . . 0 or 2 . . . 2 triangle next side di�erence

high low

≥ 0 digits

other di�erences (53) in ternary are at least one low 0 digit, then an arbitrary
digit, then digits 0 or 2 above. This is again since each pair 3k0 − 3k1 is a run
022...22 and if the lowest term is t even then it is an unpaired +3kt so lowest
non-zero digit can be 1.

Opred(p) =

{
1 if p =

∣∣n− other(n, δ) for some n
0 if not

= p ternary digits 0, 2 with low 0, and lowest non-zero can be 1

ternary 10, 20, 100, 200, 210, 220, 1000, 2000, 2010, . . .

. . . 0 or 2 . . . any 0 . . . 0

high low

≥ 1 digits≥ 0 digits

(57)

The unpaired +3kt can be taken as +1 of a 2220 low run, so ternary 0,2s,
or 0,2s + 1.
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Opred(p) = p≥ 3 and p≡ 0 mod 3 and
(
Cpred(p/3) or Cpred(p/3− 1)

)
Cpred(n) = ternary digits 0, 2 only (58)

= 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, . . . A088917

= 1 at n = 0, 2, 6, 8, 18, 20, 24, 26, 54, 56, . . . A005823

= 0 at n = 1, 3, 4, 5, 7, 9, 10, 11, 12, 13, . . . A081606

1.6 Segments in Direction

Theorem 11. With the curve starting in direction d=0, the number of segments
of terdragon k in each direction dir(n) ≡ d = 0, 1, 2 mod 3 is

S(k, d) = 3k−1 + s(k−4d) .3
⌊
k−1
2

⌋
(59)

= 1
3

(
3k + ω3

d bk + ω3
d bk

)
(60)

= 1
3

(∣∣bk + ωd3
∣∣2 − 1

)
s(j) = [2, 1, 1, 0,−1,−1,−2,−1,−1, 0, 1, 1] s(j−1) = A214438

S(k, 0) = 1, 2, 4, 9, 24, 72, 225, 702, 2160, 6561, . . . A092236

S(k, 1) = 0, 1, 4, 12, 33, 90, 252, 729, 2160, 6480, . . . A135254

S(k, 2) = 0, 0, 1, 6, 24, 81, 252, 756, 2241, 6642, . . . A133474

start

end
S(k, 0) = 4

S(k, 1) = 4

S(k, 2) = 1

k=2

segments in direction

relative to start

Proof. When the curve replicates the new sub-part 2 is in the same direction as
the preceding level, so the segment counts double. The new sub-part 1 rotates
+120◦. The rotation means those segments in direction d=2 move to direction
d=0. Similarly the other directions. So mutual recurrences

S(k+1, 0) = 2S(k, 0) + S(k, 2) (61)

S(k+1, 1) = 2S(k, 1) + S(k, 0) (62)

S(k+1, 2) = 2S(k, 2) + S(k, 1) (63)

Using (63) for S(k, 1) and substituting into (62) then using (61) for S(k, 2)
and substituting again gives the following recurrence for d=0. By symmetry the
same for d=1 and d=2.

S(k+3, d) = 6S(k+2, d) − 12S(k+1, d) + 9S(k, d)

The characteristic polynomial is

x3−6x2 + 12x− 9 = (x− 3)(x− b)(x− b)

So S(k, d) has a power form X.3k + Y bk + Zbk. From the initial values the
coe�cients are per (60).
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The imaginary parts of the conjugate powers cancel out. Their real part
gives factor s(j) on the half power 3b(k−1)/2c for (59).

There are 3k segments in total. The selector function s has

s(j) + s(j+4) + s(j+8) = 0 for all j

so the half powers cancel out leaving

S(k, 0) + S(k, 1) + S(k, 2) = 3k

S(k, d) can also be calculated by dir from (30). The segments in direction
d=0 are those n which have dir(n) = 0, 3, 6, etc. This means count 0, 3, 6, etc
many 1-digits among k ternary digits of n. The number of arrangements of those
1-digit positions is a binomial coe�cient in k and then the remaining digits are
each 0 or 2. So

S(k, 0) = 2k
(
k
0

)
+ 2k−3

(
k
3

)
+ 2k−6

(
k
6

)
+ · · ·

S(k, 1) = 2k−1
(
k
1

)
+ 2k−4

(
k
4

)
+ 2k−7

(
k
7

)
+ · · ·

S(k, 2) = 2k−2
(
k
2

)
+ 2k−5

(
k
5

)
+ 2k−8

(
k
8

)
+ · · ·

S(k, d) =
∑

j=d,d+3,...

2k−j
(
k
j

)
These forms are among the power-weighted binomial sums considered by

Justus [7] as a generalization of the binomial sums of Cournot and Ramus (see
Lines ahead in section 5.1 for the latter).

S(k, 0) was also a proposed International Mathematical Olympiad problem
[6]. In that problem dividing out factors of 3 is ternary lowest non-0 which is
the terdragon turn sequence. Summing is the direction dir(n). Counting sums
divisible by 3 is segments in direction d=0.

Theorem 12. The number of segments in each direction dir(n) ≡ d = 0, 1, 2
mod 3 relative to the middle segment are

SM (k, d) = S(k, d+k)

= 3k−1 + sm(k, d) .3

⌊
k−1
2

⌋
= 1

3

(
3k + ωd3(i

√
3)k + ωd3(i

√
3)k
)

= 1
3

(∣∣(i√3)k + ω3
d
∣∣2 − 1

)
sm(k, 0) = [ 2, 0, −2, 0]

sm(k, 1) = [−1, −1, 1, 1]

sm(k, 2) = [−1, 1, 1, −1] = sm(k+1, 1)

SM (k, 0) = 1, 1, 1, 9, 33, 81, 225, 729, 2241, 6561, . . . A101990

SM (k, 1) = 0, 0, 4, 12, 24, 72, 252, 756, 2160, 6480, . . . A318610

SM (k, 2) = 0, 2, 4, 6, 24, 90, 252, 702, 2160, 6642, . . . A318609
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start
end

SM (k, 0) = 1

SM (k, 1) = 4

SM (k, 2) = 4

k=2

segments in direction

relative to middle
middle

Proof. The middle segment is in direction k mod 3 so SM (k, d) = S(k, d+k).
In S(k, d+k) the factor s(k − 4(d+k)) = s(−3k − 4d) gives sm(k, d). The
−3k mod 12 becomes k mod 4 for sm(k, d).

The periodic factors sm(k, d) can be expressed variously as powers of −1.
For example sm(k, 2) = (−1)b(k−1)/2c gives

SM (k, 2) = 3k−1 + (−3)
⌊
k−1
2

⌋

Theorem 13. With the curve starting in direction d=0, the number of the �rst
n segments of the terdragon curve in each direction d = 0, 1, 2 is

SN (n, d) = 1
3

(
n + 2 Re ω3

dpoint(n)
)

(64)

SN (n, 0) = 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, . . .

SN (n, 1) = 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, . . .

SN (n, 2) = 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, . . .

Proof. There are total n segments,

SN (n, 0) + SN (n, 1) + SN (n, 2) = n (65)

The real part of segments in direction 0 is +1 each. The real part of segments
in directions 1 and 2 are − 1

2 each. The total of these is net horizontal position
point ,

SN (n, 0)− 1
2SN (n, 1)− 1

2SN (n, 2) = Re point(n) (66)

(65)+2×(66) cancels the direction 1 and 2 terms, giving the theorem for
d=0. The other directions have corresponding forms after rotating by ω3 or ω3

2

so the desired d is the real part,

SN (n, 1)− 1
2SN (n, 0)− 1

2SN (n, 2) = Re ω3 point(n)

SN (n, 2)− 1
2SN (n, 0)− 1

2SN (n, 1) = Re ω3
2 point(n)

Each combined with (65) gives the general case (64).

2 Boundary

2.1 Boundary Triangles

A unit triangle can be placed on each boundary segment of the curve.
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k=2
boundary triangles

BT 2 = 22+1 = 8

RT 2 = BT 2/2 = 22 = 4

These boundary triangles are similar in style to the boundary squares which
Daykin and Tucker [5] count on the Heighway/Harter dragon curve.

Theorem 14. The number of triangles on the boundary of terdragon curve k
is

BT k = 2k+1 boundary triangles

The curve is symmetric on each side so half on one side

RT k = BT k/2 = 2k one-side boundary triangles (67)

The number of triangles in a �V� pair of curves is the same as �R�

VT k = RT k �V� part boundary triangles

Proof. The �V� part boundary is between two level k curves at a 60◦ angle as
in the following diagram. A level k curve can be drawn across the V endpoints
to make a triangle.

Vk

Rk

V

R

Figure 10:

R,V boundary parts

and triangle

Per plane �lling theorem 2, all segments within the triangle are traversed
precisely once so the unit triangles on the R boundary and those on the V
boundary are identical VT k = RT k.

The left diagram shows that Rk+1 comprises an Rk and a Vk. They meet as
the outside of a 60◦ angle so do not have any boundary triangles in common.

RT k+1 = RT k + VT k = 2RT k (68)

Starting from RT 0 = 1 gives RT k = 2k.

Each boundary triangle touches either 1 or 2 boundary segments. The two
can be counted separately. The total is BT k,

BT k = BT1 k + BT2 k

Theorem 15. The triangles on the terdragon boundary touch alternately 1 and
2 sides. For k ≥ 1 there are half 1-side and half 2-side.

BT1 k =

{
2 if k = 0

BT k/2 = 2k if k ≥ 1
1-side triangles (69)

= 2, 2, 4, 8, 16, . . .
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BT2 k =

{
0 if k = 0

BT k/2 = 2k if k ≥ 1
2-side triangles (70)

= 0, 2, 4, 8, 16, 32, . . . A155559

The curve is symmetric on each side so one side

RT1 k = 1
2BT1 k = 1, 1, 2, 4, 8, 16, . . . A011782

RT2 k = 1
2BT2 k = 0, 1, 2, 4, 8, 16, . . . A131577

The 1s and 2s in a �V� part are opposite to an �R�

VT1 k = RT2 k opposites 1↔ 2

VT2 k = RT1 k

Proof. For k=1 the R boundary is two triangles, a 1-side and a 2-side, so they
alternate.

Per the triangle of �gure 10, the V boundary is the opposite side of an R,
so each 1-side triangle of R is a 2-side triangle of V and vice-versa. These V
triangles are in reverse order to R, so they are 1-side and 2-side alternately the
same as R.

Level k+1 is an Rk followed by Vk and so alternates.

2.2 Boundary Segments

The boundary of the curve can be measured by unit line segments around the
outside of the curve.

k=2 boundary

B2 = 12

R2 = B2/2 = 6

The boundary on one side is counted from start to end. The full boundary
is counted by continuing around to the origin again.

The ends of the curve are isolated line segments (see theorem 21 for more
on this). For the full boundary both the left and right sides of those ends are
counted.

Theorem 16. The boundary length of the terdragon curve after k iterations is

Bk =

{
2 if k = 0

3.2k if k ≥ 1
boundary (71)

= 2, 6, 12, 24, 48, 96, . . .

The curve is symmetric on its two sides so one side

Rk = Bk/2 =

{
1 if k = 0

3.2k−1 if k ≥ 1
right boundary (72)

= 1, 3, 6, 12, 24, 48, . . . A003945

The length in a �V� part is
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Vk =

{
2 if k = 0

3.2k−1 if k ≥ 1
�V� boundary (73)

= 2, 3, 6, 12, 24, 48, . . . A042950

Proof. The boundary segments are found by counting the sides of the 1-side and
2-side boundary triangles (69),(70)

Bk = BT1 k + 2BT2 k

Rk = RT1 k + 2RT2 k

Vk = VT1 k + 2VT2 k

Second Proof of Theorem 16. R and V parts expand as

0

1

Rk

Vk

1

2 3

R

V Figure 11:

R and V expansion,

initial segments

R0 = 1

V0 = 2

giving mutual recurrences

Rk+1 = Rk + Vk (74)

Vk+1 = Rk + Vk (75)

which are the same right-hand sides so Rk+1 = Vk+1 and hence

Rk+2 = 2Rk+1 k ≥ 0

Vk+2 = 2Vk+1 k ≥ 0

Recurrence (74) is the equivalent of (68) for the boundary triangles. (75)
also holds for the boundary triangles per the expansion in �gure 11, but doesn't
show as clearly that the shape is opposite to R the way the triangle in �gure 10
does.

VT k+1 = RT k + VT k

2.3 Boundary Segment Numbers

0

1

2

345

6

7

8

right boundary

segment numbers

0, 1, 2, 3, 7, 8, . . .

Theorem 17. Number the segments of the terdragon curve starting n=0 for
the �rst segment. The right boundary segments are characterized by

Draft 15 page 36 of 124

http://oeis.org/A042950


Rpred(n) =

{
1 if n in ternary has no digit pair 11, 12 or 20

0 if n in ternary does have
(76)

= 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, . . .

Proof. Take the boundary in three types of part

R M E

R has both endpoints on the boundary and is the right side of the full curve.
M has an adjacent sub-curve at its end and so only some segments at its start
are on the boundary. E has a sub-curve at its start.

Let Rk, Mk, Ek be the segment numbers which are on the boundary in the
respective con�gurations at level k. These numbers are in the range 0 to 3k − 1
and hence can be written with k many ternary digits. The initial sets are a
single 0 in each so R0 = M0 = E0 = 0 corresponding to a single line segment.
These zeros are understood as 0 many digits.

The curve expands as

0 1

2 3

R

M

E

0

1

2

3

R

M

E

R

M
E

The R segment 0�1 expands to sub-parts 0.R, 1.M, 2.E. The number 0, 1,
2 is the high ternary digit on top of the digits of the subsection. Treating each
section this way gives

Rk = 0.Rk−1, 1.Mk−1, 2.Ek−1
Mk = 0.Rk−1
Ek = 1.Mk−1, 2.Ek−1

(77)

Taking ternary digits from high to low, this expansion is a state machine.
In state R, any digit is permitted and switch to state R, M, E according to that
digit. In state M, only 0 is allowed and switch to state R. In state E, either 1
or 2 is allowed and switch to state M or E.

R M

E

non

non

start

0
1

2

0

1,2

0

1

2
Figure 12:

Rpred(n) state machine,

ternary high to low

Digit 0, when permitted, always goes to state R. Digit 1 always goes to state
M. Digit 2 always goes to state E. This means the state at any position is given
by the preceding higher digit. A state transition permitted or not is therefore a
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digit pair permitted or not. So 11, 12, 20 not permitted. Possible runs of digits
in n follow from this.

The lengths of sub-parts M and E are

Mk =

{
1 if k = 0, 1

3.2k−2 if k ≥ 2
�M� part boundary length

= 1, 1, 3, 6, 12, 24, 48, 96, . . .

Ek =


1 if k = 0

2 if k = 1

3.2k−2 if k ≥ 2

�E� part boundary length

= 1, 2, 3, 6, 12, 24, 48, 96, . . .

This is by writing the expansions as recurrences, M0 =E0 =1, and substituting

Rk+1 = Rk +Mk + Ek

Mk+1 = Rk

Ek+1 = Mk + Ek

M and E together are the V part Mk + Ek = Vk.

The states also give a count of how many sides the triangle on the right of
segment n has. This is 1 or 2 for a boundary segment, or 3 for a non-boundary.

Rsides(n) =


1 if Rpred state R
2 if Rpred state M or E
3 if Rpred state �non�

right triangle sides
(78)

= 3− [2, 1, 1].Rpred(n) (79)

= 1, 2, 2, 1, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, . . .

For (79), low 0 on n goes to state R and low 1 or 2 to states M,E, so n mod 3
determines respective factor 2 or 1 on Rpred to reduce from 3 sides.

M,E always occur in pairs, since the expansions at (77) always produce them
in pairs. The 0-digit there is an R or non which separate such pairs. So each
pair 2, 2 in Rsides is M,E and Rsides can be written as a morphism expansion

Rsides 1→ 1, 2, 2 2, 2→ 1, 3, 3, 3, 2, 2 3→ 3, 3, 3 starting 1

Total Rsides in a level is 1 for each RT1 triangle, 2 for each of the 2 segments
of RT2 , and 3 for each of the 3 segments of enclosed AR (ahead in section 3),

3k−1∑
n=0

Rsides(n) = RT1 k + 2.2.RT2 k + 3.3.ARk = ARk+2 (80)

The geometric interpretation of total ARk+2 is that each respective 1, 2, 3
side triangle after 2 expansions has 1, 4, 9 unit triangles enclosed on the right,
which are the coe�cients 1, 2.2, 3.3 in (80).
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A state machine for Rpred on ternary digits low to high follows by usual
state machine manipulations reversing the high to low form, or just from the
allowed and disallowed digit pairs. State s0 is when the digit immediately below
is a 0. State s12 is when the digit immediately below is 1 or 2.

start

s0

s12

non

non

0

1,2

0

1

2

0

1
2

Rpred(n) state machine,

ternary low to high

Theorem 18. Let Rn(m) be the m'th right boundary segment number, for
m≥ 0.

Rn(m) = 0, 1, 2, 3, 7, 8, 9, 10, 11, 21, 25, 26, 27, 28, . . .

ternary = 0, 1, 2, 10, 21, 22, 100, 101, 102, 210, 221, 222, 1000, 1001, . . .

Rn can be calculated by writing m in mixed radix with low ternary digit and
then binary above. For m≤ 2, write a single ternary digit.

m = 1 0 or 1 . . . 0 or 1 0, 1, 2

binary binary binary ternary

high low

Rn(m) = change each �1,non-zero� to �2,non-zero�

and interpret the result as ternary

The e�ect of the change rule is that each maximal run 1, 1, . . . , 1,NZ becomes
2, 2, . . . , 2,NZ, where NZ is a non-zero digit. If NZ is within the binary then it
is 1. If NZ is the low ternary digit then it can be 1 or 2. In both cases its value
is unchanged. So ternary runs of digit 2 ending 1, except least signi�cant digit
can be either 1 or 2.

Rn(m) = 222...221 00...00 222...221 00...00 222...222 ternary

Proof. The allowed digit pairs in Rn are those not disallowed in theorem 17,

10 00
21 01
22 02

In a pair with a given low digit, there are two choices for its high digit. For
example 0 can have above it either 1 or 0 (the �rst row of the table). Start from
low digit any 0, 1, 2. Above it take each of the two choices in the table, which
steps through all and only allowed pairs. The highest digit must be non-zero
and so the top-most pair is a single choice from the high 1-bit of the mixed base
representation.

A generating function for Rn can be formed by following the mixed radix
conversion. The generating function has periodic terms of the usual form for
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each digit, but with longer periods so as to apply the 1→2 change rule. The
low ternary digit is a repeating 0, 1, 2,

g012 (x) =
0 + 1x+ 2x2

1− x3
= 0 + 1x+ 2x2 + 0x3 + 1x4 + 2x5 + · · ·

For base conversion, start from a generating function with coe�cient 1 when
bit k of n is a 1. This is repeating blocks of period 2.2k

gBitk(x) =
x2

k

+ x2
k+1 + · · ·+ x2.2

k−1

1− x2.2k
=

x2
k − x2.2k

(1− x)(1− x2.2k)

The change rule 1→2 in the binary part is +1 where a 1-bit below. This is
periodic blocks for bit position k ≥ 1 (so there is a bit below k),

gBit11 k(x) =
x

3
2 .2

k

+ · · ·+ x2.2
k−1

1− x2.2k
=

x
3
2 .2

k − x2.2k

(1− x)(1− x2.2k)

These bit forms are raised above the low ternary by substituting x3 and
multiplying 1+x+x2 to apply at each n mod 3. Bit position k=0 has its change
1→2 when n ≡ 4, 5 mod 6, and k≥ 1 has it by gBit11 .

gRn(x) = g012 (x) + 3(1 + x+ x2)gBit0(x
3) +

3 (x4 + x5)

1− x6

+ 3(1 + x+ x2)

∞∑
k=1

3k
(

gBitk(x
3) + gBit11 k(x

3)
)

=
x+2x2

1− x3
+ 3

x3+2x4+2x5

1− x6
+ 9

∞∑
k=0

3k
x6.2

k

+ x9.2
k − 2x12.2

k

(1−x)(1− x12.2k)
(81)

At (81), each term is a successive ternary digit (low to high) added to the
coe�cients. For Rn(m) < 3l, which is m < 3.2l−1, it su�ces to take the �rst l
terms (so the sum part up to k = l−3 inclusive).

In the sum numerator, −2x12.2k is the top end of two ranges 6 to 12 and 9
to 12. This is 6 to 9 digit 1 and then where they overlap 9 to 12 is digit 2.

2.4 Left Boundary Segment Numbers

Some of the left boundary in level k is enclosed by level k+1 and so is no longer
on the boundary. (Unlike the right boundary which is never enclosed and so
its level k boundary segment numbers are a pre�x of the level k+1 boundary
segment numbers.)

Three forms of left boundary segment numbers can be considered

� segments on boundary for particular level k
� segments on boundary for every level, so the curve continued in�nitely
� segments on boundary for some level, a union of all left boundaries
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left boundary
level k = 5

left boundary
in�nite curve

left boundary
all levels

0 1
2

3

4

5

Theorem 19. Number the segments of the terdragon curve starting from 0.
The left boundary segments are those which written in ternary do not have any
digit pair 02, 10 or 11.

Within curve k, pad to k many digits with high 0 digits as necessary. This
means the highest non-zero cannot be 2 except when that 2 is the most signi�cant
digit (position k−1).

Lpredk(n) = no 02, 10, 11 within k ternary digits of n

= Rpred(3k−1− n)
= 1 for k=0

1, 1, 1 for k=1

1, 1, 0, 0, 0, 1, 1, 1, 1 for k=2

For the curve continued in�nitely, write in�nitely many digits, with high 0
digits. One high 0 su�ces for the digits rule and means the most signi�cant
non-zero digit cannot be 2.

Lpred∞(n) = no 02, 10, 11 in n with high 0

= Lpredk(n) for k with 3k > 3n

= 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, . . .

1 at n = decimal 0,1, 5, 15,16,17, 45,46,50,51,52,53,...
ternary 0,1, 12, 120,121,122, 1200,1201,1212,1220,1221,1222,...

For the union of all left boundary segments, do not write any high 0 digits.

Lpredall(n) = any Lpredk(n), least k with 3k > n su�ces

= 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, . . .

1 at n = decimal 0,1,2, 5,6,7,8, 15,16,17,18,19,23,24,25,26,...
ternary 0,1,2, 12,20,21,22, 120,121,122,200,201,212,220,221,222,...

Proof. The curve is symmetric on its left and right sides, so the left boundary
segment numbers are the right segment numbers but numbered in reverse 3k−1−
n. This means digits 0,1,2 become 2,1,0. The digit pairs to exclude are the digit
reversals of those in the right boundary pairs.

For the curve to level k the reversal is from endpoint 3k−1 and therefore
applied to k digits.

For the curve extended in�nitely the sub-part 2 is enclosed by the continuing
curve, so the high digit cannot be 2, only 1.
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For the union of all levels the reversal is made from any endpoint 3k−1 ≥ n.
The endpoint giving no high 0 digits is the minimum disallowing.

The number of sides on the triangle to the left of segment n follows in a
similar way as the reversal of Rsides within k.

Lsidesk(n) = Rsides(3k−1− n) left triangle sides

= 1 for k=0

2, 2, 1 for k=1

2, 2, 3, 3, 3, 1, 2, 2, 1 for k=2

Lsides∞(n) = Lsidesk(n) for 3k > 3n

= 2, 2, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 3, 3, 3, 3, . . .

Theorem 20. Left boundary segment number Ln(m) for m ≥ 0 can be calcu-
lated as follows. Write m in mixed radix with a ternary low digit then binary
above.

For curve level k, write a total k many digits.

m = 0or 1 0 or 1 . . . 0 or 1 0, 1, 2 k digits

binary binary binary ternary

high low

For the curve continuing in�nitely, write an extra 0 at the high end.

m = 0 1 0 or 1 . . . 0 or 1 0, 1, 2

binary binary binary ternary

high low

For the union of all levels, for m≤2 take Ln(m)=m. For m=3 take Ln(3)
=5. For m≥4 write m+2 in mixed radix and then change the high two bits
10→ 1 (a single 1 bit) or 11→ 01.

m+2 = 1 or 01 0 or 1 . . . 0 or 1 0, 1, 2

binary binary binary ternary

high low

Take each binary digit from low to high and transform according to the digit
below it and the following table. The digit below is reckoned after any transfor-
mation in that lower position.

bit digit below change bit to
0 0 0
0 1 0
0 2 1
1 0 2
1 1 2
1 2 2

The resulting digits interpreted as ternary are Ln(m).
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For example for the curve continued in�nitely, m=8 is mixed radix 0102.
The low 0 bit has digit 2 below it so in the table 0,2 (third row) is bit change
to a digit 1, giving 0112. Then the next higher position is a 1 bit and the digit
1 below so per table change that bit to digit 2 giving 0212. Finally the high
0 bit has a 2 below so per table change that bit to digit 1 for �nal ternary
1212 = decimal 50. This is the m=8 sample value shown in theorem 19 (the
�rst value as m=0).

Proof. The allowed digit pairs for the left boundary are those not disallowed in
theorem 19. The transformations give all and only these pairs.

20 00
21 01
22 12

For the curve continued in�nitely, the extra high 0 bit ensures the high
ternary digit is not 2 since �rst three rows of the table map that bit to digit 0
or 1.

For the union of all levels, the mixed radix forms are to be those of all k.
When there is one high 0 bit it becomes either 0 or 1 per the bit 0 column of
the table. Any further high 0 bits would remain as 0, per the �rst two rows of
the bit 0 column. Therefore the values resulting from two or more high 0s are
the same as from a single high 0. So it su�ces to take mixed forms with and
without a single extra 0 bit. The rule in the theorem uses the second highest
bit to choose with or without. The mixed radix is formed on m+2 since there
are just 4 initial values 0,1,2,5 before beginning this mixed form.

Theorem 21. The only terdragon level k segments which are on both the left
and right boundary are the �rst two and last two segments.

last two segments

�rst two segments

Proof. For k=0 the single segment is on the left and right boundary.
For k=1 the three segments 0, 1, 2 are on the left and right boundary.
For k≥2, combining digit pair conditions of theorem 17 and theorem 19

gives permitted digit pairs only 00, 01, 21, 22 for segment on both left and right
boundaries. The only numbers which can be made with these pairs are

0
}
�rst two segments1

222 . . . 221
}
last two segments222 . . . 222

These are the �rst two and last two segments. For two digits they are simply
the four permitted pairs.
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2.5 Boundary Turn Sequence

The right boundary of the terdragon at each point turns either +120◦ (left),
−120◦ (right), or goes straight ahead. Number the right boundary points start-
ing from m=0 so the �rst turn is at m=1.

The following diagram illustrates the �rst few boundary turns.

+1 = Rturn(1) m=1, h=1

−1 = Rturn(2) m=2

+1 = Rturn(3) m=3, h=2

0 = Rturn(4) m=4, h=3

−1 = Rturn(5) m=5

+1 = Rturn(6) m=6, h=4

Theorem 22. The terdragon right boundary turn sequence is the Heighway/
Harter dragon curve with −1 inserted at every third position starting from the
second.

Rturn(m) =


−1 (right) if m ≡ 2 mod 3

+1 (left) if m 6≡ 2 mod 3 and BitAboveLowestOne(h) = 0

0 (straight) if m 6≡ 2 mod 3 and BitAboveLowestOne(h) = 1

where h = m− bm/3c counts positions excluding −1 right turns,

= +1, −1, +1, 0, −1, +1, +1, −1, 0, 0, −1, +1, +1, −1, . . .

Proof. Take the curve boundary in two parts R and V

0 1

2 3

R

V
initial turns

R0 = empty

V0 = −1 (right)

The turn at 1 is always left, so

Rk+1 = Rk, +1, Vk

As per �gure 11, Vk+1 is an R and V with 0◦ turn (straight ahead) in between,

Vk+1 = Rk, 0, Vk

These expansion rules are the dragon curve turn sequence, and per Davis
and Knuth[3] those turns are bit above lowest 1-bit. The initial R0 = empty and
V0 = −1 mean the �nal V expansion adds an extra −1 at every third position
starting from m=2.
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3 Area

The area enclosed by the curve can be counted in unit triangles. The curve does
not cross itself so each enclosed triangle is either on the left or the right side of
the curve.

Figure 13:

k=4 enclosed area

black right of curve

grey left of curve

AL4 = AR5 = 19

total A4 = 38

The left and right side triangles alternate along each row and each diagonal.
The left side is all the upward pointing triangles. The right side is all the
downward pointing triangles. (This arises later in theorem 26 with the Cantor
dust.)

Lemma 1. Consider line segments on a triangular grid where any enclosed unit
triangle has segments on all 3 sides. The enclosed area A and boundary B are
related to total line segments N by

3A+B = 2N (82)

Proof. Count the sides of the line segments. There are N segments so total 2N
sides. Each side is either on a boundary or is inside.

side

side

3 sides
inside

There are B outside sides on the boundary. The inside sides are all in
enclosed unit triangles. Each area triangle A has 3 inside sides, so 3A inside
sides and total B + 3A = 2N .

Theorem 23. The number of unit triangles enclosed by the terdragon k is

Ak =

{
0 if k = 0

2
(
3k−1 − 2k−1

)
if k ≥ 1

area (83)

= 0, 0, 2, 10, 38, 130, 422, 1330, 4118, . . . k≥1 A056182

Each side is symmetric so half area on each side

ARk = ALk = Ak/2

=

{
0 if k = 0

3k−1 − 2k−1 if k ≥ 1
area one side

= 0, 0, 1, 5, 19, 65, 211, 665, 2059, . . . k≥1 A001047

Proof. Non-crossing theorem 1 and plane �lling theorem 2 mean that for all
lengths every enclosed unit triangle has all three sides traversed. If this were
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not so then the curve would have to cross itself, or another copy of the curve
cross in, to �ll that area to make 6 copies plane �lling.

So lemma 1 applies with N = 3k line segments and boundary Bk from (71).

3A0 + 2 = 2.30 for k = 0

3Ak + 3.2k = 2.3k for k ≥ 1

Non-crossing means each enclosed unit triangle is either on the left or right
side of the curve. By symmetry the two sides are equal so half the area each.

Second Proof of Theorem 23. When three terdragon curves are arranged in a
triangle all segments inside are traversed precisely once (by non-crossing plane
�lling again) so the unit triangles are either enclosed by one side of the curve or
are boundary triangles. The boundary triangles from the three curves overlap
as in the following diagram.

RT even

(k ≥ 1)

side
(
√
3)k

RT odd

(k=0)

Boundary triangles of adjacent sides overlap. If RT k is even then by sym-
metry there is a vertex in the middle common to all three. If RT k is odd then
there is a unit triangle in the middle which is common to all three.

The curve length end-to-end is (
√
3)k and triangles of curves like this parti-

tion the plane into identical shapes so there are 3k unit triangles inside.

3k = 3ARk + 3RT k/2 if RT k even (84)

3k = 3ARk + 3 (RT k − 1)/2 + 1 if RT k odd

RT k from (67) is odd only for k=0. When RT k is even, (84) is equivalent to
3A+B = 2N from (82). The boundary triangles alternate 1-side and 2-side from
theorem 15 giving Rk = 3

2RT k for k ≥ 1, so that (84) is 3k = 3Ak/2 + Bk/2.

As from TurnRun in section 1.2, the curve turns go in runs of either 1 or 2
consecutive left or right. A run of 2 consecutive turns encloses a unit triangle.

L

L, turn = +1
2 consecutive left turns,

is left-side enclosed unit triangle

The run lengths are pairs either 1,2 or 2,1. There is one 2 for each of the
3k−1−1 turns of the previous expansion level. So the number of runs of 2 turns
in curve k is

TurnRuns2 k =

{
0 if k=0

3k−1 − 1 if k ≥ 1

= 0, 0, 2, 8, 26, 80, 242, . . . k≥1 A024023
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start

end k=3

LL squares black
RR squares grey

total
TurnRuns2 3 = 8

A3 = 10

The proportion of enclosed unit triangles formed by 2-turns, out of the total
area, is

TurnRuns2 k
Ak

=
1

2
+

2k−1−1
Ak

→ 1

2

This limit is approached from above since 2k−1 > 0 for k≥2 which is where
Ak > 0. For example in k=3 the ratio is 4

5 ,

Some segments have these triangles on both sides. Such pairs are a sequence
of turns LLRR. As from the turn expansion in �gure 2, such consecutive 2-runs
occur only as an LR with L,R existing turns surrounding. An L,R is then only
the middle of an LLRR of preceding segment expansion. So there is one LLRR
for each k−2 segment.

There are no RRLL pairs, since the Rs could only be an LRR with existing
R, but then LR follows, not LL.

TurnRuns2pairsk =

{
0 if k = 0, 1

3k−2 if k ≥ 2

3.1 Join Area

The join between two terdragon curves at 60◦ angle encloses new area.

J0 = 0

J1 = 1

J2 = 2

J3 = 4

Theorem 24. The join area between two terdragon curves k is the previous
level right boundary triangles

Jk =

{
0 if k = 0

RT k−1 if k ≥ 1
join area

= 0, 1, 2, 4, 8, 16, 32, 64, . . . A131577

Proof. Two curves k ≥ 1 have their k−1 sub-curves touching at point T as
follows.
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T J
R

T is on the boundary since there are two absent sub-curves there (West and
South-West). The join start J through to T is a curve side so the join area is
its right boundary triangles RT k−1.

Join area can also be calculated from the excess of area Ak+1 over three
copies of the previous Ak. This counts the join triangles but doesn't give their
shape.

0 1

2 3

J

J

One join area is on the left side of the curve and one is on the right. The
curve is symmetric left and right so the two joins are the same size.

Ak+1 − 3Ak = 2Jk

The joins are also the shortfall of the boundary Bk+1 over three copies of
the previous Bk. Each unit triangle enclosed by the joins reduces the boundary
by 3 segments,

3Bk −Bk+1 = 2 . 3 Jk

3.2 Hanging Triangles

On the boundary of the terdragon curve there are some hanging unit triangles
which touch the rest of the curve at only a single point.

k=4
hanging triangles

H4 = 4

HR4 = H4/2 = 2

Theorem 25. The number of hanging triangles on terdragon k is

Hk =

{
0 if k = 0, 1, 2

2k−2 if k ≥ 3
hanging triangles

= 0, 0, 0, 2, 4, 8, 16, 32, . . .

Each side is symmetric so half on one side

HRk = 1
2Hk =

{
0 if k = 0, 1, 2

2k−3 if k ≥ 3
one side

= 0, 0, 0, 1, 2, 4, 8, 16, . . .
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Proof. A hanging triangle is boundary turn sequence −1, 1, 1,−1 as from sec-
tion 2.5.

−1
1

1

−1

This is a pair BitAboveLowestOne(j) = 0 and BitAboveLowestOne(j+1) = 0
with j even. This requires j is binary low 0100, and possible further low 0 bits.

j = any 0 1 0 0 0...0 total k bits

≥0 zeros

The �any� bits at the high end can be any value of length 0 to k − 4 bits.
In addition the �1� shown can be the highest bit for value j = 100...00 binary.
The total number of such values is therefore

HRk = 1 +
k−4∑
i=0

2i = 2k−3 for k ≥ 3

For k=3 the sum is understood as empty so HR3 =1 which is single value
j = 100 in binary. When k≤ 2 there are not enough bits to have any �100� at
all and so HR = 0.

4 Cantor Dust

The Cantor dust fractal is formed by removing the middle third of a line segment
and doing the same to each remaining line segment recursively.

0 1

An integer version can be formed by multiplying by 3k. The e�ect is to start
with a unit line segment and triple out by a gap then a copy.

0 9 18 27 54 72 81

Counting the �rst segment as 0, segment number n is present when no digit
1s as per Cpred(n) from (58).

Theorem 26. The right side of the terdragon can be placed in one-to-one cor-
respondence with the Cantor dust.

Right-side boundary segments occur in triplets. Each unit segment of the
Cantor dust corresponds to such a triplet.

Right-side non-boundary segments occur in triplets making a right-side en-
closed unit triangle. Each unit gap in the Cantor dust corresponds to such a
unit triangle.
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Proof. Let Tperm change ternary digit pairs 10 to 20 and vice versa 20 to 10.
This is a self-inverse permutation of the integers.

Tperm(n) = �ip ternary digit pairs 10↔ 20 of n

= 0, 1, 2, 6, 4, 5, 3, 7, 8, 18, 19, 20, 15, 13, 14, 12, 16, . . .

ternary = 0, 1, 2, 20, 11, 12, 10, 21, 22, 200, 201, 202, 120, 111, . . .

In Rpred (76), with Tperm applied the digit pairs 10 allowed and 20 disal-
lowed become instead 10 disallowed and 20 allowed. So Rpred(Tperm(n)) has
pairs 10, 11, 12 disallowed and hence

Cpred(n) = Rpred(Tperm(3n)) (85)

The terdragon right boundary segments occur in triplets which have succes-
sively n ≡ 0, 1, 2 mod 3 (since any non-boundary excursion is a multiple of 3
length). A Cantor unit segment is identi�ed with such a triplet.

For the enclosed unit triangles, the terdragon curve always steps in direction
0◦, 120◦ or −120◦. Any path taking such steps has each unit triangle with
segment numbers going 0, 1, 2 mod 3 in the following pattern.

0 1 2 0 1 2

2 0 1 2 0 1

0 1 2 0 1 2

2 0 1 2 0 1

1

ω3

−1−ω3

For a point at x+yω3 the number shown is x+y mod 3. Stepping in direction
1, ω3 or −1−ω3 which are 0◦, 120◦ or −120◦ change that x+y index by +1 mod
3. Hence the pattern.

Each unit triangle is either on the left or right side of each segment. Those
on the left have segment numbers going clockwise. Those on the right have
segment numbers going anti-clockwise.

The right-side unit triangles are all the right-side non-boundary segments.
Each unit triangle can be identi�ed by its 0 mod 3 segment and this corresponds
to the Cantor non-segments as per (85).

5 Points

The terdragon curve touches at various vertices. Each point may be visited 1,
2 or 3 times.
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Level k=4

singles S4 = 18

doubles D4 = 14

triples T4 = 12

total P4 = 44

Theorem 27. The number of single, double, and triple visited points in ter-
dragon k are

Sk =

{
2 if k = 0

2k + 2 if k ≥ 1
single-visited (86)

= 2, 4, 6, 10, 18, 34, 66, 130, 258, . . . A133140

Dk =

{
0 if k = 0

2k − 2 if k ≥ 1
double-visited

= 0, 0, 2, 6, 14, 30, 62, 126, 254, . . .

Tk =

{
0 if k = 0

3k−1 − 2.2k−1 + 1 if k ≥ 1
triple-visited

= 0, 0, 0, 2, 12, 50, 180, 602, 1932, . . . A028243

Proof. For k=0 the curve is a single line segment. Each end is a single-visited
point.

For k ≥ 1, when each line segment of the previous level expands it makes a
new vertex in the middle of an adjacent triangle.

=⇒

new

Figure 14:

new vertex

beside segment

The visits to the original vertex points are unchanged by the expansion.
The visits to each new middle point are the number of sides of the triangle.
Triangles with three sides are the enclosed area Ak (83). Each of them gives a
new triple-visited point. Triangles with 1 or 2 sides are the boundary triangles
BT1 k and BT2 k from (69),(70). Each of them gives a single or double visited
point respectively. So the following recurrences, giving sums. The sums are
taken as empty when k=0.

Sk = Sk−1 + BT1 k−1 = 2 +

k−1∑
j=0

BT1 j
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Dk = Dk−1 + BT2 k−1 =

k−1∑
j=0

BT2 j

Tk = Tk−1 +Ak−1 =

k−1∑
j=0

Aj

Second Proof of Theorem 27. When the curve triples to make its next level
there are three copies of the points. Where they join some point visits merge.

Each sub-curve endpoint is single-visited and when they join it remains a
single,

�rst copy

second copy

join start
single+ single→ single

Adjacent join area triangles touch at a corner as follows.

between join triangles
single+ double→ triple

The join touches are always a single meeting a double this way, since other-
wise there would be untraversed segments within the curve.

The boundary at the end of a join is always a straight line. This is so for
the �rst join in level k=2 and for any subsequent level the expansion is

straight boundary
remains straight

A straight line at the join end can only be formed from two single-visited
points becoming double-visited.

join end triangle
single + single → double

There are two identical join areas so the above merges apply twice. When
there is at least one join triangle Jk−1 ≥ 1, which is when k ≥ 2, the following
recurrences

Sk = 3Sk−1 + 2
(
−(Jk−1 − 1)− 3

)
for k ≥ 2

Dk = 3Dk−1 + 2
(
−(Jk−1 − 1) + 1

)
Tk = 3Tk−1 + 2

(
Jk−1 − 1

)
(87)

There are Jk−1− 1 new triple points in between join triangles. They reduce
the singles and doubles and increase the triples. The singles are further −1 at
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the join start and −2 at the join end. The doubles are +1 at the join end. With
Jk−1 = 2k−2 and the initial S,D,T values the formulas (86) etc follow.

Per OEIS A028243, the triples Tk are twice Stirling numbers of the second
kind

Tk = 2St(k, 3) Stirling second kind

The triples recurrence in J at (87) is the usual Stirling recurrence since Jk−1
= 2k−1−1 = St(k, 2) for k ≥ 1.

Tk/2 = 3Tk−1/2 + Jk−1−1 (87)/2, for k ≥ 2

St(k, 3) = 3St(k−1, 3) + St(k−1, 2) Stirling recurrence

On each visit to a given location, the curve turns the same way either left
or right, as otherwise it would cross or overlap (see ahead section 12.1). By
symmetry, the left-turn points and right-turn points are on one-to-one corre-
spondence. So St(k, 3) = Tk/2 is the number of right-turn triple visited points,
or left turn the same.

All single and double visited points are on the boundary. Some triple visited
points are on the boundary too.

start

end

triple-visited point in boundary �V�

hanging triangle

k=3, TB3 = 2

A boundary triple is in each V shape 2-side boundary triangle, except the 4
such at curve start and end are not triple visited, and at a hanging triangle the
V each side is the same triple point.

TBk = BT2 k −Hk − 4 for k ≥ 2

=

{
0 if k ≤ 2

3.2k−2 − 4 if k ≥ 3
triple-visited on boundary

= 0, 0, 0, 2, 8, 20, 44, 92, 188, . . . k≥3 A131128

The total number of distinct visited points is

Pk = Sk +Dk + Tk

=

{
2 if k = 0

3k−1 + 2k + 1 if k ≥ 1
distinct points

= 2, 4, 8, 18, 44, 114, 308, 858, . . . k≥1 2×A099754

It can be noticed

Pk +Ak = 3k + 1
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In general P +A = N +1 for any path with N line segments on a triangular
grid which is non-overlapping and each enclosed unit triangle has all three sides
traversed. Such a path starts as a single point and no line segments. Then each
further line segment either goes to an unvisited point which increases P , or it
revisits a point and encloses a new unit triangle which increases A. So for each
N either A or P increments.

Per �gure 14, the number of sides of the triangle adjacent to a segment
determines the number of visits to new points n ≡ 1, 2 mod 3. The number of
visits is unchanged by further expansions, which are low ternary 0-digits.

Visitsk(n) =


1 if n = 0or 3k

Rsides(n) if n = (3m+1).3l, m ≥ 1

Lsidesk−l−1(n) if n = (3m+2).3l

= 1, 1 for k=0

1, 1, 1, 1 for k=1

1, 1, 2, 1, 2, 2, 1, 2, 1, 1 for k=2

For the curve continued in�nitely, Lsides∞ is used. Or it su�ces to take 1
level bigger,

Visits∞(n) = Visitsk(n) for 3k > 3n

= 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 1, 3, 2, 3, 3, 2, 3, 1, 2, 3, . . .

=1 at n = 0, 1, 3, 9, 10, 17, 27, 28, 30, 51, 53, 64, . . .

=2 at n = 2, 4, 5, 6, 7, 12, 15, 18, 21, 22, 25, 31, . . .

=3 at n = 8, 11, 13, 14, 16, 19, 20, 23, 24, 26, 29, 32, . . .

Visits also follow from other(n, δ) from theorem 9. The visits are all those
occurring in the same curve arm and within the same k, or same arm and
anywhere for the curve continued in�nitely.

Visitsk(n) = count
δ=0 to 2

(
other(n, δ) same arm and ≤ 3k

)
(88)

Visits∞(n) = count
δ=0 to 2

(
other(n, δ) same arm

)
The total of this Visits count within level k is 1 for each single, 2 each for

the 2 visits to doubles, and 3 each for the 3 visits to triples.

3k∑
n=0

Visitsk(n) = Sk + 4Dk + 9Tk = 3.3k − 4.2k + 3

= 2, 4, 14, 52, 182, 604, 1934, . . . 2×A134063

5.1 Lines

Some unit segments in the terdragon are consecutive and they can be considered
in runs making lines in directions d = 0, 1, 2 ×120◦. In the following samples,
d=0 and d=1 both have lines which are co-linear but not consecutive. Those
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lines are counted separately, so that number of lines is more than just curve
width or height.

start

end

Lines4(0) = 12

start

end

Lines4(1) = 9

start

end

Lines4(2) = 10

d=0 d=1 d=2

k=4, total Lines4 = 31

Theorem 28. The number of lines in terdragon level k is

Linesk = 2k+1 − 1

= 1, 3, 7, 15, 31, 63, 127, 255, . . . A126646

Proof. There are 3k curve segments in level k. If none are consecutive then
the segments are the lines. This occurs for k=0 and k=1 with Lines0 = 1 and
Lines1 = 3.

At each triple-visited point, there are consecutive line segments in all 3
directions, reducing the lines by 3.

At each double-visited point, the two absent segments must be adjacent or
the curve would cross or overlap when �lling the plane.

double-visited point
missing segments are

adjacent around the point

So at each double-visited point, there are consecutive segments in one direc-
tion, reducing the lines by 1.

Linesk = 3k − (3Tk +Dk) (89)

Second Proof of Theorem 28. A similar argument can be made counting line
ends.

At a single visited point there are 2 line ends, except for the curve start and
end where just 1 each, so 2Sk − 2 line ends from singles.

At a double-visited point there is one line continuing across and 2 lines
ending.

At a triple-visited point there are no line ends (all 3 directions continue
across).

Every line has 2 ends so

Linesk = 1
2 (2Sk − 2 + 2Dk) (90)
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The visits considered in (89) and (90) are together the total 3k + 1 visits to
all points,

Sk + 2Dk + 3Tk = 3k + 1

Theorem 29. The number of lines in directions d = 0, 1, 2 of terdragon k is

Linesk(0) =
1
3

(
2k+1 + ld(k)

)
Linesk(1) =

1
3

(
2k+1 − ld(k − 1)

)
Linesk(2) =

1
3

(
2k+1 − ld(k + 1)

)
ld(m) = [1, 2, 4, 5, 4, 2]m

Linesk(0) = 1, 2, 4, 7, 12, 22, 43, 86, 172, 343, 684, . . .

Linesk(1) = 0, 1, 2, 4, 9, 20, 42, 85, 170, 340, 681, . . .

Linesk(2) = 0, 0, 1, 4, 10, 21, 42, 84, 169, 340, 682, . . . A111927

Lines in the three directions are each 1
3 of the total except for the variation

by the periodic ld , giving di�erences up to 3, depending on k.

Proof. Use line ends similar to the second proof above, but with ends in each
direction d. Start with boundary triangles. Count 1-side boundary triangles by
the direction of their segment. Count 2-side boundary triangles by the direction
of their missing segment.

1-side
d=0

2-side
d=0

1-side and 2-side
right boundary triangles

in direction d=0

Let RTSk(d) be the number of 1-side triangles plus 2-side triangles on the
right boundary and in direction d. The R,V expansion of �gure 10 applies. In
the �V� part triangles are swapped 1↔ 2 sides but their direction is unchanged.
The whole of V is turned −1 relative to the desired direction, so the count of
d+1 there is required.

RTSk(d) = RTSk−1(d) + RTSk−1(d+1)

Initial RTS 0(0) = 1 and RTS 0(1) = RTS 0(2) = 0 gives

RTSk(d) =
1
3

(
2k + [2, 1,−1,−2,−1, 1]k+2d

)
1+2 side triangles by d

RTSk(0) = 1, 1, 1, 2, 5, 11, 22, 43, 85, 170, 341, . . . A024493

RTSk(1) = 0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, . . . A024495

RTSk(2) = 0, 1, 2, 3, 5, 10, 21, 43, 86, 171, 341, . . . A131708

The triangles on the left side of the curve are a 180◦ rotation. A horizontal
d=0 remains horizontal in 180◦ rotation and similarly d=1 and d=2 unchanged.
So total triangles 2RTSk(d).
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Count a double-visited point by the direction of its two cross segments.
Count a single-visited point by the direction of its absent two cross segments.

d=0
single-visited

d=0
double-visited

Let SDk(d) be the number of single and double points in direction d, exclud-
ing the �rst and last points of the curve which are singles but only one segment
at each.

When the curve expands, the existing single-visited and double-visited points
and their direction are unchanged. Each 1-side or 2-side boundary triangle gives
a new single-visited or double-visited point respectively, per theorem 27. A new
SD in direction d arises from an RTS triangle direction d+1.

SDk(d) =

k−1∑
j=0

RTS j(d+1) single, double points by d

= 2RTS (k, d) − (2 if d=0)

SDk(0) = 0, 0, 0, 2, 8, 20, 42, 84, 168, 338, . . . 2×A111927

SDk(1) = 0, 0, 2, 6, 12, 22, 42, 84, 170, 342, . . . A086953

SDk(2) = 0, 2, 4, 6, 10, 20, 42, 86, 172, 342, . . . 2×A131708

Lines in a given direction have an end at a non-crossing segment of a single
or double visited point. For example each SD point d=0 is the end of a line
in directions d=1 and d=2. So Lines(d) is SD of directions other than d. The
very �rst and very last points of the curve are ends of a horizontal d=0.

Linesk(d) =
1
2

(
SDk(d+1) + SDk(d+2) + (2 if d=0)

)
RTSk(d) is the 3-period binomial sums of Cournot[2], but with −d meaning

d=1 is the 2 mod 3 binomials and d=2 is the 1 mod 3 binomials.

RTSk(d) =
(
k
−d
)
+
(

k
−d+3

)
+
(

k
−d+6

)
+ · · · d = 0, 1, 2

The sum in SDk(d) is total of those binomials in columns down to row k−1.
(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)
SDk(d) =

k−1∑
j=0

2RTSk(d+1 mod 3)

d=0, columns 2 mod 3

Then Linesk(d) is the �other� two SDk(d) which means 2 out of 3 columns
down to row k.
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(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)
Linesk(d) =

1
2

(SDk(d+1) + SDk(d+2)

+ 2 if d=0

)
d=0, columns 0, 1 mod 3

RTSk combines 1-side and 2-side triangles, and SDk combines 1 and 2 points,
since those combinations su�ce for the lines calculation. The 1s and 2s of
each can be counted separately if desired and they are mod 6 columns of the
binomials. When expressed as powers, they have a 12-periodic half-power term
3bk/2c. By taking 1s and 2s together, those half-powers cancel out leaving just
a 6-periodic constant term.

6 Enclosure Sequence

When a segment is appended to the curve it can be the �rst, second or third
segment of the unit triangle on its right. Let RsideNum(n) = 1, 2, 3 be the side
number of n on that triangle. A segment may have one or both segments s or
e as follows,

n

s e
=⇒

s

s

e
0

1

2 RsideNum = 1

RsideNum = 2 RsideNum = 3

The expansion shows how a segment with s and/or e expands to a new
combination. For new low digit 1 on n it can be noted that segment 2 is after n
so is not yet present. This means e occurs only with s so there is only a single
RsideNum =2 form.

RsideNum
= 1

RsideNum
= 2

RsideNum
= 3

0,1
2 0

1

2 0,2

1
start

Figure 15:

n ternary
high to low

RsideNum(n) = �gure 15 �nal state

= 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, . . .

= 1 at n = 0, 1, 3, 4, 7, 9, 10, 12, 13, 16, . . .

= 2 at n = 2, 5, 8, 11, 14, 17, 19, 23, 26, 29, . . .

= 3 at n = 6, 15, 18, 20, 24, 33, 42, 45, 47, 51, . . .

Left side segments follow similarly
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n

s e
=⇒ s

e

e

0
1

2

LsideNum = 1

LsideNum = 2 LsideNum = 3

LsideNum
= 1

LsideNum
= 2

LsideNum
= 3

0,2
1

0
1

2 0

1,2

start

Figure 16:

ternary
high to low

LsideNum(n) = �gure 16 �nal state

= 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 3, 3, 1, 2, 1, . . .

= 1 at n = 0, 2, 5, 6, 8, 11, 15, 17, 18, 20, . . .

= 2 at n = 1, 3, 7, 9, 12, 16, 19, 21, 25, 27, . . .

= 3 at n = 4, 10, 13, 14, 22, 28, 31, 32, 37, 40, . . .

LsideNum state machine �gure 16 is a reversal of RsideNum state machine
�gure 15. Digits are reversed 0↔2 and the side number reversed 1↔3.

Geometrically this is simply the curve being the same in 180◦ rotation, so
that the left side counted from the end is the same as the right side counted
forward. The reversal of the side number counts downwards from how many
sides it will have, so

LsideNum(3k−1− n) = Rsides(n)+1− RsideNum(n)

RsideNum(n) = 3 is where n encloses a unit triangle on the right. Similarly
LsideNum(n) = 3 on the left.

start

right enclosures
EpredR(n)

start

left enclosures
EpredL(n)

EpredR(n) =

{
1 if RsideNum(n) = 3

0 if not

=

{
1 if pair 20 and any 1s below it are in pairs 10
0 otherwise

(91)

= 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . .

EpredL(n) =

{
1 if LsideNum(n) = 3

0 if not
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= 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, . . .

Form (91) is since 20 in �gure 15 goes to or stays in side 3. A 1 digit would
leave there, unless it's a 10 pair which goes back. The digit 2 loop in side 2
would be another 20 if it goes back to side 3 that way.

Some usual state machine manipulations can take digits of n low to high
instead. Reaching EpredR is a right enclosure. Reaching �not� or ending in rm0
or rm1 is not. Similarly EpredL.

rm0rm1

notEpredR

start0

1

20

1
2

lm1 lm0

notEpredL

start

0

1
20

1
2

Figure 17:

ternary
low to high

Each enclosure is an enclosed unit triangle on the respective side right or
left, so totals AR and AL from theorem 23.

ARk = ALk =

3k−1∑
n=0

EpredR(n) =

3k−1∑
n=0

EpredL(n) (92)

When EpredR(n) encloses a unit triangle the next turn is left turn(n+1) =
+1, since otherwise the next segment would overlap the triangle just enclosed.
Conversely EpredL is followed by a right turn

EpredR
n n+1

turn(n+1) = 1 left
or would overlap segment
of triangle just enclosed

As from section 1.2, a left turn at n+1 is LowestNonTwo(n) = 0. For EpredR
in �gure 17, low 2s loop in rm0 and then if a 1 go to �not� so never a right turn.
For EpredL conversely 0 goes to �not� so never left turn.

EpredR can enclosure 2 triangles consecutively. This occurs �rst at n=56,
57 which are ternary 2002 and 2010. There cannot be 3 or more consecutive
EpredR or that would be 3 left turns and the segments would overlap. Similarly
EpredL pair, which �rst occurs at n=13, 14, ternary 111, 112.

Some state machine manipulations can test whether n+1 is also the respec-
tive enclosure, then intersection n and n+1 for a pair. Taking that low to high
shows enclosure pairs are the original digit forms with extra low.

EpredRpair = EpredR 0 2...2 EpredLpair = EpredL 1

high low high low

≥ 1 digits

The last segment of curve k is not an enclosure, since it is the �rst visit to
its endpoint, so pairs do not cross a level. The number of pairs within a level
follow from (92) and the extra digits.
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3k−1∑
n=0

EpredRpair(n) =

k−2∑
h=0

ARh =

{
0 if k=0
1
2 Tk−1 if k ≥ 1

(93)

= 0, 0, 0, 0, 1, 6, 25, 90, 301, 966, . . . A000392

3k−1∑
n=0

EpredLpair(n) = ALk

At (93), cumulative AR is 1
2 T in the manner of theorem 27. New triples are

formed when segments expand into each triangle A, here it is just AR triangles
so half. The result is the Stirling numbers of the second kind.

When 2 consecutive EpredR occur the next segment is always an EpredL left
enclosure, since it was 2 left turns. Conversely 2 consecutive EpredL is always
followed by EpredR.

EpredR EpredR

EpredL

T

T 2 right enclosures

are 2 left turns T

so next segment

is left enclosure

Runs of right and left enclosures can occur. For example at n=373 ternary
111211 there is a run of 12 consecutive enclosures. The following diagrams show
how this run falls within its surrounding segments.

start

n = 373
ternary 111211start

n=373

Figure 18:

enclosure sides

LLR, LLR,

LRR, LLR

There are no runs longer than 12. That can be seen by some state machine
manipulations on Epred left or right to ask whether n+1, n+2 etc also enclosing.
The intersection of Epred on 13 terms n through n+12 inclusive is empty.

State machine manipulations on the 12 intersection shows it is EpredL with
some extra low digits,

EpredTwelve = EpredL 1 2...2 11 ternary

high low

≥ 1 digits

(94)
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The count of how many 12 runs in k is the same as EpredRpair in k−2. The
digit form for EpredTwelve is like EpredRpair but with 2 extra �xed digits. The
high here is EpredL rather than EpredR, but their counts are the same (92).

Runs of 12 all have the same enclosure side sequence shown in �gure 18. The
enclosed side is the opposite of turn(n+1) and turn(n+1) is LowestNonTwo on
low digits of 1211 through 2020 of EpredTwelve at (94). It is the same when
more 2s for 12...211 there.

6.1 Point Visit Number

Each n is visit number 1, 2 or 3 to its point. This is given by RsideNum or
LsideNum when the sides of such a triangle expand to meet in the middle.
n ≡ 1 mod 3 is the right side or n ≡ 2 mod 3 is the left side, and then any
number of low 0s since those 0s do not change existing points.

VisitNum(n) =


1 if n=0

RsideNum(m) if n = (3m+1).3l

LsideNum(m) if n = (3m+2).3l

= 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 2, 1, 1, 3, . . .

RsideNum 1 0...0 or LsideNum 2 0...0

high low high low

≥ 0 digits ≥ 0 digits

The visit number is also how many other(n, δ) are on the same arm and
preceding n.

VisitNum(n) = 1 + count
δ=1,2

(
other(n, δ) same arm and < n

)
or count with δ=0 to include n itself unchanged

VisitNum(n) = count
δ=0,1,2

(
other(n, δ) same arm and ≤ n

)
Total of VisitNum within level k counts 1 each single, 1+2 each double, and

1+2+3 each triple,

3k∑
n=0

VisitNum(n) = Sk + 3Dk + 6Tk = 2.3k − 2.2k + 2

= 2, 4, 12, 40, 132, 424, 1332, . . . 2×A083323

7 Multiple Arms

Six copies of the terdragon at 60◦ angles mesh perfectly and �ll the plane (the-
orem 2). The boundary of 2 to 6 such arms can be calculated simply as Rk (72)
on the ends and one or more Vk (73) in between. The area follows from the
boundary by (82).
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Arms Boundary Area

2

{
4

9.2k−1

{
0 if k = 0

4.3k−1 − 3.2k−1 if k ≥ 1

3 12.2k−1 6.3k−1 − 4.2k−1

4

{
8

15.2k−1

{
0 if k = 0

8.3k−1 − 5.2k−1 if k ≥ 1

5

{
10

18.2k−1

{
0 if k = 0

10.3k−1 − 6.2k−1 if k ≥ 1

6

{
12

18.2k−1

{
0 if k = 0

12.3k−1 − 6.2k−1 if k ≥ 1

The boundary increases by an extra Vk with each extra arm. For 3 arms the
k=0 and k ≥ 1 cases coincide.

In 3 arms, the boundary and area are Bk+1 and Ak+1, ie. the plain curve
one level bigger. This is since the 3 arms are 3 sub-curves and 2 joins which is
the same as the whole curve k+1, just the orientation of the joins changed (to
the k=1 base shape).

In 5 arms the gap is 2Rk and in 6 arms the corresponding section is 2Vk.
WithRk = Vk for k ≥ 1 from (72)(73) the 5 and 6 arm curves are B6 (k) = B5 (k)
for k ≥ 1.

8 Shortcut Boundary

The terdragon boundary has �V� notches at every third boundary position.
These are the 2-side boundary triangles BT2 k from theorem 15 and the −1
boundary turns from theorem 22. A variation on the curve can be made by
taking shortcuts across those Vs.

k=3
shortcut boundary

(dragon curve θ=120◦)

Theorem 30. The shortcut boundary length is

BSH k = 2k+1 boundary

RSH k = BSH k/2 = 2k one side

and the area enclosed is

ASH k =

{
0 if k = 0

2.3k−1 if k ≥ 1
area (95)
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Proof. The shortcuts add the 2-sided boundary triangles as additional area,

ASH k = Ak + BT2 k

=

{
0 + 0 if k = 0

2(3k−1 − 2k−1) + 2k if k ≥ 1

The shortcuts shorten the boundary by 1 side at each 2-sided boundary
triangle,

BSH k = Bk − BT2 k

=

{
2 + 0 if k = 0

3.2k − 2k if k ≥ 1

The shortcuts maintain the three-sides-enclosed property of lemma 1 and so
shortcut area and boundary are related to total line segments by

3ASH k + BSH k = 2 (3k + BT2 k)

Riddle [8] takes this shortcut curve form to show the terdragon as a fractal
has area 1/(2

√
3). Scaling ASH k by the curve endpoint distance

√
3 k squared

gives

ASH k

(
√
3)2k

=
2.3k−1

3k
=

2

3
of base triangle area

A base equilateral triangle of unit side has height 1
2

√
3 so area 1

4

√
3, giving

2

3
. 14
√
3 =

1

2
√
3

= 0.288675 . . . A020769

Going instead from the plain enclosed area Ak (83) the result is the same
√
3
4 Ak

(
√
3)2k

=
1

2
√
3
−
√
3
4

(
2
3

)k → 1

2
√
3

Theorem 31. The shortcut boundary is the Heighway/Harter dragon curve
with unfolding angle θ = 120◦.

Proof. In turn sequence Rturn(i) from theorem 22 the −1 turns are eliminated
leaving just the dragon turns. The turns before and after the shortcut are both
reduced by 60◦. In Rturn(i) the turns +120◦ and 0 become +60◦ and −60◦
respectively. Those 60◦ turns correspond to unfolding the dragon by θ = 120◦.

−60◦

−60◦

turns before and

after shortcut

reduced by 60◦
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The shortcut area (95) has ASH k+1 = 3ASH k for k ≥ 1 so the area is
exactly 3 copies of the previous level, with no join area in between.

k=3

shortcut boundary

join length

JBSH 3 = 4

Theorem 32. The shortcut join boundary length is

JBSH k = 2k−1 for k ≥ 1

Proof. For k ≥ 1 the total shortcut boundary BSH k+1 is 3 copies of the previous
level boundary less 4 copies of the join boundary (2 in each join).

BSH k+1 = 3BSH k − 4 JBSH k

JBSH k = (3.2k+1 − 2k+2)/4 = 2k−1

Exact matching of the shortcut sides can also be seen in the dragon curve
turn sequence of theorem 31. In a dragon curve with 2k segments the turns in
the second half are reverse order and opposite direction to the �rst half, so the
second half of one boundary matches the �rst half of the next. (It would then
have to be shown that the matching goes no further.)

9 Centroid

The terdragon curve is symmetric in 180◦ rotation so the centroid of the seg-
ments, points or area are all the midpoint of the curve at bk/2. But some
measures can be made on just one side of the curve.

Theorem 33. The centroid of the right boundary triangles of terdragon k is

GRT k =
7−2ω6

13
bk +

5−7ω6

39

(
ω6

2

)k
= 3−

√
3i

6 , 9+
√
3i

12 , 24+14
√
3i

24 , 33+67
√
3i

48 , −99+233
√
3i

96 , . . .

Proof. For k=0 the curve is a single line segment with a single triangle. The
centroid of the triangle is the mean of its corners.

0 1

ω6

k=0 GRT 0 =
0 + 1 + ω6

3
=
b

3

As in theorem 14, the boundary triangles in a V part are a reversal of the
R part, so the centroid is the mean of the two copies in the previous level.
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R

V

R

0

bk

Figure 19

GRT k = 1
2

(
GRT k−1 + bk + (ω6)

4GRT k−1
)

= ω6

2 GRT k−1 + 1
2b
k

= GRT 0

(
ω6

2

)k
+ 1

2b

k−1∑
j=0

(
ω6

2

)
j bk−1−j

= b
3

(
ω6

2

)k
+ 1

2b

(
ω6

2

)
k − bk(

ω6

2

)
− b

Per theorem 31, the line segments of the shortcut boundary are the Heigh-
way/Harter dragon curve unfolding by 120◦. The same reversing calculation
as above is made for its centroid, but with initial line centroid GRSH 0 = 1

2 .
Equating the sum parts of the two gives

GRSH k − GRSH 0.
(
ω6

2

)k
= GRT k − GRT 0.

(
ω6

2

)k
GRSH k =

7−2ω6

13
bk +

−1+4ω6

26

(
ω6

2

)k
terdragon 120◦ centroid

= 2
4 ,

7+
√
3i

8 , 17+9
√
3i

16 , 22+44
√
3i

32 , −67+155
√
3i

64 , . . .

Theorem 34. The centroid of the right boundary segments of terdragon k is

GRk =

{
1
2 if k = 0

GRT k +
ω6

3

(
b
2

)
k if k ≥ 1

= 2
4 ,

9+3
√
3i

12 , 21+17
√
3i

24 , 24+70
√
3i

48 , −117+233
√
3i

96 , . . .

And across a V part (other sides of an R),

GV k =

{
1
2 −

1
4

√
3i if k = 0

GRT k − ω6

3

(
b
2

)k
if k ≥ 1

= 4−2
√
3i

8 , 9−
√
3i

12 , 27+11
√
3i

24 , 42+64
√
3i

48 , −81+233
√
3i

96 , . . .

Proof. The centroid of the R right and V part boundaries are

0

GRk

0
GV k
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These parts expand, similar to the R,V expansion of �gure 11,

0

bk

bk−1

GRk−1

bk + (ω6)
4GV k−1

0

bkbk + (ω6)
4GRk−1

GV k

For k ≥ 1 there are the same number of segments Rk = Vk in each part so
the centroids are the mean of the previous level.

GRk = 1
2GRk−1 + 1

2

(
bk + (ω6)

4GV k−1
)

k ≥ 2 (96)

GV k = 1
2GV k−1 + 1

2

(
bk + (ω6)

4GRk−1
)

(97)

Taking (96) for GV and substituting into (97) gives

GRk = GRk−1 − b
4GRk−2 +

1
4b
k k ≥ 3

The characteristic polynomial of the GR terms alone is

x2 − x+ b
4 = (x− ω6

2 )(x− b
2 )

so GRk is powers of ω6

2 ,
b
2 and the further b. From the initial values the coe�-

cients of b and ω6

2 are the same as for GRT k. The coe�cient of the b
2 power is

ω6

3 . Substituting into (96) gives GV k in the same form but coe�cient −ω6

3 .

For the terdragon fractal, all four right boundary centroid forms above can
be scaled by bk for a unit length curve. The limit as k→∞ is the coe�cient
of the bk term and so is the same in each case. Notice this is not the middle
horizontally but a little towards the start at 6

13

0 start

end 1

1
2

GRf

centroid of right boundary

→ GRf =
7− 2ω6

13
=

6

13
−
√
3

13
i

= 0.461538...− 0.133234...i

(98)

The equivalent of �gure 19 in the fractal is two suitably rotated halves whose
mean is the centroid of the whole.

0 start end 1
1
2

1/b

GRf

GRf /b

GRf /b + 1−GRf /b

2
= GRf

GRf =
1

2− 1/b+ 1/b
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9.1 Centroid of Join

k=2 join,

centroid of 2 triangles

0

1 + (3 + 1
3
)
√
3

2

1
2
+ (2 + 1

3
)
√
3

2

GJ 2 = 3
4
+ 17

12

√
3

Theorem 35. For k≥ 1 there are enclosed triangles in the join between two
level k terdragon curves. The centroid of those triangles is

GJ k = bk+1 − 2ω6GRT k k ≥ 1

=
9+3ω6

13
bk +

−14+4ω6

39

(
ω6

2

)k
(99)

= 1+ 2
3

√
3i, 3

4+
17
12

√
3i, −1+ 29

12

√
3i, − 83

16+
149
48

√
3i, . . .

Proof. For k ≥ 1 the right boundary triangles are two joins, per the triangle
arrangement in the second proof of area theorem 23. So, with suitable rotations
and o�sets, the mean of the join centroids is the right triangles centroid GRT k.

R

0 bk

ω6b
k

b
3
bk

middle

1
2GJ k +

1
2

(
bk + (ω6)

2GJ k

)
= ω6b

k + (ω6)
5GRT k

GJ k =
ω6b

k + (ω6)
5GRT k − 1

2b
k

1
2 + 1

2 (ω6)2

Scaled by bk for a fractal of unit length, the limit is the coe�cient of the bk

term in (99).

GJ k
bk
→ GJf =

9 + 3ω6

13
=

21 + 3
√
3i

26
= 0.807692...+ 0.199852...i (100)

GJf

1
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9.2 Centroid of Right Enclosed Area

Theorem 36. The centroid of the unit triangles enclosed by the right side of
the terdragon curve level k ≥ 2 is

GARk =
1

2
bk +

1

156
.
(−3+12ω6)2

kbk − 26ω6b
k + (−10+14ω6)ω6

k

3k−1 − 2k−1

= 3+5
√
3i

6 , −12+46
√
3i

30 , −306+248
√
3i

114 , −2769+799
√
3i

390 , . . . k ≥ 2

Proof. Each segment is either a right boundary or a side of a right-side enclosed
unit triangle. Weighted by the number of segments, the centroid of the enclosed
triangles and the boundary segments sum to the centroid of all segments which
is the midpoint 1

2b
k.

3k. 12b
k = 3ARk.GARk + Rk.GRk

The right side area is three copies of the previous level and one join, so
ARk = 3ARk−1 + Jk−1. The centroids of those give a recurrence for GAR with
the join centroid GJ .

GARk =
1

ARk


ARk−1.GARk−1

+ARk−1.
(
bk−1 + ω3GARk−1

)
+ARk−1.

(
ω6b

k−1 + GARk−1
)

+ Jk−1.
(
bk + GJ k−1

)


Scaled by bk to make a fractal of unit length the limit is 1

2 which is the
midpoint of the whole.

GARf k = GARk/b
k → 1

2 as k →∞

limit 1
2

GARf 2 = 1
2 + 1

18

√
3i

GARf 3 = 23
45 + 2

45

√
3i

10 Convex Hull

A convex hull is the smallest convex polygon which can be drawn around a given
set of points.
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Figure 20:

k = 6
convex hull

0, start end, bk
P1

P2

P3

P4

P5 P6

P7

P1′
P2′
P3′

P4′

P5′P6′

P7′

60◦

90◦

60◦

30◦

0◦
30◦

P6−P7 = ω3(P2−P3),
same turned 120◦

Theorem 37. The convex hull around terdragon k ≥ 6 is a set of 14 vertices
located at

P1(k) = − 1
24

(
bk + p(k)

)
(101)

P2(k) = − 1
24

(
bk+1 + p(k+1)

)
P3(k) = − 1

24

(
bk+2 + p(k+2)

)
P4(k) = − 1

24

(
bk+3 + p(k+3)

)
P5(k) = − 1

24

(
bk+4 + p(k+4)

)
P6(k) = − 1

24

(
bk+5 + p(k+5)

)
P7(k) = − 1

24

(
(1+ 1

9ω6)b
k+5 + p(k+6)

)
and their reversals from the end of the curve

P1′(k) = bk−P1(k), P4′(k) = bk−P4(k), P6′(k) = bk−P6(k),
P2′(k) = bk−P2(k), P5′(k) = bk−P5(k), P7′(k) = bk−P7(k)
P3′(k) = bk−P3(k),

where periodic term

p(m) = [−9, 6+15ω3, −3−3ω3, −3−6ω3,

−9ω3, (6+15ω3)ω3, (−3−3ω3)ω3, (−3−6ω3)ω3,

−9ω 2
3 , (6+15ω3)ω

2
3 , (−3−3ω3)ω

2
3 , (−3−6ω3)ω

2
3 ]

for m ≡ 0 to 11 mod 12

Sides P1�P2 through P6�P7 are at successive +30◦ angles as illustrated in
�gure 20. Side P6�P7 is the same as P2�P3 but turned +120◦. And likewise
reversals P1′ etc.

For k < 6 the above points are the hull vertices but with some duplications
and some points excluded.

k vertices duplication exclude

0 2 P3=P4=P5=P6′ (P1 on boundary) P2, P7

1 4 P2=P3=P4 and P5=P6=P7 P1
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2 6 P1=P2=P3 and P4=P5 and P6=P7

3 8 P1=P2 and P3=P4 (P7 on boundary)

4 10 P2=P3 and P6=P7

5 12 P1=P2

Proof. For k = 0 to 5 the convex hulls can be formed explicitly. For k=0 the
hull is merely a line 0 to 1. P1 = 1

3 is on that line but not a vertex. For k=3
point P7 = P6 + ω3 is on the boundary but not a vertex.

(P1= 1
3 )

P3
=P4
=P5

P6′

P6

k=0 k=1

Figure 21

P2
=P3
=P4

P5
=P6
=P7

start

end

k=2

P1
=P2
=P3

P4
=P5

P6=P7
start

end

k=3

P1
=P2

P3
=P4

P5

P6

(P7)

start

end

k=4
P1 P2

=P3

P4

P5

P6=P7

start

end

k=5
P1=P2

P3

P4

P5

P6P7

start

end

Side P1�P2 is at 60◦ relative to the bk endpoint since

P1(k)− P2(k)
bk+2

= 1
72 + 1

24

p(k+1)− p(k)
bk+2

and the periodic values of p(m) have di�erence p(k+1) − p(k) which is always
aligned to the bk+2 direction. These p di�erences can be illustrated

p(0) = −9

p(1)

(2)

(3)

(4)(5)

(6)

(7)

(8)

(9)

(10)
(11)

Figure 22:

p(m) steps

p(0) to p(1) at the top left is 60◦ since p(1)−p(0) = 15ω6, corresponding to
b2. At each point the direction turns +30◦ the same as arg b = 30◦. At m =
0, 1, 4, 6, 8, 9 there is an additional reversal 180◦ but still +30◦.
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Similarly the other sides P2�P3 aligned to bk+3 etc through P6�P7 aligned
to bk+7.

The sides P2�P3 and P6�P7 are the same length but turned +120◦ since,
using b4 = 9ω3 and p(m+4) = ω3p(m),

P2(k)− P3(k) = ω3

(
P6(k)− P7(k)

)
For the vertex formulas, proceed by induction. Suppose the formulas are

true of k−1. Terdragon k comprises three k−1. The convex hull around k is
the hull around the hulls of the three sub-parts.

The expansion is shown in the following diagram. 0 is the origin. bk is
the endpoint of level k. The three sub-parts are A,B,C and their vertices are
labelled P1A, P1B, P1C etc.

0 bk60◦

0

bk

bk−1

A

B

C

P7AP6A
= P5(k)

P4(k) = P5A

P3(k) = P4A

P2(k) = P3A

P1(k) = P2A
P1A P6A′

P4B = P7(k)

P3B
= P6(k)

P2BP1B

P6B′

P5B′

P7′(k) = P4B′

P3B′ P2B′

Figure 23:

convex
hull
parts

For the dashed bottom side, both P6A�P7A and P2B�P3B are horizontal
(aligned to the bk endpoint) as per the side angles above and the respective A
and B parts turned −30◦ and +90◦. They are at the same position vertically
since, with p(k+5)− p(k+4) aligned to bk (the bottom horizontal p(4) to p(5)
in �gure 22),

Im
P6A− P3B

bk
= Im

(
− 3

8 + 1
24

p(k+5)− p(k+4)

bk

)
= 0

So the hull is P5(k) at P6A across to P6(k) at P3B.
For the dashed top left P2A�P4B′, the sub-part sides P1A�P2A and P3B′�

P4B′ are both 60◦ per the side angles. But P2A�P4B′ is steeper than 60◦ since

Im
P2A− P4B′

bk+2
= Im

(
− 1

9 + 1
12ω3 − 1

72

p(k+10) + p(k+4)

bk

)
= 1

24

√
3
(
1− (− 1

3 )
dk/2e

)
> 0 for k ≥ 7

So P1A is inside the hull and P1(k) is at P2A. Likewise at the top P7′(k) is
at P4B′. The side P1A�P2A is quite short so a little di�cult to see in �gure 23.

The other new sides are the same rotated 180◦.
So mutual recurrences for the vertices
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P1(k) = P2(k−1) P5(k) = P6(k−1)
P2(k) = P3(k−1) P6(k) = bk−1 + ω3P3(k−1)
P3(k) = P4(k−1) P7(k) = bk−1 + ω3P4(k−1)
P4(k) = P5(k−1)

The power forms (101) of the theorem satisfy these recurrences starting from
an initial k=6 hull calculated explicitly, which completes the induction. The
power forms can be found by writing the recurrences in generating functions and
solving simultaneously by some linear algebra or solving directly by expanding.
The chain of dependencies is

P1 P2 P3 P4

P5P6

P7

Starting at P3(k) and expanding to reach P3(k−4) again,

P3(k) = bk−4 + ω3P3(k−4)

Apply this repeatedly until reaching k = 6, 7, 8 or 9. Let this be q ≥ 0 many
times so that k−6 = 4q + r with 0 ≤ r ≤ 3 so ending at P1(6+r).

P3(k) = bk−4 + ω3b
k−8 · · · + ω q−1

3 bk−4−4(q−1) + ω q
3 P3(6+r)

= ω q
3 b

r+6 (b
4)q − ω q

3

b4 − ω3
+ ω q

3 P3(6+r)

= − 1
24

(
bk+2 − br+8ω q

3 − 24ω q
3 P3(6+r)

)
(102)

using b−2/(b4−ω3) = − 1
24

In (102) the right hand terms are periodic in r = 0, 1, 2, 3 and q = 0, 1, 2. It
uses the initial P3(6) through P3(9) which are calculated from the recurrences
or by explicitly forming those hulls. The result is the 12 terms of p(m).

p(m) could be numbered starting anywhere mod 12. The choice here is to
match the b power in each P1 etc. So the expression in (102) is reckoned as
p(k+2) to match its bk+2.

p(k+2) = −br+8ω q
3 − 24ω q

3 P3(6+r)

In �gure 23, the A sub-part vertex P6A′ is close to the B sub-part vertical
P5B′ to P6B′. The vertex is on the line for k ≡ 0, 2, 3 mod 4 but is 1 unit
triangle to the left when k ≡ 1 mod 4.

P6A′(k) = P6′(k−1) P6B′(k) = bk−1 + ω3P6
′(k−1)

Re
P6A′(k)− P6B′(k)

ω k
12

= Re 1
24

p(k+4)− ω3p(k+4)

ω k
12

=

{
0 if k ≡ 0, 2, 3 mod 4

− 1
2

√
3 if k ≡ 1 mod 4
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P6A′

P5B′

P6B′

0 bk

k=9
sub-part vertex P6A′

1 unit triangle away
from P5B′�P6B′ vertical

For the curve scaled to a unit length, the limits for the hull vertex locations
are the coe�cients of the bk terms in each P1 etc. They and the resulting hull
extents are

P1f = −1/24

P2f = −b/24
P3f = −b2/24

P4f = −b3/24

P5f = −b4/24 −b5/24 = P6f

(−b5+b)/24 = P7f

P1f′
P2f′
P3f′

P4f′

P5f′P6f′

P7f′

0, start

end, 1

1
16

1 1
16

3
16

√
3 = 0.324759...

(A212952)

3
16

√
3

Each hull vertex is a single-visited point since a double or triple has 4 or 6
segments around it so is not a convex vertex. Point numbers n in the curve for
each hull vertex follow from the sub-parts similar to the vertex locations.

PN1 (k) = PN2 (k−1) PN5 (k) = PN6 (k−1)
PN2 (k) = PN3 (k−1) PN6 (k) = 3k−1 + PN3 (k−1)
PN3 (k) = PN4 (k−1) PN7 (k) = 3k−1 + PN4 (k−1)
PN4 (k) = PN5 (k−1)

P3B and P4B are the middle sub-part (ternary digit 1) so add 3k−1 in PN6
and PN7. Initial values at k=6 determine the low digits and then the 4-cycle
P3�P4�P5�P6 is a high repeating pattern 1000. It's convenient to take that
pattern as high 1 then repeat 0001 zero or more times, so as to simplify the low
digit forms.

PN1 (k) = 1
7203

k + 1
80 [−9, 53,−1,−3]

= ternary 1 0001 0001 . . . empty, 0, 00 or 001 for k−5 digits
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= 1, 3, 9, 28, 82, 246, 738, 2215, 6643, . . . k ≥ 6

PN2 (k) = PN1 (k+1) PN4 (k) = PN1 (k+3) PN6 (k) = PN1 (k+5)

PN3 (k) = PN1 (k+2) PN5 (k) = PN1 (k+4)

PN7 (k) = 83
2403

k + 1
80 [−1,−3,−9, 53]

= ternary 1001 0001 0001 . . . empty, 0, 00 or 001 for k digits

= 252, 757, 2269, 6807, 20421, 61264, . . . k ≥ 6

In PN7 , the 3k−1 high ternary 1 digit is only 3 places above the rest of
PN4 (k−1) so an initial 100 before the 1000 pattern.

The area of the hull can be calculated by taking triangular sectors from origin
to consecutive points P1, P2 etc in the usual way. The area of such a sector is
1
2 Im

(
z1.z2

)
, for z1 to z2 anti-clockwise around. It's convenient to measure the

area as number of unit triangle equivalents (the area of each such being
√
3/4).

This corresponds to curve area A measured in unit triangles (theorem 23).

HAk =

{
0, 2, if k = 0, 1
29
24 3

k − 1
12 [15, 23, 11, 25].3

bk/2c − 1
8 [5, 3, 1, 3] if k ≥ 2

(103)

= 0, 2, 8, 26, 86, 276, 856, 2586, . . .

The area of hulls k = 0, 1 can be calculated explicitly. k=1 is a rhombus
comprising 2 unit triangles, as seen in �gure 21. For 2≤ k≤ 5, the duplications
and extra vertices on the hull boundary give empty or split sectors but the
general formula found from the vertex formulas for k≥ 6 still holds.

Scaled by 3k for curve start to end a unit length, the hull area limit, as a
multiple of unit triangles, is the coe�cient of the 3k term in (103).

HAk

3k
→ 29

24
= 1.208333 . . . unit triangles limit 1+ A212832

This can be compared to the limit number of triangles enclosed by the curve
Ak/3

k → 2
3 = 0.666....

Then with
√
3/4 unit triangle area, the area of the hull around the fractal is

HAf =
29

24
·
√
3

4
= 0.523223 . . . hull area limit

The hull boundary length is the total side lengths

HBk =
∣∣P1(k)−P2(k)∣∣ +

∣∣P3(k)−P2(k)∣∣ + · · ·

=



2, 4 if k = 0, 1(
13
12+

5
12

√
3
)√

3k if k ≥ 2

+ 1
6

√
37.3k + [−30, 162, 30,−162].3bk/2c + [9, 63]

+
[

9
4−

7
4

√
3, 3

4−
7
4

√
3, 3

4−
5
4

√
3, 9

4−
5
4

√
3
]

= 2, 4, 4+2
√
3, 10+2

√
3, 12+2

√
3+2
√
19, 12+8

√
3+2
√
73, . . .
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The middle root term 37.3k + · · · is from sides P7�P1′ and P7′�P1 which
are not at 30◦ angles.

Scaled down by
√
3k for the curve a unit length, the hull boundary length

limit is

HBk√
3k
→ HBf =

13

12
+

5

12

√
3 +

1

6

√
37 = 2.818814 . . .

0, start end, 1
1
24

1
24

√
3
1
8

1
8

√
3 3

8

1
24

√
3

1
12

√
37

hull boundary

side length

limits

(and top sides

repeating these),

total HBf

Theorem 38. The two points of the terdragon curve furthest apart are P3 and
P3′ of the convex hull. For curve k they are at a distance

HDk =
2√
(

21
16 3

k − 1
8 [3, 9, 9, 15].3

⌊
k
2

⌋
+ 1

16 [1, 3, 9, 19]

)
(104)

=
2√

1, 3, 9, 31, 103, 309, 927, 2821, . . .

Proof. The points furthest apart must be vertices of the convex hull. For k < 9
the furthest points can be veri�ed explicitly and their distances apart are per
the formula.

For k≥9, points P1 through P7′ of the convex hull are located at various
factors of bk and o�sets p(m) from those powers. The o�sets are at most

pmax = max( 1
24 |p(m)|) = 1

8

√
19

Comparing factors of bk on the hull vertices, P3�P3′ are the furthest apart.
Their distance is at least∣∣P3(k)− P3′(k)∣∣ ≥ ∣∣ bk + 2 1

24b
k+2
∣∣ − 2pmax = 1

4

√
21.
√
3
k
− 2pmax

The second furthest by bk factors is P2�P2′ and their distance, or the dis-
tance of any pair with smaller bk factor, is at most∣∣P2(k)− P2′(k)∣∣ ≤ ∣∣bk + 2 1

24 b
k+1
∣∣ + 2pmax = 1

4

√
61
3 .
√
3
k
+ 2pmax

For k≥9 the di�erence between the two bounds is positive, as seen by de-
creasing and increasing terms to convenient squares,(

1
4

√
21− 1

4

√
61
3

)√
39 − 4pmax k ≥ 9

>
(

1
4

√
4582

10000 −
1
4

√
4512

10000

)
.140 − 4. 18

√
4362

10000 = 27
100 > 0

Scaled by
√
3k for start to end a unit length, the distance is square root of

the coe�cient of the 3k term in (104).
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start end

P3

P3′√
21
4

HDk√
3k
→ HDf =

√
21

4
= 1.145643 . . .

curve points
furthest apart,

distance

HD is between any two points of the curve. It's also possible to consider
only points on some line parallel to curve start to end.

Theorem 39. Consider a line parallel to curve start to end, and the points of
the curve which may be on it. The greatest distance between two points on any
such line is uniquely attained between the following locations P1S and P1S ′

P1Sk =


0 if k = 0, 1

P1 (k) + ωk+1
12 if k ≡ 1 mod 4 and k ≥ 5

P1 (k) otherwise

P1S ′k = bk − P1Sk

They are on the curve centreline through curve start and end. Their distance
apart is

HSDk = |P1Sk − P1S ′k|

=

{
1,
√
3 if k = 0, 1

13
12

√
3k − [ 34 ,

3
4

√
3, 14 ,

1
4

√
3] if k ≥ 1

(105)

= 1,
√
3, 3, 3

√
3, 9, 9

√
3, 29, 29

√
3, 87, 87

√
3, . . .

For k=2m, HSDk = ternary 10 0202... with m+1 digits, and for k=2m+1
the same with further factor

√
3.

Proof. Greatest distances can be veri�ed explicitly for k≤ 6. For k≥ 7, hull
vertex P1 is on the start to end line when k 6≡ 1 mod 4 since its formula is

Im P1 (k)/ωk12 = [0,− 1
2 , 0, 0]

Hull side P1�P2 is at 60◦ to the line start to end and side P1�P7′ is at less
than 60◦, so any parallel line points away from P1 are shorter than P1 to P1′.

For k ≡ 1 mod 4, in the k−1 hulls of �gure 23, P1 = P2A has adjacent sides
60◦ and 30◦ so that anywhere other the overlap arising from ImP1 (k) = − 1

2 is
shorter.

start to end
line

to P2

to P7′
to P2′

to P7

P1

P1S P1′

P1S′
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P1 is at 30◦ down from P1S. Distance P1S to P1S′ could be equalled by
P1 to a point below left 30◦ from P1S′. Or likewise from P1′ to a point above
right 30◦ of P1S. But these points are not in the curve. They are not in k=9
and thereafter the P1�P1S segment expands 4 times as follows for new P1 (k+4)
also without point above right.

P1 (k+4)

no point

k ≡ 1 mod 4

For the curve scaled to a unit length, the limit is the distance P1 to P1′

which is the coe�cient of
√
3k in (105),

HSD(k)

bk
→ 13

12

A maximum distance between two points on a line perpendicular to start
to end is the corresponding points in the middle third of the curve, which is
P1S (k−1) and P1S ′(k−1) in the k−1 middle part of �gure 23. These points
are not on the whole curve hull boundary. Their width limit is simply /

√
3,

HSD(k−1)
bk

→ 13
√
3

36
= 0.625462 . . .

10.1 Middle Nearest

Theorem 40. The left boundary point or points nearest to the terdragon middle
1
2b
k are located at

Lneark =



0 and 1 if k=0

1 and 1
2+

1
2

√
3i if k=1

1
2+

1
2

√
3i and 1+

√
3i if k=2

19 +
√
3i

48
bk + 1

24 pt(k+1) if k ≥ 3

and when k=5 also equal nearest − 11
2 + 3

2

√
3i

where

pt(m) = [ 15, 6−9ω3, −3−27ω3, −3+18ω3, (106)

15ω3, (6−9ω3)ω3, (−3−27ω3)ω3, (−3+18ω3)ω3,

15ω 2
3 , (6−9ω3)ω

2
3 , (−3−27ω3)ω

2
3 , (−3+18ω3)ω

2
3 ]

By symmetry the right boundary point nearest the middle is

Rneark = bk − Lneark

Proof. For k ≤ 5 the points nearest the middle can be calculated explicitly.
For k ≥ 6, boundary points correspond to corners of triangles on the bound-

ary of surrounding curves. Form the convex hull around segments plus boundary
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triangles. This can be calculated the same as the segments hull in theorem 37,
since the curve with boundary triangles is an unfold of sub-curves k−1 and their
boundary triangles. For k≥ 6 there are 14 vertices (like the segments hull).

start end

PT1

PT2

PT3

PT4

PT5 PT6

PT7

k = 6

convex hull
segments and

boundary triangles

The boundary triangles push the segments hull vertices out by 1 unit triangle
on each straight side. The triangles hull vertices are at corners of a triangle,
since a curve point would have triangles each side of it and so not be a hull
vertex.

Working through the hull recurrences the result is the same location forms
as segments P1 etc (101), but di�erent o�set terms. Each p in P1 etc becomes
pt at (106) in PT1 etc.

PT1 (k) = − 1
24

(
bk + pt(k)

)
etc

Consider then curve k comprising k−2 sub-curves and surrounding k−2 sub-
curves. The triangle hulls around those surrounding sub-curves are

start

end

bk

M

PT4 = Lnear
Figure 24:

k−2 hulls

surrounding

left side

The boundary triangles push into the left boundary L so that minimum
extents for the left boundary points are given by maximum extents of the sur-
rounding hulls.

The claimed Lnear is the marked PT4 in �gure 24, being PT4 in that
surrounding k−2 hull. Its sub-curve starts at 1

3b
k. Its sub-curve endpoint bk−2

is directed −60◦ relative to the bk end. So +120◦ direction in �gure 24 is total
turn 180◦ so negate,

Lneark = 1
3 b
k − PT4 (k−2)

Working through the hull formulas it can be veri�ed that this is nearer than
the other hulls, and that the slopes of the sides adjacent to PT4 are more than
90◦ to a line M�PT4 so that nothing else in the surrounding hull is nearer.
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The o�sets in pt can be illustrated

pt(0) = 15

pt(1) = 6−9ω3

pt(2)

The di�erence between p and pt is e�ectively which sides are pushed out by
the boundary triangles in the way noted above.

1
24 (pt(k)− p(k)) = [1, −ω3,−ω3, ω3, ω3, −ω2

3 ,−ω2
3 , ω

2
3 , ω

2
3 , −1,−1, 1]

= ω
b(k+3)/4c
3 .(−1)b(k+1)/2c

For endpoints scaled to a unit length, the limits for Lnear and Rnear are
their bk coe�cients.

Lneark
bk

→ Lnearf =
19+
√
3i

48
=

10+ω3

24
= 0.3958333...+ 0.036084...i (107)

Rneark
bk

→ Rnearf =
29−
√
3i

48
=

14−ω3

24
= 0.6041666...− 0.036084...i

A line between Lnearf and Rnearf is the narrowest part through the middle.
The length of that line and the angle down from the curve start to end are

|Rnearf − Lnear | = 1
12

√
7 = 0.220479 . . .

arg(Rnearf − Lnear) = − arctan 1
5

√
3 = −19.106605◦ . . .

start

end

Lnearf

= 19
48
+
√
3

48
i

Rnearf = 29
48
−
√
3

48
i −19.1◦

1
12

√
7

Lnear ,Rnear limits,

width and angle
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Theorem 41. For two curves at 60◦, the point or points of the left boundary
which are nearest to the join are

Jneark =



1 if k=0

1 and ω6 if k=1√
3i if k=2

JnearPT2 k and JnearPT2 k − b if k=3

JnearPT2 k and JnearPT2 k − ω6 if k=6

JnearPT2 k otherwise

JnearPT2 k = ω6

(
bk−1 + ω3PT2 (k−1)

)
=
(
13
24 + 1

6

√
3i
)
bk + 1

24pt(k) (108)

Proof. The nearest points for k ≤ 6 can be calculated explicitly.

J0

Jnear0
= 1

0

J

Jnear1
equal

0

J, b3

Jnear2
=
√
3i

0

Jnear3
equal

The k−1 triangle hulls of the absent left k side are

J, bk0

ω6 b
k

PT2

Figure 25:

absent

k−1 hulls

Working through the formulas shows the nearest to J is PT2 of the mid-
dle hull. Its adjacent sides are 30◦ before and 60◦ after which are past 90◦

perpendicular to the line from J, so other points are further away.

The limit for join of curves scaled to unit lengths is the bk coe�cient in
(108).

Jneark
bk

→ Jnearf = 13
24 + 1

6

√
3 i = 17

24 + 1
3ω3 (109)

= 0.541666...+ 0.288675...i imag A020769
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0 1

|Jnearf | = 1
24

√
217

= 0.613788 |1−Jnearf | = 13

24
= 0.541666

arg Jnearf = arctan 4
13

√
3

= 28.054880...◦
arg
(
1−Jnearf

)
= arctan 4

11

√
3

= 32.204227...◦

Jnearf is located + 1
24 right of the middle b/3 = 1

2+
1
6

√
3i. The middle is a

double-visited endpoint of sub-curves. The absent third visit sub-curves are the
�rst two hulls in �gure 25. They spiral around the middle, as all curve ends do,
giving boundary points which closer to J than the middle is.

Jnearf − 1 is the narrowest part through the middle of 6 arm plane �lling
per section 7 (and by symmetry the same at successive 60◦).

−1 1

ω6ω3

Jnearf − 1 = − 11
48
+
√
3
6
i

−32.2◦

2 |1−Jnear | = 13
12

across

10.2 Minimum Area Rectangle

start
end

P1

P4

P7

P1′

P4′

P7′

Figure 26: k=6
minimum area rectangle

aligned to side P7�P1′

area MR6 = 205407
193

unit triangles equivalents

Theorem 42. The minimum-area rectangle around terdragon level k has area
MRk unit triangle equivalents (

√
3/4 each),
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MRk =

0, 3, 9, 33 if k = 0 to 3

MrW k.MrH k

MrDenk
if k ≥ 4

(110)

= 0, 3, 9, 33, 2187
19 , 25392

73 , 205407
193 , . . .

where

MrW k = 13
123

k + 1
12 [−9, 18,−1,−30].3

bk/2c + 1
4 [0,−3,−2, 1]

= 81, 276, 787, 2302, 7047, 21444, . . . k ≥ 4

MrH k = 13
363

k + 1
12 [−3, 6,−1,−16].3

bk/2c + 1
4 [0,−1, 0, 1]

= 27, 92, 261, 754, 2349, 7148, . . . k ≥ 4

MrDenk = |P7(k)− P1′(k)|2

= 37
1443

k + 1
24 [−5, 27, 5,−27].3

bk/2c + 1
16 [1, 7]

= 19, 73, 193, 532, 1669, 5149, . . . k ≥ 4

For k≥ 4, the rectangle is aligned to the side P7�P1′. For k=1 to 3, it is aligned
+30◦ to the curve endpoint. For k=0 the curve is a line segment and the mini-
mum rectangle is trivially aligned to that segment.

Proof. A minimum area rectangle has at least one side aligned to a side of the
convex hull, so it su�ces to consider rectangles on the hull sides.

For k=0, the curve is a unit line segment with area MR0 = 0.
For k=1, the two rectangle alignments both have area MR1 = 3 triangles.

k = 1

MR1 = 3
area 3

2
× 1

2

√
3 area 1

2

√
3× 3

2
= 3

√
3

4

For k=2 and k=3, the possible alignments and areas are as follows. In each
case the �rst is the minimum and is per the general formula.

k = 2

MR2 = 9

area
3
2
× 3

2

√
3

area√
3× 3 = 12

√
3

4

k = 3

MR3 = 33

11
2
× 3

2

√
3

= 33
√
3
4

3× 3
√
3

= 36
√
3

4

5
2

√
3× 9

2
= 45

√
3

4

For k≥ 4, the hull vertices P1(k) through P7(k) from the convex hull theo-
rem 37 can be used, allowing for repetitions which occur in for k=4 and k=5.

There are 7 sides (and 180◦ reversals). The �rst 6 are 30◦ turns which means
90◦ after the �rst 3, so total 4 distinct rectangle alignments.
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A rectangle aligned −30◦ to the bk endpoint, which is the P1�P2 and P4�P5
sides for k≥ 6, is

−30◦
start

endP1
P2

P4

P5

P1′
P2′

P4′
P5′

It's convenient to divide by bk+2 for the alignment and factor 3k+2 = |bk+2|2
to scale back up to unit segments. P2�P2′ and P5�P5′ are suitable rectangle
extents for k≥ 1. So, measured in unit triangles,

MR12 (k) = 3k+2.Re
P5′(k)− P5(k)

bk+2
. Im

P2(k)− P2′(k)
bk+2

/
√
3
4 k ≥ 1

To allow any k, for completeness, P2 is used rather than P1 since P1(1) is
not on the hull boundary, though actually its extents are the same as P2 there.
Then with a −30◦ hull explicitly calculated around the k=0 line segment,

MR12 (k) =

{
1 if k=0
91
48 3

k − 1
24 [51, 69, 17, 51].3

bk/2c + 1
16 [9, 3, 1, 3] if k ≥ 1

= 1, 3, 15, 45, 135, 435, . . . k ≥ 0

A rectangle aligned to the bk curve endpoint, which is sides P2�P3 and
P5�P6 sides for k≥ 5, is

start

end

P2
P3

P5 P6

P2′
P3′

P5′P6′

MR23 (k) = 3k.Re
P3(k)− P3′(k)

bk
. Im

P5(k)− P5′(k)
bk

/
√
3
4

= 27
16 3

k − 1
8 [15, 9, 9, 27].3

bk/2c + 1
16

[
3, 1, 3, 9

]
= 0, 4, 12, 36, 120, 400, . . . k ≥ 0
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A rectangle aligned +30◦ to the bk endpoint, which is the P3�P4 and P6�P7
sides for k≥ 4, is

+30◦

start

end

P3

P4

P6
P7

P3′
P4′

P6′

P7′

MR34 (k) = 3k+1.Re
P3(k)− P3′(k)

bk+1
. Im

P6(k)− P6′(k)
bk+1

/
√
3
4

= 25
16 3

k − 1
8 [5, 15, 15, 25].3

bk/2c + 1
16

[
1, 3, 9, 3

]
= 1, 3, 9, 33, 121, 363, . . . k ≥ 0

MR34 is the alignment of the minimum area rectangles around k = 1 to 3
illustrated above, but not beyond those.

The �nal alignment is to the P7�P1′ side, which is the claimed minimum.
That side turns away from P6�P7 and since P3�P4 is at 90◦ to P6�P7, the P4
vertex is the rectangle width, as shown in the sample �gure 26.

MR71 (k) =
∣∣P7(k)− P1′(k)∣∣2 . Re P4(k)− P4′(k)

P7(k)− P1′(k)
. Im

P7(k)− P7′(k)
P7(k)− P1′(k)

/
√
3
4

=
Re(P4−P4′)(P7−P1′) . Im(P7−P7′)(P7−P1′)

|P7− P1′|2
/
√
3
4

MrW and MrH at (110) are the real and imaginary parts here, and the unit
triangle divisor

√
3/4 split between them in a convenient way so as to make

integers.

MrW k = Re(P4−P4′)(P7−P1′) / 1
2

MrH k = Im(P7−P7′)(P7−P1′) /
√
3
2

To compare to MR12 , MR23 , and MR34 , divide down to

MR71 (k) = 169
1113

k − a(k)3bk/2c +
b(k)3k + c(k)3bk/2c + d(k)

MrDenk

a(k) =
[
1196
1369 ,

3354
1369 ,

6994
4107 ,

3380
1369

]
b(k) =

[
− 491

5476 , −
855

21904 ,
471
5476 , −

23605
197136

]
c(k) =

[
299
5476 ,

3525
10952 ,

811
5476 ,

4003
32856

]
d(k) =

[
0, 3

16 , 0,
1
16

]
Factor 169

111 on 3k here is smaller than the corresponding 91
48 ,

27
16 and 25

16 of the
other alignments. For k≥ 4, the di�erence exceeds the half-power and constant
terms and so MR71 is the minimum.
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11 Moment of Inertia

The mass moment of inertia I =
∑
mr2 of a rigid body rotating around a given

axis is the ratio of torque to angular acceleration, similar to the way ordinary
mass is the ratio of force to linear acceleration.

Ix

Iy
Iz

start

end Figure 27:

moment

of inertia

Rotating about the z axis keeps the curve within the plane. This case is the
simplest.

Theorem 43. The terdragon curve with mass uniformly distributed along its
length, at any expansion level and any unfolding angle θ, has the same moment
of inertia Iz about its centre as a straight line from start to end.

start end

L

Iz

Iz = 1
12
mL2

Iz moment of inertia

terdragon = line segment

Proof. For k=0, the curve is a straight line so the statement is true.
Suppose the statement is true of level k. Let each of its segments have mass

µ and length s. The moment of inertia of such a segment about its centre is
I = 1

12µs
2. In the next expansion, the segment unfolds by angle θ as follows

0 s

Is = 1
2
µs2

0 s

θ

θ

r r

t βs

=⇒

There are now 3 segments each length t and mass µ/3. The centre of mass is
still located at the midpoint. The moment of inertia I ′ of the expanded shape
about this centre of mass is also unchanged since

β = 1/(2 + ei(π−θ)) reduction

t = s |β| new segment length

r = s

∣∣∣∣12 − 1

2
β

∣∣∣∣ to midpoints

I ′ = 3
1

12

µ

3
t2 + 2

µ

3
r2 parallel axis theorem (111)

=
1

12
µs2

(
|β|2 + 2 |1−β|2

)
Draft 15 page 86 of 124



=
1

12
µs2

1 + 2
((

1 + cos(π−θ)
)
2 + sin2(π−θ)

)
(
2 + cos(π−θ)

)
2 + sin2(π−θ)

(112)

=
1

12
µs2 = I

The usual terdragon is θ = 60◦. It has t = s/
√
3 and the triangle formed by

r is equilateral so r = t/2. Applying this to (111) easily gives I ′ = I. For other
angles, r and t vary inversely and the sin and cos terms of (112) cancel out so
I ′ = I always.

The following diagram shows the geometry of the expansion. AD is length
s. AB, BC and CD are the three new line segments each length t. B is distance
t/2 from the middle M.

1
3

t/2

t

rA

B

C

DM H M

t t/2

H is at 2
3 along AD. The distance HB is

HB =
∣∣ 2
3s− bs

∣∣ =
1

3
s

√
(1 + 2 cos)2 + (2 sin)2

(2 + cos)2 + sin2
=

1

3
s

so B is on a circle of radius 1
3 centred at H. Likewise by symmetry C on the

corresponding circle above.
The midpoint of AB, which is where r measures to, also follows a circle as

in the following diagram. This is simply because the AB midpoint follows the
circle of B but shrunk by 1

2 in both x and y directions. So where B arcs from
1
3 to 1 the AB midpoint arcs from 1

6 to 1
2 .

A

B

C

DM
1
3

2
3

t
t
2

r

The �rst circle is centred at 1
3 with radius 1

6 . It and the corresponding upper
arc meet at M since both AB and CD midpoints are in the middle when fully
overlapping AB = CD = AD for no unfold θ=0.

The points also make circles when the line segments AB etc are �xed lengths.
This is obvious for C since it pivots from B. D is a �xed o�set to the right so
is a shift of the C circle.
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A B

C D

Theorem 44. Consider each segment of the terdragon to have a unit mass
uniformly distributed along its length. The centre of mass is the centre of the
curve. With the x axis aligned to the endpoints, the moment of inertia tensor
about the centre is Ix −Ixy 0

−Ixy Iy 0

0 0 Iz

 Ix =
∑
y2 Ixy =

∑
xy

Iy =
∑
x2 Iz =

∑
x2+y2

where

Ix(k) =
1
84

(
2.9k − [2,−3].(−3)bk/2c

)
= 0, 1

4 , 2,
69
4 , 156,

5625
4 , 12654, 455517

4 , . . .

Iy(k) =
1
84

(
5.9k + [2,−3].(−3)bk/2c

)
= 1

12 ,
1
2 ,

19
4 ,

87
2 ,

1563
4 , 7029

2 , 126531
4 , 569403

2 , . . .

Ixy(k) =
√
3

168

(
2.9k − [2, 4].(−3)bk/2c

)
(113)

=
√
3 .
{
0, 1

12 , 1,
35
4 , 78,

2811
4 , 6327, 227763

4 , . . .
}

Iz(k) = Ix(k) + Iy(k) = 1
12 9

k per straight line

= 1
12 ,

3
4 ,

27
4 ,

243
4 , 2187

4 , 19683
4 , . . . k≥1 1

4A013708

Ix and Iy are the moments of inertia rotating about the x or y axes as in
�gure 27. They can be combined with Ixy in the usual way for inertia about an
axis at angle α in the plane

I(k, α) = Ix(k). cos
2 α − 2Ixy(k). cosα sinα + Iy(k). sin

2 α

x

I(k, α)

α

Proof. For k=0 the curve is a single line segment and that line has inertia
Ix(0) = 0, Ixy(0) = 0 and Iy(0) = 1

12 which is per the formulas.
For k ≥ 1 the inertia is calculated by rotations and the parallel axis theorem

from the 3 copies of level k−1.
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x
G

H

−90◦ +30◦r

r
Figure 28

The �rst and last copies have the x axis at +30◦ relative to those copies.
The axes are turned by a matrix of rotation in the usual way

R =

 1
2

√
3 − 1

2 0
1
2

1
2

√
3 0

0 0 1

 rotate axes by +30◦

Distance r is half the k−1 curve extent r = 1
2 (
√
3)k−1 and it is at −30◦ to

the axes for shifting the centre of mass of the �rst and last sub-curves. The
middle sub-curve is axes at −90◦. So total

I(k) = 2R−1 . I(k−1) .R �rst and last +30◦

+R3 . I(k−1) . R−3 middle −90◦

+ 2.3k−1.
(
1
2

√
3k−1

)
2 .R

(
0 0
0 1

)
R−1 mr2 �rst and last −30◦

Multiplying through is mutual recurrences

Ix(k) =
3
2Ix(k−1) −

√
3Ixy(k−1) + 3

2Iy(k−1) + 1
89
k−1 (114)

Iy(k) =
3
2Ix(k−1) +

√
3Ixy(k−1) + 3

2Iy(k−1) + 3
89
k−1 (115)

Ixy(k) =
1
2

√
3Ix(k−1) − 1

2

√
3Iy(k−1) + 1

8

√
3 .9k−1

Ixy has di�erence Ix − Iy and subtracting (114)−(115) is that Ix − Iy in
terms of Ixy again so a recurrence for Ixy which can be expanded and summed
down to either Ixy(0) or Ixy(1) according as k even or odd.

Ixy(k) = −3Ixy(k−2) +
√
3 .9k−2

=
√
3
9k − 9(k mod 2)(−3)bk/2c

81− (−3)
+ Ixy(k mod 2).(−3)bk/2c

where k mod 2 means 0 or 1 as k even or odd

With initial Ixy(0) = 0 and Ixy(1) = 1
12

√
3 from the mutual recurrences (or

explicit calculation) this gives (113).
Iz is equivalent to a straight line as from theorem 43. The line here is extent

(
√
3)k and mass 3k so Iz = 1

129
k. Iz = Ix+Iy for any plane �gure. Substituting

Ixy and Iy = 1
129

k − Ix into (114) gives Ix, and from which Iy.

Variations can be made with a di�erent mass distribution on each line seg-
ment. For example a unit mass at the midpoint of each segment would make
the initial Iy(0) zero and change Ixy(1) and the factor on (−3)bk/2c in Ixy . Sub-
tracting the individual line segments inertia 1

123
k from Iz introduces a 3k term

into Ix and Iy.
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An inertia matrix is real and symmetric so can be diagonalized with a suit-
able matrix of rotation turning to the eigenvectors which are its principal axes.
The physical signi�cance of this is that rotation about those axes is perfectly
balanced with no torque exerted on the mounting points.

In the usual way for a 2×2 matrix, the eigenvectors are in direction d where

d2 =
(
Ix(k)− Iy(k)

)
− 2Ixy(k) i

α = 1
2 arctan

−2Ixy(k)
Ix(k)− Iy(k)

+ (0 or π2 )

= 1
2 arctan

(
2√
3
− εk

)
+ (0 or π2 )

εk =


14
√
3

9.(−27)k/2 + 12
if k even

0 if k odd

εk → 0 as k→∞ so the limit for the principal axes is the 1
2 arctan

2√
3
. The

hypotenuse |2+
√
3i| =

√
7 and a double-angle can square that up to hypotenuse

7 in an arccos,

αmin → 1
4 arccos

−1
7 = 24.553302...◦ arccos second quadrant (116)

αmax = αmin + π
2

→ π − 1
4 arccos

−1
7 = 114.553302...◦ arccos third quadrant

start

end

I minimum

αmin = 24.55...◦

I maximum

αmax = 114.55...◦

arccos −1
7

1
4
arccos −1

7

Roughly speaking, the minimum inertia is where the curve is closest to the
axis and the maximum is where the curve is furthest from the axis, as measured
by mr2.

For the curve scaled to unit length, unit mass, and rotated −αmin so x axis
minimum, the inertia limit is

1
24−

1
168

√
21 0 0

0 1
24+

1
168

√
21 0

0 0 1
12


The inertia of the convex hull can be compared to that of the curve it

surrounds. The inertia of the hull is calculated from its polygon. Its limit
scaled to a unit length and with mass equal to its area is
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HI x = 7261
884736

√
3 = 0.0142148 . . . hull inertia

HI y = 58999
2654208

√
3 = 0.0385008 . . .

HI xy = 449
55296 = 0.0081199 . . .

Hαmin = 1
2 arctan

(
449
1163

√
3
)

= 16.885199◦ . . .

P4

segments αmin = 24.55◦

segs

segs

hull Hαmin = 16.88◦

hull

hull

The segments axis αmin is close to hull vertex P4 but does not pass through
it since P4 is at a slightly smaller slope,

P4 (k)

bk
→ P4f = − 1

8

√
3 i

arg
(
1
2 − P4f

)
= arctan 1

4

√
3 = 23.413224◦ . . .

= 1
2 arctan

8
13

√
3 < αmin = 1

2 arctan
8
12

√
3

12 Terdragon Graph

The terdragon as a graph has an Euler path from start to end (traverse all edges
exactly once) simply by its construction.

There is no Hamiltonian path start to end (visit all vertices exactly once) for
k ≥ 3 since the vertices in hanging triangles cannot be visited without repeating
the vertex they attach to. There is no such path in k=2 either.

Theorem 45. The path length between the endpoints of the terdragon curve as
a graph is

EndLengthk =

 3 if k=1

1
8

(
[11, 19] 3

⌊
k
2

⌋
+ 2k + [−3,−5, 3, 1]

)
if k 6=1

(117)

= 1, 3, 5, 8, 13, 22, 39, 66, 113, 194, . . .
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start

end

k=8 graph path

start to end

EndLength8 = 113

Proof. Firstly take k even and let h = k/2. Curve k comprises 9 sub-curves,

=⇒

The shortest path start to end would be a straight line which is 3h segments.
But it's necessary to detour away from that midline up and down to go around
the V shaped indent at start and end.

start end

Making such a detour on a triangular grid adds a distance equal to the detour
extent,

detour by 2,
adds 2 to distance

A straight line has a V indent sub-curve as shown above. Such a V comprises
18 sub-curves

=⇒

3 straight segments

The three straight lines then are V indent sub-curves again. The �rst and
last might be partly enclosed by the angled curves adjacent to them, but the
middle is not. All are located at 1 sub-curve length into the V, which is 3h−1.
So the sub-curves alternating straight or V down to h=0 give

IndentV 0 = 1, IndentS 0 = 0

IndentV h = 3h−1 + IndentSh−1

Draft 15 page 92 of 124



IndentSh = IndentV h−1

= 1
8

(
3h + [−1, 5]

)
= 0, 1, 1, 4, 10, 31, 91, 274, 820, . . . A006342

ternary 1010... ending 101 or 1011 for h−1 digits, h ≥ 2

The detour around the indent reaches the centre line of the end sub-curves.
They then have further perpendicular indents. This can be illustrated in the
following k=6 curve. The dots are the ends of the �nal sub-curve. The path
shown detours around IndentS 3 and reaches the centre line of that end sub-
curve. The arrow shown cannot go straight but must take a further detour
out.

IndentS3

= 4 further
indent

IndentS2 = 1

k = 6

There is always a straight path across the tops of the indent since level k
comprising 81 sub-curves of k−4 is

The top horizontal lines indent at most IndentSh−2 downwards and the path
shown indents at most IndentSh−2 up. But

2 IndentSh−2 < 3h−2

so the top does not interfere with the path. Likewise on the diagonal up from
the middle.

So for k even the distance start to end is its length 3h plus detours at both
ends which are sum of IndentS spiralling around. This is k even of (117).

EndLengthEvenh = 3h + 2

h∑
j=0

IndentS j

For k odd let h = bk/2c. The shortest path start to end would be straight
across stepping along the sides of rhombus shaped pairs of triangles. This is
distance 2.3h. The following diagram shows a k curve expanded 3 times to 27
sub-curves.
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start end

The dashed section is an indent across a V the same as for even k. A path
start to end must detour around these at each end. EndLengthEven includes
one 3k, so adding another gives 2.3h and two detours. This is k odd of the
theorem (117).

EndLengthOddh = 3h + EndLengthEvenh h ≥ 1

This odd case e�ectively cuts an even path in half and inserts an extra 3h

segments which is the 3-long line in the middle of the diagram above. That
middle part goes along parallel straight sides so per above the indent on its two
sides do not interfere and there is a straight path of segments.

12.1 Turn Tree

When the terdragon revisits a location z, the second and third visits are the same
turn as the �rst. This is so for any non-crossing closed curve or curve continuing
in�nitely and not encircling its start. An opposite turn would enclose either the
end or the start,

R

L

opposite turns would
enclose curve end

R

L

opposite turns would
enclose curve start

When three terdragons are arranged in a triangle, the locations with right
turns and the segments between them form a tree.

start

Figure 29:

triangle of k=4 terdragons,

right turn points

and segments between

start

Each unit triangle has a right turn at the corner where it connects to the rest
of the curve. Each unit triangle expands per �gure 14 to a new right turn in the
middle. The curve segments in that expansion go from the connection corners
to that new right turn. An existing edge across a side becomes two segments
going through the new point.
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So a bottom-up expansion rule is to increase all existing vertices to degree-3
by adding new leaf vertices, and insert a new vertex in the middle of each old
edge. Or equivalently a kind of star-replacement where each vertex is replaced
with a claw (4-star) and each existing edge becomes a vertex in common between
the new claws.

=⇒
claw

replacement,
new vertex
in common

Three triangles of terdragons interlock per theorem 2 plane �lling, The fol-
lowing diagram has each turn tree vertex drawn as a hexagon.

Figure 30:

3 triangles of k=5,

right turn points

(as hexagons)

The tree copy shown in black is the terdragon triangle with �rst segment
East per �gure 29. The spiralling of the terdragons directs it around to the
right.

Taking only arms of the triangles at the origin continued in�nitely gives the
trees continuing in�nitely. If curve arms are considered all going outward the 3
interlocking trees are right turns in the even arms 0, 2, 4 and left turns in the
odd arms 1, 3, 5.

The gaps between the hexagons in �gure 30 are left turn points from the
terdragon triangles. They are the same tree structures as the right turns, as
can be seen by rotating the pattern 60◦ to swap the odd and even arms and so
swap which of left or right turn is taken in the arms.

The number of vertices in the tree follows from the claw replacement. Each
vertex becomes 4, but in each edge there is 1 in common so

TTV k = 4TTV k−1 +
(
TTV k−1 − 1

)
starting TTV 1 = 1

= 1
2

(
3k − 1

)
A003462

Theorem 46. Vertices of the terdragon triangle turn tree are degrees 1,2,3 after
the initial degree-0 in k=1. The number of each degree in tree k are

TTDegCount(k, 0) =

{
1 if k = 1

0 otherwise
A000007
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TTDegCount(k, 1) =

{
0 if k = 0, 1
1
2

(
3k−1 + 3

)
if k ≥ 2

= 0, 0, 3, 6, 15, 42, 123, 366, . . . A067771

TTDegCount(k, 2) =

{
0 if k = 0, 1
1
2

(
3k−1 − 3

)
if k ≥ 2

= 0, 0, 0, 3, 12, 39, 120, 363, . . . A029858

TTDegCount(k, 3) =

{
0 if k=0
1
2

(
3k−1 − 1

)
if k ≥ 1

= 0, 0, 1, 4, 13, 40, 121, 364, . . .

Proof. Claw replacement gives degree-3 vertices as the preceding total vertices

TTDegCount(k, 3) = TTV k−1

Degree-2 vertices are likewise in each existing edge. There are TTV − 1
edges once the tree is not empty.

TTDegCount(k, 2) = TTV k−1 − 1 k ≥ 2

The claw replacement leaves only degree 1,2,3 vertices so the remainder of
TTV in level k are degree-1. Or alternatively the claw replacement gives 1
degree-1 for each previous degree-2, and 2 for each previous degree-1 and 3 for
each previous degree-0.

TTDegCount(k,1) = 3TTDegCount(k−1, 0) + 2TTDegCount(k−1, 1)
+ TTDegCount(k−1, 2)

Theorem 47. The diameter of terdragon triangle turn tree k is

TTdiameterk =

{
none if k=0

2k − 2 if k ≥ 1

= 0, 2, 6, 14, 30, 62, 126, . . . k ≥ 1 A000918

The total number of paths attaining the diameter is

TTdiameterCountk =

{
0, 1 if k=0, 1

3.4k−2 if k ≥ 2

= 1, 1, 3, 12, 48, 192, 768, . . . A002001

The number of diameter endpoints, and total number of vertices on some diam-
eter are

TTdiameterEndsk =

{
0, 1 if k = 0, 1

3.2k−2 if k ≥ 2

= 0, 1, 3, 6, 12, 24, 48, . . . A003945
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TTdiameterVerticesk =

{
0 if k=0
3
4 (k−1)2

k + 1 if k ≥ 1

= 0, 1, 4, 13, 37, 97, 241, . . . A048474

Proof. For any path in level k−1, the bottom-up replacement inserts 1 fur-
ther edge into it for level k, so 2× the length. A path between any of those
new vertices is shorter. If the path in k−1 ends at a degree-1 vertex then the
replacement there has new leaf vertices attached.

A diameter must be between degree-1 vertices (otherwise could be extended).
So the longest is between new leaf vertices on what was a longest path in level
k−1. Starting then from diameter 0 for the single vertex of k=1,

TTdiameterk = 2TTdiameterk−1 + 2 starting TTdiameter1 = 0 (118)

There are 2 new leaves at the end of the new path in k. They give endpoints,
once the diameter is not 0,

TTdiameterEndsk = 2TTdiameterEndsk−1 starting TTdiameterEnds2=3

and combinations of the 2 new at each end is 4 new paths for each existing one

TTdiameterCountk = 4TTdiameterCountk−1

starting TTdiameterCount2 = 3

For total vertices of diameters, on bottom-up replacement each existing di-
ameter vertex has 1 new vertex towards the middle of the tree, except at the
middle vertex itself. The new TTdiameterEndsk outer vertices are immediately
adjacent to existing diameter vertices. So

TTdiameterVerticesk = 2TTdiameterVerticesk−1 − 1 + TTdiameterEndsk

starting TTdiameterVertices1=1

In k = 1, 2 all the degree-1 vertices are diameter endpoints, but in k≥3 some
degree-1 are not diameter endpoints. The degree-1 vertices grow as 5k whereas
the diameter endpoints grow only as 3k.

TTdiameterEndsk = TTDegCount(k, 1) k = 2, 3

TTdiameterEndsk < TTDegCount(k, 1) k ≥ 4

A top-down de�nition of the tree is to take the expansion of �gure 14 as a
level k triangle comprising 3 level k−1 triangles with a new vertex in between
which is where what were left turns at connection corners are a right turn going
to the next copy.

k−1

k−1

k−1

Figure 31: turns tree k as 3 copies

of k−1 and new vertex in between

The connections to the k−1 are at vertices there attaining the diameter, so
that the total is per (118). The three trees �lling the plane can be considered
like this too if the origin point is included.
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The tree is half the Sierpinski triangle as a tree. That triangle has various
de�nitions, among them is to take integer points x, y where xBITAND y = 0.
Tree edges are between points a unit distance apart.

x=1 2 4 6 8 10 12 14 15

y=0
1

2

3

4

5

6

7 Figure 32:

Sierpinski triangle half k=4,

eighth plane 0 ≤ y < x

to depth x+y ≤ 2k−1 = 15

This Sierpinski triangle has the same de�nition as �gure 31. In �gure 32 the
middle vertex is at x=8, y=0 and the 3 sub-trees attached to it are the same.

The 3 copies in �gure 31 or usual properties of the Sierpinski triangle give
number of vertices vk = 3vk + 1 starting v0 = 0 so vk = (3k−1)/2.

Theorem 48. Take the terdragon triple turn tree vertex nearest the curve start
as the root. The width (number of vertices there) at a given depth d, starting
d=0 as the root, is

TTwidth∞(d) = 2CountOneBits(d+1)−1 (119)

= 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, . . . A048896

Proof. In the top-down �gure 31, the new trees attach at the diameter of the
�rst, so the �rst does not overlap the others.

The distance to those others is TTdiameterk−1+2 = 2k−1 for k ≥ 2, so that
a depth e into them has

TTwidth(2k−1 + e) = 2TTwidth(e) for 0 ≤ e ≤ TTdiameterk−1

so factor 2 for a 1-bit in d. The vertex in between is at d = 2k−1−1 and its width
is 1. That is conveniently handled by taking d+1 giving CountOneBits(2k−1)
= 1. Together with the initial values gives (119).

n 6= 0 mod 3 are right turns when n are n ≡ 2 mod 3. They are at locations
z ≡ ω6 mod b, from the lowest base �gure expansion. This is a repeating pattern,

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

These locations are like k=1 trees formed from the surrounding 9 segments.
Right turns with one low 0 digit on n is the same pattern with a factor of b.
Those further points connect to make k=2 claws, and so on, generating the trees
from a simple repeating pattern.
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A related �area graph� can be formed by a vertex for each unit triangle
inside the terdragon triangle and edges between those which are consecutive in
the curve. Or equivalently, if corners of the curve are chamfered o� to leave
little gaps then edges are between unit triangles touching through those gaps.

start

triangle of k=4 terdragons,

vertex for each inside unit triangle,

edge between consecutive in the curve

Inside unit triangles occur in connected 3s as from the �gure 14 expansion
again. Each original side expands to have 2 new triangles consecutive, so the 3
new unit triangles are consecutive in pairs and so a 3-cycle in the graph.

These 3-cycles are connected like the turns tree. Each turn tree vertex is a
3-cycle and turn tree edges are where those 3-cycles share a vertex. This is a
�contact triangles� form of the tree.

Or equivalently, increase all existing vertices to degree-3 by adding new leaf
vertices (like the second bottom-up form above). Then the area graph is the
line graph of this padded tree.

13 Fractional Locations

The location of a point 0 ≤ f ≤ 1 along the terdragon fractal is a limit

fpoint(f) = lim
k→∞

point(bf .3kc)
bk

fractional point

n = bf.3kc is the �rst k digits below the ternary point of f written in ternary.
The location is powers bj at each digit per (43), with rotation below each 1-digit.
The sub-curve there has extent decreasing as 1/

√
3k so the limit converges to

some location z.
When f is rational, its digits are an initial �xed part then repeating periodic

part (of length at most denominator−1). The b powers are then likewise periodic
and give a location as some x+ω3y with rational x, y.

If the periodic part of f has number of 1-digits not a multiple of 3 then
there is a net rotation in the periodic part. That can be accounted for in the
calculation, or repeating the part 3 times gives a multiple of 3 and so purely
periodic bj powers.

13.1 Fractional Boundary

Theorem 49. The only points on both left and right boundary of the terdragon
fractal are curve start and end f = 0, 1.
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Proof. k=3 sub-curves and convex hulls around them are as follows

start

end

left left

right

A

B

C

k=3 sub-curves

right and left hulls

The curve is non-crossing so all left boundary locations are within the convex
hulls around the left boundary segment sub-curves.

The right boundary is within corresponding convex hulls around right bound-
ary segments. The hulls drawn A through C, and the hanging triangle on the
right side, are disjoint from the left boundary hulls. So the spiralling and curling
within those parts of the right boundary never reaches the left boundary.

The sub-curves expand to k=4 as

start

end

A

C

k=4

Expanded right boundary parts from start to A are the same as start to B
of k=3. That leaves only sub-curves through to the corresponding new smaller
A as possible both boundary. Repeating this excludes points an arbitrarily
small distance away from the start, leaving only the start as both left and right
boundary.

Expanded right boundary parts end to C are the same as end to B of k=3.
Likewise this leaves only sub-curves through to the corresponding new smaller
C as possible both boundary and so anything except the end as not both left
and right boundary.

Theorem 50. The terdragon fractal has no cut points, ie. is a topological disc.

Proof. If a cut point separates start and end then it is on both left and right
boundary, but from theorem 49 there are no such points.

Suppose a cut point separates a lobe from the boundary. If this point is
somewhere within a sub-curve then it separates start and end of that sub-curve,
but again no such point exists.

Otherwise the point is always at the start or end of some sub-curve. The
only cut points in the �nite iterations are the hanging triangle attachments, but
they are triple-visited so by the plane �lling they are not on the boundary and
so not cut points of the fractal.
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Theorem 51. Fractional f on the boundary of the terdragon fractal are char-
acterized by the ternary digits of f as

fRpred(f) = 1 if no ternary digit pair 11, 12, 20

except 11 allowed if all 0s below, and 20 allowed if all 2s below (120)

fLpred(f) = fRpred(1−f)
= 1 if no ternary digit pair 02, 10, 11,

except 02 allowed if all 0s below, and 11 allowed if all 2s below

fBpred(f) = fRpred(f) or fLpred(f)

The digit pairs disallowed are the same as the �nite Rpred and Lpred , but
with exceptions for certain exact f = n/3k. The 11 at (120) is n ending 11. The
20 is n ending 20222... which is = 21000... in the usual way. These exceptions
introduce an extra state each into Rpred high to low �gure 12.

R M

non

M2 non

E E2 non

start

Figure 33:

fRpred(f) by

ternary digits

high to low

0
1

2

0 1

2
1,2

0

0

1

2
0,1

2

Proof. An Rpred non-boundary segment has 2 enclosing segments on its right
side. Since those sub-curves have no cut points, they enclose all of that side
except start and end.

R

right side enclosed by 2 sub-curves

when Rpred non-boundary

Segment start is on the right boundary when it is single or double visited and
turn left (since the curve does not overlap). Single visited turn left is accepted
by Rpred already, since there is no �rst segment beside it. Double-visited left
turn arises from a 2-side triangle in manner of �gure 14. From Rpred state M
this is

state M

A B
=⇒

A B

D

S

Segment A�B expands to have S fully enclosed. This is ternary digit 1 to
reach state M then digit 1 for part S. For fRpred the start of S is on the
boundary, which is f with all 0 digits below.

A double-visited left turn from Rpred state E is
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state E

A B
=⇒

A B

DS

Segment A�B expands again to S fully enclosed for Rpred , but its end is on
the boundary for fRpred . This is digit 2 to reach state E then digit 0 for part
S. The end of S is all 2s per .222... = 1.

A triple-visited start or end is not on the boundary, since the 6 sub-curves
enclose that point per the curve plane �lling.

For fLpred similarly with Lpred and double-visited turn right on the left
boundary.

Second Proof of Theorem 51. A sub-curve m has its convex hull touched or
overlapped by the hulls of the following surrounding sub-curves,

m

Figure 34:

surrounding segments

whose hulls touch

or overlap

hull of m

If m has all segments of �gure 34 surrounding it then it is non-boundary
since, by construction, it is does not touch or overlap the hull of any absent
outside. Conversely, if m has one or more of the segments of �gure 34 absent,
then that is some part of the hull of m which is outside the curve and therefore
some of m possibly on the boundary.

Hulls beyond �gure 34, so not touching m, can be illustrated

m
Figure 35:

non-touching

hulls

When m is surrounded by all segments of �gure 34, the grey area here is a
minimum amount of �lled region surrounding m. The closest approach of an
absent outside is 1

8/
√
3k between the horizontal sides.

The hulls in �gure 35 are those necessary to delimit the surrounding grey
gap region shown. Actually that region may be bigger, since the curve turns
±120◦ at the ends of the segments in �gure 34 and so some more in �gure 35,
but knowing that is not necessary.

A given sub-curve m has some of �gure 34 surrounding segments. The initial
single segment k=0 has none. On expansion there are new segments around
the three new sub-curves. The segments of �gure 34 su�ce to determine the
corresponding set of segments around each new segment. A �nite set of segment
con�gurations arise and give a state machine traversed by ternary digits of f .
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A fully surrounded con�guration expands to fully surrounded for any next
digit 0, 1, 2. So if the digits of f ever reach fully surrounded then it remains
so always. If f never reaches fully surrounded then that is an absent sub-curve
at distance ≤ 1/

√
3k so m an arbitrarily small distance from the outside, and

hence a boundary point.

fBpred(f) =

{
0 if ever reach fully surrounded
1 if never fully surrounded

To distinguish right and left boundary, segments of the curve always turn left
or right and so divide the plane into alternating left or right side triangles (eg.
as previously for area in �gure 13). The actual sub-curves are curling spiralling
shapes, but they divide into logical triangles.

R R

R R R

L L L

L L

possible boundary triangles,

left and right sides

Triangles are shown with just the touching hull segments of �gure 34. If a
triangle has at least 1 of its sides segments shown, but not all of them, then this
is some of its R or L as boundary for m.

A con�guration with no R expands to no R again for next digit 0, 1, 2.
Similarly L.

fRpred(f) =

{
0 if ever reach no 1, 2 side R triangles
1 if always a 1, 2 side R triangle

fLpred(f) =

{
0 if ever reach no 1, 2 side L triangles
1 if always a 1, 2 side L triangle

Total 31 con�gurations arise. There are 11 with R fully enclosed and 11 with
L fully enclosed. 1 con�guration is both L and R fully enclosed, being the full
set of segments.

Some usual state machine comparison shows the result is the same as fRpred
in �gure 33. Likewise fLpred .

This second proof does not use theorem 49 for no points on both left and
right boundary. That theorem can follow mechanically from the state machine
by getting the intersection of fRpred and fLpred . State machine manipulations
show the only arbitrarily long strings matched by both are f = .000...= 0 and
f = .222...= 1.

For computer calculation or similar, it might be decided to take only the low
0s representation of exact f = n/3k. In that case state E2 in �gure 33 is not
needed and can go straight to non-boundary. Similarly instead if only low 2s
representation is taken then M2 is not needed.

A given f might be known or proved to be not an exact /3k so that neither
E2 nor M2 is needed, leaving just ternary without 11, 12, 20 the same as Rpred .

The number of f which are fNonRpred is uncountably in�nite, since once
reaching �non�, further ternary digits of f can be an arbitrary real.
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The number of f which are boundary fRpred is uncountably in�nite too.
That can be seen in the fRpred state machine where there are various di�erent
ways digits of f can loop among R,M,E so as to always stay away from �non�. For
example 10 is R→M returning to R, and 210 is R→E→M returning to R. The
bits of an arbitrary real can be coded to ternary digits as 0-bit→ 10, 1-bit→ 210
so there are at least as many fRpred as reals. The same holds for fLpred , and
then union for fBpred .

Theorem 52. The number of visits to the location of a given f in the terdragon
fractal is

fVisits(f) =


Visitsk(n) if f = n/3k for integer n, k; and otherwise

2 if fNonBpred but sub-digits eventually fBpred

1 otherwise

Proof. An exact fraction f = n/3k is a vertex of curve k and the visits there are
the same as Visitsk from (88). By plane �lling, those visits enclose the point so
no other sub-curves touch it.

The claimed cases whole curve fBpred boundary or not, and sub-curve even-
tually or never fBpred , are

fBpred fNonBpred

whole curve

1 2

no such 1

sub-curve eventually fBpred

sub-curve never fBpred

An f which is on the boundary of some sub-curve, meaning its digits at some
digit position and below are fBpred , might have an adjacent sub-curve like

Figure 36:

f on sub-curve boundary

and adjacent other sub-curve

If it has this further sub-curve then by plane �lling and no cut points the
two enclose the location so visits there are only visits arising from the two.

If no such further sub-curve then the visits are only those arising from the
f sub-curve itself. An f which is on a sub-curve boundary like this has only 1
visit because any other would be, for suitable yet smaller sub-curves, an adjacent
enclosing further sub-curve like �gure 36 and so not on the boundary. So in the
table the �rst row cases are sub-curve boundary 1 or 2 visits according as whole
curve boundary or not.

An f which is fNonBpred non-boundary, and its digits at all positions below
are also fNonBpred , is never on the boundary of any sub-curve and so always a
non-zero distance away from any other sub-curve and so just 1 visit.

fNonBpred of a non-3k means somewhere a ternary digit pair 02, 10, 11 so
fNonLpred and also somewhere 11, 12, 20 so fNonRpred . Pair 11 is common to
these so a 11 anywhere is fNonBpred .
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The fVisits =2 case is therefore at least one each 02, 10, 11 and 11, 12, 20, so
as to be non-boundary, but only �nitely many of one of them so eventually on
a sub-curve boundary.

The fVisits =1 case is the converse. Either none at all of 02, 10, 11 or
11, 12, 20 so whole curve fBpred , or in�nitely many of both of them so always
fNonBpred in all sub-curves.

The latter case, in�nitely many of both, can be either rational or irrational.
Suitable pairs in an in�nite repeating pattern is rational, or non-repeating is
irrational. The simplest rational is f = .111... = 1

2 which is in�nite 11 pairs.
This is the middle of the curve, then middle of the middle sub-curve, and so on.

It can be noted fVisits is not decided by initial digits of f . After some digits,
a suitable exact /3k below can be Visits = 3. Or all 1s below is middle of the
sub-curve fVisits =1. Or a sub-curve boundary by suitable pairs is fVisits =2.

Theorem 53. For fVisits(f)=2 by eventually sub-curve right boundary, its
other visit fOther(f) is digit runs �ipped

f . . . 122...22 100...00 022 . . . 22 . . .

high low

fRpred disallowed pair

fOther(f) . . . 200...00 022...22 100 . . . 00 . . .

+1 −1 +1

(121)

Runs begin at and including the lowest fRpred disallowed pair 11, 12 or 20.
A 11 is initial run single digit 1, then next run 100....

The runs are alternating 0222 and 1000, except the highest which are 1222
and 2000. Each run is ≥1 digit. fOther �ips between their two respective forms.

For fVisits(f)=2 by eventually sub-curve left boundary, the same but digit
pattern reversed 0↔2, starting from the lowest fLpred disallowed pair

f . . . 100...00 122...22 200 . . . 00 . . .

high low

fLpred disallowed pair

fOther(f) . . . 022...22 200...00 122 . . . 22 . . .

−1 +1 −1

(122)

All runs are maximal in the sense that they take as many of their repeating
digits as possible, consistent with the next run. So 100...00 in (121) takes all 0s
except one for the following 022...22.

The e�ect for the right side is runs begin at 1, and at 0 with non-0 below it.
Or for the left side at 1, and at 2 with non-2 below it.

Proof. For the right side, the sub-curves on its right are calculated high to low
as per other table (51). There are 2 segments on the right, but in the next
expansion only one of them is used. n digits 0 or 1 use only s, and digit 2 uses
only e. So a digit of fOther is determined by two digits of f .

f pair 00 01 02 10 11 12 20 21 22

output 2 1 1 0 f 2 f 2 f 1 0 0
R (123)
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When table (51) has an �n� it is a copy of f for the output. This is shown
as output f in (123) here. It occurs for the Rpred disallowed pairs 11, 12, 20 so
that fOther is unchanged above such a pair.

At the lowest disallowed pair, following the pairs there onwards in f and the
output digits in (123) gives the run forms (121).

For the left side similarly, with the pairs being

f pair 00 01 02 10 11 12 20 21 22

output 2 2 f 1 f 0 f 0 2 0 1 1
L

The left side cases are 0↔2 digit reversals of the right and its outputs. This
is since the curve is the same in 180◦ reverse, so that 1−f measures back from
the end and then 1 − fOther(1−f) measures again from the start. 1−f is an
0↔2 reversal.

Di�erences
∣∣f − fOther(f)

∣∣ which occur follow from the runs (121),(122).
The ±1 shown under each run is the increment to add to go from f to fOther ,
being di�erence of the two ternary numbers in the runs. The runs alternate so
the signs alternate.

For exact f = n/3k, in theorem 10 di�erences are also alternating signs. For
fVisits(f)=2 by eventually sub-curve boundary, there are in�nite such terms.
For exact f there are �nite terms. All di�erences of this form occur by choosing
suitable run lengths in f .∣∣f − fOther(f)

∣∣ = 1

3k0
− 1

3k1
+

1

3k2
− 1

3k3
+ · · ·

where 0>k0>k1>k2> · · ·
= fraction ternary .0 then digits 0 or 2, or 1 if all 0s below

The ternary form is digit 2s for each pair 1/3k0 − 1/3k1 etc, and possible 1
like other di�erences from (57).

The runs have no choices within, so for the fVisits(f)=2 case a di�erence
determines f below its �rst 1/3k0 term. When this is k0=1 �rst digit, each
di�erence occurs for just one f, fOther pair.

14 Locations Summary

Various limit locations in the terdragon curve can be illustrated together,
GRf = right boundary centroid (98)
GJf = join area centroid (100)
Lnearf ,Rnearf = boundary nearest middle (107)
Jnearf = join nearest (109)
P1 , ... = convex hull vertices, section 10
αmin , αmax = inertia principal axes (116)
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start
0

end
11

2

fpoint(13)

fpoint(23)

P1

P2

P3

P4

P5 P6

P7

P1′

P2′

P3′

P4′

P5′P6′

P7′

GRf

GJf

Lnearf

Rnearf

Jnearf

αmin

αmax

15 Alternate Terdragon

Davis and Knuth[3] also consider an alternate terdragon where the unfolding is
to the opposite side L↔R in alternate expansion levels.

Figure 37

start

end

k=0

start

end

k=1

start

end

k=2

start

end

k=3

start

end

k=4

The expansion is

0 1 0=⇒
1

2

3

even

0

1

2

3

odd Figure 38:

alternate terdragon

expansions

The form here is taken so level k is a pre�x of k+1. For unfolding, this means
�rst unfold �even� is the same as the terdragon, then second �odd� is opposite,
and so on.

For segment replacement, the last replacement is to be even, so begin with
whichever odd or even to give that last. Another equivalent is to conjugate
(mirror vertically) the existing curve and each time replace by the terdragon
�even� base.

Taking two expansions is a �ip and �ip back again so becomes a plain 9
segment replacement,

start

end

k=0

=⇒
start

end

k=2

Figure 39:

alternate terdragon

two expansions

The turn sequence goes as LowestNonZero but the sense is �ipped when that
digit is at an odd position (least signi�cant digit as position 0).
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AltTurn(n) =

{
+1 if LowestNonZero(n) + CountLowZeros(n) ≡ 1 mod 2

−1 if LowestNonZero(n) + CountLowZeros(n) ≡ 0 mod 2

= −(−1)LowestNonZero(n)+CountLowZeros(n)

= + � + - ++ - ++ � + - ++ � + � + - ++ � + � + - ++ . . .

CountLowZeros(n) = 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, . . . n≥1 A007949

Or next turn, for n≥0,

AltTurn(n+1)=

{
+1 if LowestNonTwo(n) + CountLowTwos(n) ≡ 0 mod 2

−1 if LowestNonTwo(n) + CountLowTwos(n) ≡ 1 mod 2

= (−1)LowestNonTwo(n)+CountLowTwos(n)

CountLowTwos(n) = CountLowZeros(n+1)

A turn recurrence di�ers from the terdragon (2) in negating the 3n case,

AltTurn(3n)=−AltTurn(n), AltTurn(3n+1)=1, AltTurn(3n+2)=−1
(124)

The two expansions of �gure 39 gives turns from base-9 digits of n (as for
example in program code by Arndt [1], who calls the curve R9 there),

AltTurn(n) =

{
+1 if Base9LowestNon0 (n) = 1, 4, 6, 7

−1 if Base9LowestNon0 (n) = 2, 3, 5, 8

Base9LowestNon0 (n) = 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, . . . n≥1 A277547

Predicates for left and right turns are

AltTurnLpred(n) =

{
1 if AltTurn(n) = 1

0 otherwise

= 1,0,0,1,0,1,1,0,1,1,0,0,1,0,1,1,0, . . . n≥1
=1 at n = 1, 4, 6, 7, 9, 10, 13, 15, 16, 19, 22, 24, . . . A189715

AltTurnRpred(n) =

{
1 if AltTurn(n) = −1
0 otherwise

= 0,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,1, . . . n≥1 A156595

=1 at n = 2, 3, 5, 8, 11, 12, 14, 17, 18, 20, 21, 23, . . . A189716

Generating functions for these in the style of (5) have powers in L or R form
in alternate terms,

gAltTurnLpred(x) =

∞∑
k=0

x[1,2]k . 3
k

1− x3
k+1 gAltTurnRpred(x) =

∞∑
k=0

x[2,1]k . 3
k

1− x3
k+1

Combining them as AltTurn =AltTurnLpred − AltTurnRpred has both 1, 2
powers in opposite signs and alternating with k. Then like (6), cancel a common
factor with the denominator.
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gAltTurn(x) =

∞∑
k=0

(−1)k
(
x3

k

− x2.3
k)

1− x3
k+1 =

∞∑
k=0

(−1)k x3
k

1 + x3
k

+ x2.3
k

Segment direction is ±1 for each ternary digit 1 sub-part, with sign according
as its digit position which is its level. Or base-9 parts 1, 3, 5, 7 which are the
directions shown in �gure 39.

AltDir(n) =

n−1∑
j=0

AltTurn(j)

=
∑

n ternary


+1 if digit =1 and even position
−1 if digit =1 and odd position
0 otherwise

=
(
count 1, 7

)
−
(
count 3, 5

)
of n base-9 digits

= 0, 1, 0,−1, 0,−1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, . . .

The number of left and right turns from 1 to n inclusive are

AltTurnsL(n) =

n∑
j=1

AltTurnLpred(n)

= 1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 9, 9, 9, . . .

AltTurnsR(n) =

n∑
j=1

AltTurnRpred(n)

= 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 7, 7, 8, 9, . . . A189717

All turns are left or right so total lefts plus rights is simply n. The di�erence
lefts minus rights is AltDir .

AltTurnsL(n) + AltTurnsR(n) = n (125)

AltTurnsL(n)−AltTurnsR(n) = AltDir(n) (126)

Sum and di�erence of (125),(126) are

AltTurnsL(n) = 1
2

(
n+ AltDir(n)

)
AltTurnsR(n) = 1

2

(
n−AltDir(n)

)
Clark Kimberling in OEIS A189717 gives a recurrence

AltTurnsR(n) =
⌊n+1

3

⌋
+
⌊n
3

⌋
−AltTurnsR

(⌊n
3

⌋)
The last two parts are AltTurnsL in terms of AltTurnsR from (125) so

AltTurnsR(n) =
⌊n+1

3

⌋
+ AltTurnsL

(⌊n
3

⌋)
This can be seen in the AltTurn expansions, similar to the terdragon TurnsR

at (36) in its turn expansions. Here b(n+1)/3c is the same new L,R as there, but
here the �existing� turns are the opposite AltTurnsL count because the unfolding
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direction alternates.

The alternating unfolding is new curve end at factor b or b of the preceding,

AltEndk = [b, b ] .AltEndk−1 starting AltEnd0 = 1

= bdk/2e. bbk/2c curve end

= [1, b ].3bk/2c

= 1, 1+ω6, 3, 3+3ω6, 9, 9+9ω6, . . .
Re = 1

2 A038754, Im = 1
2

√
3 .A254006

As noted above, expansion can be treated as conjugate to �ip turns then
multiply b. The low digit is then the terdragon digit positions. So the equivalent
of (44) is

AltPoint(3n+a) = b.AltPoint(n) + digit(a).ω
AltDir(3n)
3

This form uses AltDir(3n), which is the direction of the new �rst segment,
to rotate digit(a) suitably. From (124) this is equivalent to −AltDir(n). That
negation is a conjugate the same as AltPoint(n).

The alternate terdragon boundary is a di�erent shape than the terdragon,
but its length is the same. That follows since the �odd� expansion in �gure 38
gives R,V parts like �gure 11 but opposite order, R → V,R and V → V,R

0

1

V

R
1

2 3

V

R

The enclosed area is likewise a di�erent shape but the same number of unit
triangles since each V expands to enclose a new unit triangle and each existing
enclosed triangle expands to 3 new.

The number of single, double and triple visited points are likewise the same
as terdragon S,D, T since they arise from the middles of 1,2,3 side triangles.

In �gure 37 it can be seen a single bridge segment goes between two blobs
of triangles. By symmetry this is the middle segment n = 1

2 (3
k − 1).

k=2 is the �rst with a bridge segment. On expansion to k=3 there is the same
form, with some additional triangles before and after, so on repeated expansion
there is a single such segment in each level.

The bridge in k+1 is not the same segment number as in k. The k bridge
is enclosed by the continuing curve, and the new bridge is the middle of the
middle k sub-curve.
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k bridge
k+1 bridge

Theorem 54. Number segments of the alternate terdragon curve starting from
n=0. The right boundary segments are given by

AltRpredk(n) =

{
1 if FlipOddk(n) has no digit pair 10, 21, 22

0 if any such pair

FlipOddk(n) = n in k many ternary digits, �ip 0↔2 at odd positions

Proof. Take right boundary sub-curves in parts R,M,E similar to theorem 17.

Re Me
Ee Eo

Mo
Ro

Re,Me,Ee are even k sub-curves. They comprise odd k−1 sub-curves in the
conjugate base pattern. Ro,Mo,Eo are odd k sub-curves. They comprise even
k−1 sub-curves in the plain base pattern. Ro has no adjacent sub-curves, like Re
has none, and then Mo and Eo are back from there. Consequently for example
Re goes to sub-curves in order Eo,Mo,Ro for digit 0, 1, 2 respectively.

The expansions give the following state machine of new sub-curve type or
�non� when enclosed and so not right boundary.

Re

Me

Ee

Ro

Mo

Eo

non

non

non

non

start
k even

start
k odd

0 1

2

0 1

2

0,12

0

1
2

01

2

0

1,2

Figure 40:

AltRpredk(n)

state machine,

ternary

high to low

Each successive digit goes alternately to an e or o state. Transitions out of
e or o are the same but digit �ipped 0↔2. e is an even k sub-curve so its next
digit is an odd position. Reckoning those odd positions �ipped for uni�ed R,M,E
states means they are always reached by digit 0, 1, 2 respectively. Transitions to
�non� are then the disallowed pairs 10, 21, 22.
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Some state machine manipulations can make a single starting state, rather
than Re,Ro for k even,odd. This becomes 8 states by what is e�ectively simul-
taneous traversal with accepting or not for when no more digits (or when both
reach non).

Some state machine manipulations or just following the disallowed pairs
gives the following low to high form. This is a single starting state. o states
are an odd number of digits below. o0 is 0 immediately below. o12 is either 1
or 2 immediately below. e states are an even number of digits below, with e01
having either 0 or 1 immediately below and e2 having 2 immediately below.

start

o12

o0

e01e2

non

non

non non

0

1,2

0

1

2

0

1

2

0

1

2

0

1

2

Figure 41:

AltRpred(n)
state machine,

ternary
low to high

A yet further approach is to take base-9 digits. Going high to low is R,M,E
parts expanding per base-9 �gure 39. The start state is R for even k, or an
extra O for odd k and the high digit goes to R,M,E.

R

M

E

O

start k even

start k odd

0,6

4,7

5,8
0

4

5

6

7

8

0 1 2

AltRpredk(n)

state machine,

base-9

high to low

The alternate terdragon is symmetric in 180◦ rotation, so left boundary
segment numbers are the right boundary counted from the end, which means
0↔2 digit reversal. Disallowed pairs are the same by �ipping at even instead of
odd positions,

AltLpredk(n) = AltRpredk(3
k−1− n)

=

{
1 if FlipEvenk(n) has no digit pair 10, 21, 22
0 if any such pair

FlipEvenk(n) = n in k many ternary digits, �ip 0↔ 2 at even positions

For the alternate terdragon continued in�nitely, an in�nite number of high
0 digits can be considered. After one high 0, the AltRpred result is unchanged.
This can be seen in low to high �gure 41 where a 0 goes to �non� from o12 and
otherwise 0s go to and bounce between o0 and e01.

AltRpred∞(n) = AltRpredk(n) for k with 3k > 3n

= 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, . . .
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=1 at n = 0, 4, 5, 6, 7, 8, 36, 40, 41, . . .

AltLpred∞(n) = AltLpredk(n) for k with 3k > 3n

= 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .

=1 at n = 0, 1, 2, 12, 13, 17, 18, 19, 20, . . .

Those n which are AltRpred can be formed from an index m written in
mixed radix ternary low and rest binary, similar to Rn theorem 18. Working
low to high through �gure 41, at each state after the start there are two digits
continuing. For example at o0 either 0, 2. The binary digits choose those two.

The R,M,E states of �gure 40 give a count of how many sides the triangle on
the right of a segment has, like Rsides from (78). This is 1 or 2 for a boundary
segment or 3 for a non-boundary.

AltRsidesk(n) =


1 if AltRpredk(n) state Re or Ro
2 if AltRpredk(n) state Me, Mo, Ee or Eo
3 if AltRpredk(n) state �non�

= 3−AltRpredk(n).[2, 1, 1]n (127)

AltRsides∞(n) = AltRsidesk(n) for k with 3k > 3n

= 1, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, . . .

For (127), the least signi�cant digit of n goes from an o to an e, and those
transitions in �gure 40 are 0 to Re, or 1, 2 to Me,Ee, so n mod 3 determines the
reduction from 3 sides.

Since the number of 1 or 2 side triangles on the alternate terdragon bound-
ary are the same as the terdragon boundary, AltRsidesk is a permutation of
terdragon Rsides and so for example the total is the same as from (80).

As noted above, the alternate terdragon number of single, double and triple
visited points are the same as the plain terdragon. The argument of theorem 28
therefore gives the same Linesk. But the line lengths and arrangement is dif-
ferent.

start

end

d=0

AltLines4(0) = 11

start

end

d=1

AltLines4(1) = 10

start

end

d=2

AltLines4(2) = 10

Figure 42: k=4, total Lines4 = 31

Theorem 55. The number of lines in direction d = 0, 1, 2 ×120◦ of alternate
terdragon k are

AltLinesk(0) =
1
3

(
2k+1 + [1, 2]

)
= 1, 2, 3, 6, 11, 22, 43, 86, 171, . . . A005578

AltLinesk(1) =
1
3

(
2k+1 − [2, 1]

)
= 0, 1, 2, 5, 10, 21, 42, 85, 170, . . . A000975

Draft 15 page 113 of 124

http://oeis.org/A005578
http://oeis.org/A000975


AltLinesk(2) =
1
3

(
2k+1 − [2, 4]

)
= 0, 0, 2, 4, 10, 20, 42, 84, 170, . . . A167030

Proof. Single and double visited points as line endpoints of each direction can
be counted the same as theorem 29 Lines(d). The alternate terdragon expands
by a conjugate then replace. The conjugate reverses directions d, so AltRTS
recurrence in −d and −(d+1).

AltRTSk(d) = AltRTSk−1(−d) + AltRTSk−1(−d−1)

Starting AltRTS0(0)= 1 and AltRTS0(1)=AltRTS0(2)= 0 is then as fol-
lows. Case d ≡ 2 is the Jacobsthal numbers.

AltRTSk(d) =
1
3

2k +


[2, 1] if d ≡ 0

[−1,−2] if d ≡ 1

[−1, 1] if d ≡ 2

 1+2 side triangles by d

AltRTSk(0) = 1, 1, 2, 3, 6, 11, 22, 43, 86, 171, . . . A005578

AltRTSk(1) = 0, 0, 1, 2, 5, 10, 21, 42, 85, 170, . . . A000975

AltRTSk(2) = 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, . . . A001045

Singles and doubles by direction follow from these AltRTS triangles expand-
ing, but with relative directions from the triangles alternating with k,

AltSDk(d) =

k−1∑
j=0

AltRTS j(d+ (−1)j) single, double points by d

= 2AltRTS (k, d) − (2 if d=0)

AltSDk(0 or 1) = 0, 0, 2, 4, 10, 20, 42, 84, 170, 340, . . . A167030

AltSDk(2) = 0, 2, 2, 6, 10, 22, 42, 86, 170, 342, . . . A014113

Then lines from single and double endpoints,

AltLinesk(d) =
1
2

(
AltSDk(d+1) + AltSDk(d+2) + (2 if d=0)

)
AltLinesk(1)=AltLinesk(2) when k even, so the same number of line, but

in general the set of line lengths are not the same. In k=4 �gure 42 they are
the same set of lengths, but for example in k=6 they are not.
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The convex hull around the alternate terdragon is a rectangle with truncated
corners.

k = 5
convex hull

start, 0

AltP1 AltP2

AltEnd

AltP1′AltP2′

−30◦

60◦

−30◦

60◦

k = 6
convex hull

start, 0

AltP1 AltP2

AltEnd

AltP1′AltP2′

−30◦
60◦

−30◦
60◦

Theorem 56. The convex hull around alternate terdragon k≥2 is a 6 sided
polygon comprising curve start, end, and further points

AltP1 k = 1
2 b
(
3bk/2c − 1

)
AltP1 ′k = AltEndk−AltP1 k = AltP2 ′ + 1 (128)

AltP2 k = AltP1 k + 1 AltP2 ′k = AltEndk−AltP2 k = 1
2ω6

(
3dk/2e − 1

)
For k=0 these are the hull points, but AltP1 0=AltP2 ′0=0 and AltP2 0=

AltP1 ′0=1 coincide with curve start and end.
For k=1 these are the hull points, but AltP1 1=0 and AltP1 ′1=b coincide

with curve start and end.

Proof. The hull around curve k is formed from the hulls around its three k−1
sub-curves. The odd and even cases are

start end

−30◦

+60◦

AltP1k AltP2k

k even

start

end

AltP1k AltP2k

k odd
Figure 43:

alternate terdragon

hull sub-curves

AltP1 ,AltP2 shift down along the b line to form k even, or are unchanged
for k odd. Conversely AltP1 ′,AltP2 ′, giving (128).

AltP1 ,AltP2 are horizontal 1 segment apart. They cut o� a half unit triangle
from what is otherwise a rectangle. The rectangle corners are

AltPC k = 1
2 b 3

bk/2c AltPC ′k = AltEndk−AltPC k = 1
2 ω6 3

dk/2e

The hull sub-curves in �gure 43 also give the points which are on the hull
boundary. The side 0 down to AltP1 replicates in k even at a point which is
(1 + ω3)AltEndk−1 = b.3k/2−1. The �rst of these is k=2 at b. So locations
z = m.b where m in ternary is digits 0, 1 only. Similarly by replication, these
are point numbers n with base-9 digits 0, 6 only.
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The side 0 up to AltP2 ′ replicates for k odd. Its �rst replication is k=1 to
ω6. So locations z = m.ω6 where m in ternary has only digits 0, 1, and point
numbers n with base-9 digits 0, 2 only.

The hull extents are at angles −30◦ to +60◦ for total arc 90◦. Adjacent arms
of the curve at 60◦ have 30◦ of interlacing with their adjacent arms before and
after, and 30◦ which is solely the arm itself.

arm −1

60◦

−30◦

arm 1

arm 0, arc 30◦ no interlacing

Moment of inertia of the alternate terdragon rotating about the z axis
(within the x, y plane), at its centre of mass, is the same as the terdragon Iz.
Terdragon theorem 43 applies for any unfold angle, including (by symmetry)
what would be negative angles at odd expansions in the alternate terdragon.

Theorem 57. Consider each segment of the alternate terdragon to have a unit
mass uniformly distributed along its length. The centre of mass is the centre
of the curve. With the x axis aligned to the endpoints, the moment of inertia
tensor about the centre is AltI x −AltI xy 0

−AltI xy AltI y 0

0 0 Iz

 AltI x =
∑
y2 AltI xy =

∑
xy

AltI y =
∑
x2 Iz =

∑
x2+y2

where Iz is from the plain terdragon and the rest are

AltI x(k) =
1

156

(
5.9k − [5, 6].3bk/2c

)
= 0, 1

4 ,
5
2 ,

93
4 , 210,

7569
4 , 34065

2 , . . .

AltI y(k) =
1

156

(
8.9k + [5, 6].3bk/2c

)
= 1

12 ,
1
2 ,

17
4 ,

75
2 ,

1347
4 , 6057

2 , 109017
4 , . . .

AltI xy(k) = −(−1)k .
√
3

156

(
2.9k − [2, 5].3bk/2c

)
=
√
3 .
{
0, 1

12 , −1,
37
4 , −84,

3027
4 , −6813, . . .

}
Proof. Odd k comprises even k−1 sub-parts the same as �gure 28 and mutual
recurrences (114). Even k is odd k−1 sub-parts turning the other way. Working
through those is opposite signs on AltI xy for mutual recurrences

AltI x(k) =
3
2AltI x(k−1) + (−1)k

√
3AltI xy(k−1) + 3

2AltI y(k−1) + 1
89
k−1
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AltI y(k) =
3
2AltI x(k−1) − (−1)k

√
3AltI xy(k−1) + 3

2AltI y(k−1) + 3
89
k−1

AltI xy(k) = (−1)k
(
− 1

2

√
3AltI x(k−1) + 1

2

√
3AltI y(k−1) − 1

8

√
3 .9k−1

)
Principal axes are at

Altα = 1
2 arctan

−2AltI xy(k)

AltI x(k)−AltI y(k)
+ (0 or π2 )

= 1
2 arctan

(
(−1)k 4√

3
− εk

)
+ (0 or π2 )

where εk =
26.[−2, 3].3bk/2c

3
(
3.9k + [10, 12].3bk/2c

)
εk→0 as k→∞ so the limit is term 1

2 arctan
4√
3
. Factor (−1)k is conjugate

negating y when k odd. Taking the fractal as repeated �unpoint�, which means
the even case, limits are

Altαmin → − 1
2 arctan

4√
3

= −33.293387...◦

Altαmax = Altαmin + π
2 → 56.706612...◦

start

end

Altαmin = −33.29...◦

Altαmax = 56.70...◦

−30◦

Altαmin slope
√
3+
√
19

4

The convex hull around the curve has limit rectangle aligned at −30◦.
Altαmin is a little below that. Roughly speaking, there is a little more curve in
the quarters clockwise from it than anti-clockwise.

For the curve scaled to unit length, unit mass, and rotated −Altαmin so that
x axis is the minimum, the inertia limit is 1

24−
1

312

√
57 0 0

0 1
24+

1
312

√
57 0

0 0 1
12


15.1 Alternate Terdragon Graph

The diameter of the alternate terdragon curve as a graph is attained between
curve start and end, and for even k between some additional points. In both
cases all diameter paths cross the middle bridge.

Draft 15 page 117 of 124



start

endk=5

diameter

AltDiameter5
= 19

start

end

hanging
triangles

k=6

diameter

AltDiameter6
= 27Figure 44

Theorem 58. The diameter of the alternate terdragon as a graph is

AltDiameterk =

{
3bk/2c if k even

2.3bk/2c + 1 if k odd

= 1, 3, 3, 7, 9, 19, 27, 55, 81, 163, . . .

Diameter endpoints (ie. vertices with eccentricity AltDiameter , peripheral
vertices) are the curve start and end, and for k even also points on the upper
left and lower right convex hull boundaries and one to the right or left respectively
when a hanging triangle there. The number of endpoints is

AltDiameterEndpointsk =


2 if k=0 or k odd

6 if k=2

5.2k/2−1 if k even ≥ 4

= 2, 2, 6, 2, 10, 2, 20, 2, 40, . . .

Proof. For k even, the claimed AltDiameter is the geometric distance through
the grid. For k odd, it is geometric distance +1, that extra being since the
middle bridge segment crossed is perpendicular to curve start to end.

To see that suitable segments of the curve exist for these distances, for k
even curve start to end is a straight line and remains so on replacement by the
base-9 �gure 39. For points on the diagonal hull boundaries, suppose they exist
in some even k−2, then the �rst half of curve k made from those sub-curves is

start middle

. . .

k−2
�rst half

=⇒

T

Mstart

. . .

k

�rst half

T is a k−2 sub-curve. The hull points in it have lines down to the big triangle.
That triangle has straight sides and is a full grid inside by plane �lling. Then
sub-curve M has the same lines as T.
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The longest of those lines just precedes the sub-curve midpoint, again by
replication. So for k odd, the longest line in the middle sub-curve k−1 goes
down to the �rst sub-curve.

start

end

Mmiddle

To see no other paths attain or are shorter than the claimed AltDiameter ,
when a segment expands twice, new points are at most +2 from an existing,

+1

+2 +2

+1

+2 +2

Figure 45:

new vertices distance

to expanded originals

For paths entirely within the �rst half of the curve, meaning up to and
not including the middle bridge segment, it can be veri�ed explicitly all are
< AltDiameter through to k=4. In k=3,4 those paths are lengths at most 3, 6
respectively. Thereafter on each expansion points are at most +2 each end so
an upper bound

hk = 3hk−2 + 4 starting h3 = 3, h4 = 6

= [ 89 ,
5
3 ] .3

bk/2c − 2 for k ≥ 3

< AltDiameterk

For paths crossing the middle bridge segment, points not a diameter endpoint
are distance ≤ AltDiameter − 1 and on expansion the +2 at that end is new
3.−1+2 = −1 shorter than diameter still. So only new points of �gure 45 which
are ≤+2 from what was an existing diameter endpoint need be considered.

For k odd the only existing diameter endpoint is curve start and end. It
expands

A B C

D

k odd

curve start

expansion

A,B,D are at +1,+2 from the start. D is on the expanded existing diameter
path so is shorter. A,B can go to C. There is a horizontal line there across to
the diameter path, since there is trivially in k=1 and thereafter that line passes
through enclosed triangles underneath the corresponding line of k−2.

For k even,
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T

U

A B

C

D

E
F

G

H I
J K

k even

curve start

expansion

At T, new points A,B are diameter ends per the theorem. C,E are 1, 2
shorter down from A so are not. D is 1 shorter down from T so is not. At S,
the same except its I is not a diameter end because it can go to the right to the
line down from T so 1 shorter.

At U, all of U,E,F,G,K are ≤ 2 from J and that J is −3 on the diameter
path of A, so U,E,F,G,K not diameter ends.

For AltDiameterEndpoints in even k, after k=4 the sets of 5 diagonal points
and extra hanging triangle are replicated. The convex hull around the sub-
curves and the replication locations mean there is no touching of those points
and hanging triangles. Two sets of 5 are shown in �gure 44 sample k=6.

AltDiameterEndpointsk = 2AltDiameterEndpointsk−2 k even ≥ 6

For both k even and odd there are various di�erent paths between diameter
endpoints. For k even the lines can go across as far as the last line before going
down. For k odd the line shown in �gure 44 can variously go up and then across.
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AltTurn, 108
AltTurnLpred , 108
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AltTurnsL count, 109
AltTurnsR count, 109
AR,AL sides area, 45

area, 45
area graph, 99
ASH shortcut area, 63

b base of expansion, 20
B boundary length, 35
binomial sums, 57�58
bit twiddling, 5, 13
boundary segment numbers, 36

left, 40
boundary turn sequence, 44
BSH shortcut boundary length, 63
BT boundary triangles, 34
BT1 ,2 boundary triangles, 34

Cantor dust, 49
centre of gravity, see centroid
centroid, 65

fractal boundary, 67
join, 68

contact triangles, 99
Cpred Cantor dust predicate, 31
cut point, 100

D double-visited points, 51
dir direction, 17
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dNextL, 7
dNextR, 7

E part boundary length, 38
enclosure sequence, 58
EndLength of graph, 91
EpredL enclosure, 59
EpredR enclosure, 59

fBpred fractional boundary, 101
fLpred fractional boundary, 101
fpoint fractional, 99
fRpred fractional boundary, 101
fVisits, 104

GAR right area centroid, 69
GJ centroid of join, 68
GJf centroid of fractal join, 68
GR centroid right boundary, 66
graphs, 91
GRSH centroid shortcut right

boundary, 66
GRT centroid right boundary

triangles, 65
GV centroid V boundary, 66

H hanging triangles, 48
HA convex hull area, 75
Hα hull principal axis angles, 91
HAf hull area limit, 75
Hamiltonian path, 91
HB hull boundary, 75
HBf hull boundary limit, 76
HD maximum distance, 76
HDf hull diameter limit, 77
HI x,y hull inertia, 91
HR hanging triangles one side, 48

Ix,y,z moment of inertia, 88
inertia, 86, 116

J join area, 47
Jacobsthal numbers, 114
JBSH shortcut join length, 65
Jnear , 81
join, 47

centroid, 68
shortcut, 64

Lines, 55
Lines(d) in direction, 56

Ln left boundary segment, 42
Lnear boundary nearest middle,

78
LowestNonTwo, 4
LowestNonZero, 4
Lpred left boundary predicate, 41
LsideNum, 59
Lsides boundary triangle sides, 42

M part boundary length, 38
minimum area rectangle, 82
moment of inertia, see inertia
morphism, 15, 19, 38
MR minimum area rectangle, 83
multiple arms, 62

non-crossing, 3

other , 26

p hull vertex term, 70
P hull vertices, 70
P points, 53
palindrome, 6
plane �lling, 3
PN hull vertex n, 74
point , 21
points, 50
PostDecFix , 13
PostIncFix , 5
principal axes of inertia, 89, 117
pt hull vertex term, 78
PT hull vertices, 79

R right boundary length, 35
Rn boundary segment, 39
Rnear boundary nearest middle,

78
Rpred right boundary predicate,

37
RSH shortcut right boundary

length, 63
RsideNum, 58
Rsides boundary triangle sides, 38
RT right boundary triangles, 34
RT1 , 2 sided right boundary, 35
RTS right 1,2 boundary triangles,

56
Rturn right boundary turns, 44

S single-visited points, 51
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S(k, d) segments in direction, 31
SD single,double points, 57
segments in direction, 31
Sierpinski triangle, 97�98
SM (k, d) segments in direction

relative to middle, 32
SN segments in direction, 33
star-replacement, 95
Stirling numbers, 53, 61

T triple-visited points, 51
TB triple-visited boundary points,

53
threes complement, 30
topological disc, 100
Tperm 10↔20 digits, 50
TTDegCount area tree degrees, 95
TTdiameterEnds, 96
TTdiameterVertices, 97
turn sequence

boundary, 44
shortcut boundary, 64

turn sequence, 4
turn tree, 94
TurnLeft , 10, 19
TurnLpred , 5
TurnRight , 11, 19
TurnRpred , 5
TurnRun, 6
TurnRuns2 consecutive turns, 46
TurnRunStart , 6
TurnsL count, 18
TurnsR count, 18

uncountably in�nite, 103�104
unpoint coordinate, 22

V part boundary length, 36
VisitNum, 62
Visits, 54
VT boundary triangles in V, 34
VT1 , 2 sided V boundary, 35

ω3, ω6, ω12 roots of unity, 2

OEIS A-Numbers

A000007 1 then 0s, 95
A000340 1

4 (3n+1 − 2n− 3), 20
A000392 b 12 (3n−1+1)− 2n−1c, 61
A000918 2n−2, 96
A000975 b 23 2nc, 113, 114
A001045 Jacobsthals, 114
A001047 3n−2n, 45
A002001 d3.4ne, 96
A003462 ternary all 1s, 18, 95
A003945 b 32 2nc, 35, 96
A005578 d 13 2ne, 113, 114
A005823 ternary digits 0, 2, 31
A006342 b 18 (3n+1+5)c, 93
A007949 ternary count low 0s, 108
A011782 2max(0,n−1), 35
A013708 3.9n, 88
A014113 2.round( 1

3 2
n), 114

A020769 1/
(
2
√
3
)
, 64, 81

A023713 base 4 no 2, 5
A024023 3n−1, 46
A024493 sum binomials 0 mod 3, 56
A024495 sum binomials 2 mod 3, 56
A026141 dTurnLeft, 14
A026179 lowest non-0 is 2, 11

A026181 dTurnRight (o�set), 14
A026225 lowest non-0 is 1, 10
A028243 3n−1−2n+1, 51, 53
A029858 1

2 (3n − 3), 96
A038189 bit above lowest 1, 5
A038754 3k and 2.3k, 110
A042950 2 then 3.2n−1, 36
A047926 (3n+1 + 2n+ 1)/4, 20
A048474 3.2n + 1, 97
A048896 2CountOneBits(n)−1, 98
A055246 ternary 0, 2 except lowest 1, 28
A056182 2 (3n−2n), 45
A060236 lowest non-0, 4
A062756 count ternary 1s, 17, 20
A067771 3

2 (3n + 1), 96
A080846 TurnRpred, 4�6
A081606 ternary includes digit 1, 31
A083323 3n − 2n + 1, 62
A086953, 57
A088917 pred ternary digits 0, 2, 31
A092236 num 0◦ segments, 31
A099754 1

2 (3n+1) + 2n, 53
A101990 num middle-relative 0◦

segments, 32
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A111927 −1 + sum binomials 0 mod 3,
56, 57

A126646 2n−1, 55
A131128 1 then 3.2n−4, 53
A131577 0 then 2n−1, 35, 47
A131708 sum binomials 1 mod 3, 56, 57
A131989 dTurnRight, 14�15
A133140 2 then 2n+2, 51
A133162 1 points and 2 rights, 15
A133474 num 240◦ segments, 31
A134063 1

2 (3n+3)− 2n, 54
A135254 num 120◦ segments, 31
A137893 TurnLpred, 5
A155559 0 then 2n, 35
A156595 AltTurnRpred, 108
A167030 round 1

3 2
n − 1, 114

A171977 MaskAboveLowestOne, 5
A189672 TurnsR, 18, 19

A189674 TurnsL, 18, 19
A189715 AltTurnLpred, 108
A189716 alternate terdragon right turns,

108
A189717 AltTurnsR, 109
A190640 ternary 0, 2 with lowest 2, 28
A212832 5/24, 75
A212952 3

16

√
3, 74

A214438 6 periodic, 31
A254006 3k with 0s between, 110
A277547 base 9 lowest non-0, 108
A306556 ternary digits 0,2, +0 and +1,

28
A318609 num middle-relative 240◦

segments, 32
A318610 num middle-relative 120◦

segments, 32
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