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Abstract

Various properties of �nite iterations of the Heighway/Harter dragon
curve and twindragon curve, including boundary, area, convex hull, mini-
mum rectangle, XY convex hull, centroid, inertia, complex base i±1, area
tree, and some properties of the fractal limit including boundary and �xed
point.
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Notation

Bits of an integer written in binary are numbered starting from 0 for the least
significant bit. This is the ``low'' end and the most significant bit(s) are the
``high'' end.

Various formulas have terms going in a repeating pattern of say 4 values
according as an index k ≡ 0 to 3 mod 4. They are written like

[5, 8, −5, 9] values according as k mod 4

meaning 5 when k ≡ 0 mod 4, or 8 when k ≡ 1 mod 4, etc. Likewise periodic
patterns of other lengths, usually at most 8.

Periodic patterns like this can be expressed by powers of −1 or i (or other
roots of unity), but except in simple cases that tends to be less clear than the
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values.
A complex eighth root of unity is used variously for rotations by 45◦, or its

conjugate for −45◦.

0 1

i

−i

−1

ω8 = e
2πi
8 = 1√

2
(1+i) eighth root of unity at +45◦

ω8 = e
−2πi

8 = 1√
2
(1−i) conjugate at −45◦

1 Dragon Curve

The dragon curve by Heighway and Harter is defined as repeated unfolding of a
copy of itself beginning from a unit line segment. Or equivalently an expansion
of each line segment to a pair of segments (per Bruce A. Banks).

unfold expansion
on the right

The unfold makes the new second copy a reversal of the previous level. This
is shown above by the arrow on the new copy directed towards the common
middle.

The segment expansion is on the right side of each segment and the new
segments are then one forward one reverse. Each expands again on the right
for the next level. Every expansion gives pairs one forward, one reverse so the
rule to expand on the right is equivalent to even numbered segments expand
on the right and odd numbered segments expand on the left. The first segment
is number 0 and so is an even segment.

Various sequences and measurements can be reached in two ways, either by
considering the unfolding of the curve or by the expansion of each segment.

When the unfolding or expansion is 90◦, the curve touches itself in level k=4
onwards. In the following diagram, corners are chamfered off to better see the
path taken.

k=0 k=1 k=2

start

k=3

start

k=4

start

k=5

start

k=6

start N=0
at 0, 0

end

N = 26 = 64
at −8i

biggest
blob

Figure 1: dragon curve initial levels

In sample images, the start of the curve can be distinguished from the end
by noticing the sizes of the various ``blobs'' (see section 12) of touching unit
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squares. In k=6, the blob are 1 unit square, 3 squares, then the biggest 6
squares, before a drop to 1 unit square. This size drop, skipping the second
biggest, identifies the curve end.

The supposed resemblance to a dragon (a sea dragon) is described by Gard-
ner [18]. The start of the curve is the tail and the end is the head.

start, tail end, head

k=6 sea dragon after Gardner

(rotated so end is horizontal)

It's possible to unfold or expand on the left instead of the right. Doing so
gives the same curve in mirror image. Expanding on the right has the attraction
that with the initial segment in a fixed direction the curve spirals around anti-
clockwise, the usual mathematical direction.

1.1 Plane Filling

Davis and Knuth [12] show the dragon curve is non-crossing and plane filling,
by a mixture of number representations and geometry.

Theorem 1 (Davis and Knuth). The dragon curve touches at vertices but does
not cross itself and does not overlap itself.

Proof. Consider an infinite square grid with line segments connecting the points.
The direction of each segment alternates so that they point away from an ``even''
point x+y even, and towards an ``odd'' point x+y odd.

Each line segment expands on the right as follows. The corners of the new
lines are chamfered off to show how they touch the expansion of their opposite
right-side line, and do not cross.

=⇒

Figure 2: grid of segments and their expansions

The expanded segments are the same grid pattern rotated by 45◦. The
pattern of arrow directions is the same.

Any subset of the full grid expands to a new bigger set with any crossings
unchanged. The dragon curve begins as a single line segment which is such a
subset with no crossings, and so on repeated expansions has no crossings.
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Edgar[16] with summer program contributors gives a similar proof with the
expansion side going by alternating black and white squares. The curve always
turns 90◦ so does not cross itself unless some segment is repeated (an overlap).
A repeated segment can only occur when two segments at 90◦ expand onto
each other. But a vertical always expands into its black adjacent square and a
horizontal always expands into its white adjacent square, so they do not overlap.

Davis and Knuth make the argument on ``generalized'' dragon curves. A
generalized curve expands to the right side or the left side of the directed seg-
ment according to the expansion level. The plain dragon curve is always on
the right (of each directed segment), or for example the alternate paperfolding
curve is alternately left side and right side. In figure 2, the effect is still oppos-
ing sides expanding together, just the whole grid taken with first a transpose
(mirror image) across a diagonal.

Each pair of expanded line segments can be placed in a 2×1 rectangle. This
is a classical tiling pattern [51].

The squares are divided alternately vertically or horizontally. This is since
the line segment directions alternate in each square so that the right side seg-
ment expansion is either vertical or horizontal.

even odd

Another way to view the tiling is as a pinwheel of rectangles at each point.
Points x+y even have the pinwheel directed clockwise. Points x+y odd have
the pinwheel directed anti-clockwise, which is mirror image.

even odd

The even and odd pinwheels overlap since every line segment which becomes
a 2×1 rectangle goes from an even point to an odd point. Taking just the even
pinwheels gives a pattern like the following. Alternate pinwheels are shaded for
contrast.
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Theorem 2 (Davis and Knuth). Four copies of the dragon curve arranged at
right angles �ll the plane.

Proof. The initial cross expands twice to

Take the central 2×2 block. With four expansions it grows

The dashed square is a 4×4 block at the origin. So each distinct 2×2 grows
to at least 4×4. By repeated expansion, the blocks grow to an arbitrarily large
square at the origin.

Dekking[14] generalizes this type of plane filling to a carousel theorem with
conditions for four-arm plane filling by folding curves on a square grid.

1.2 Turn

Davis and Knuth [12, equation 3.3] show the dragon curve turn sequence is, in
the form +1 left and −1 right, with first turn at n= 1,

turn(2n) = turn(n) even repeat (1)

turn(2n+1) = (−1)n odd alternately L, R (2)

= ++−++−−+++−−+−−+ . . . n≥1 A034947

Per the segment expansion, the next curve level has a new turn inserted
between each existing one. These expansions are alternately on the right and
left so odd turns are alternately left and right which is (2). The alternate side
expansion also means existing turns are unchanged, so (1). (See section 15.4 on
how this pattern falls at locations in the plane.)
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L unchanged

L unchangedunchanged R

L new

new R

L new
new R

. . .

start

turns from
segment expansion,

new alternating,
existing unchanged

A generating function for turn follows from the recurrence. The odd terms
(2) are periodic 0, 1, 0,−1 which is generating function (x−x3)/(1−x4) =
x/(1 +x2). This is the k=0 term in (3). Further turn(2n) are by substitut-
ing x2 for the same there, etc.

gturn(x) =

∞∑
k=0

x2k

1 + x2k+1 (3)

turn can be calculated from n in binary, again for n≥1. High 0s are reckoned
above n so BitAboveLowestOne always has a bit above.

turn(n) =

{
+1 (left) if BitAboveLowestOne(n) = 0

−1 (right) if BitAboveLowestOne(n) = 1
n≥ 1 (4)

BitAboveLowestOne(n) = 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . . n≥1 A038189

The next turn, ie. the turn at point n+1, after segment n, is given similarly
but above the lowest 0-bit. High 0s are reckoned above n so BitAboveLowestZero
always has a 0 and a bit above.

turn(n+1) =

{
+1 (left) if BitAboveLowestZero(n) = 0

−1 (right) if BitAboveLowestZero(n) = 1
n ≥ 0 (5)

turn(n) and turn(n+1) are related simply by n+1 changing low ``0111'' to
``1000'' so

BitAboveLowestZero(n) = BitAboveLowestOne(n+1) (6)

· · · t 1 0 · · · 0n+1

· · · t 0 1 · · · 1n bits, turn per t

The effect of BitAboveLowestOne is to number turns with the first at n=1.
This has the attraction of numbering points 0 to 2n inclusive in an expansion
level.

The effect of BitAboveLowestZero is to number turns with the first at n=0.
n=0 is treated as entirely zeros so BitAboveLowestZero(0) = 0.

For computer calculation in a single machine word, the bit extractions can
be done by some usual bit-twiddling. For example,

MaskAboveLowestOne(n) = BITXOR(n, n−1) + 1 n ≥ 1 (7)

= 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 32, ... A171977
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BitAboveLowestOne(n)=

{
0 if BITAND(n,MaskAboveLowestOne(n)) = 0

1 if BITAND(n,MaskAboveLowestOne(n)) 6= 0

n−1 changes low zeros ``...1000'' to ``...0111'' and XORing the two gives
``0001111'' which is a mask up to and including the lowest 1-bit. +1 gives
``0010000'' which is a mask for the single bit above the lowest 1.

Arndt [3] gives similar in C with a negation (twos-complement negation)
MaskAboveLowestOne(n) = (n&-n)<<1 for the same result.

This bit-twiddling uses carry propagation in the CPU adder to locate the
lowest 1-bit. It's common for the adder on a single machine word to be faster
than a count-trailing-zeros and test-jth-bit.

Per for example Jeremy Gardiner in OEIS A034947, the turn sequence is
also Kronecker symbol

(−1
n

)
. That symbol identifies quadratic residues. For

−1, its value is ±1 according to bit above lowest 1-bit of n, which is the same
as the turn sequence.(

−1

2km

)
= (−1)

m−1
2 Kronecker symbol, m odd ≥ 1

turn(n) =

(
−1

n

)
As noted by Davis and Knuth [12, equation 3.4], turn(n) is multiplicative

(like the Kronecker symbol is too).

turn(m.n) = turn(m). turn(n) multiplicative any m,n

This follows from recurrence (1), or bits (4). Trailing 0-bits on m and n add
in the product. The odd parts are then ≡ 1 or 3 mod 4 which is ±1 mod 4 and
so m and n multiply the same as their turn ±1. For Kronecker symbol (−1/n),
any factors of 2 in n are ignored since it has (−1/2) = +1.

A predicate for right turns is BitAboveLowestOne, and left turns its opposite.

TurnLpred(n) = n≥1 and 1− BitAboveLowestOne(n)

= 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, . . . A014577

TurnRpred(n) = n≥1 and BitAboveLowestOne(n)

The ``regular paperfolding sequence'' is the lefts TurnLpred ,

Paper(n) = TurnLpred(n) n ≥ 1

Mendès France and van der Poorten [36] form ``paperfolding numbers'' in a
given radix by writing the paperfolding sequence as digits below a radix point.
For base 2 (ie. a binary fraction), this is the paperfolding constant. They show
paperfolding numbers are transcendental in any algebraic radix.

PaperConst =

∞∑
n=1

Paper(n)

2n
(8)

= .110110011100100 . . . binary A014577

= .850736188 . . . decimal A143347
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A generating function for TurnLpred is formed by considering those n with
k many low 0 bits,

· · · any h · · · 0 1 0 · · · 0

k

n = 2k + h.4.2k (9)

gTurnLpred(x) =

∞∑
k=0

x2k

1− x4.2k

1/(1−x4.2k) is a generating function with 1 at multiples of 4.2k. Multiply
x2k to add 2k giving 1 at all n = 2k + h.4.2k. If a generating function for an
initial part of the sequence is required then stopping at k suffices for n < 2k+1

where the next term would begin (k+1 and h=0).
PaperConst is then gTurnLpred evaluated at 1

2 . This is the form given by
Finch [17],

PaperConst = gTurnLpred
(

1
2

)
=

∞∑
k=0

1

22k
· 1

1− 1

22k+2

Sum of just 1/22k would be the Kempner-Mahler number ahead at (23). The
further factor rapidly approaches 1 but makes a much different limit. Paper-
folding numbers in other radices are other 0 < |x| < 1 in gTurnLpred .

A generating function for TurnRpred is formed in the same away, but bits
``11'' in (9), so factor 3 in the exponent

gTurnRpred(x) = gBitAboveLowestOne(x) =

∞∑
k=0

x3.2k

1− x4.2k
(10)

This is a generating function for BitAboveLowestOne too. The constant term
is 0 which reckons BitAboveLowestOne(0) = 0 where n=0. This is a reasonable
definition since n=0 certainly has no 1-bit to be the result bit. Again if a
generating function for an initial part of the sequence is required then stopping
at k suffices for n < 3.2k+1 where the next term would begin.

Another way to think of these generating functions is from low to high by
what happens for a new low bit on n. When 0 is appended, BitAboveLowestOne
is unchanged. When 1 is appended, that bit is the lowest 1 so the second lowest
bit is the result.

BitAboveLowestOne(2n) = BitAboveLowestOne(n)

BitAboveLowestOne(4n+ 1) = 0

BitAboveLowestOne(4n+ 3) = 1

So start from g0(x)=0 as BitAboveLowestOne for n<3, then spread to 2n by
substituting x2 and add x3/(1− x4) which is 1s at all 4m+3. This substitution
is like gturn (3).

gj+1(x) = gj(x
2) +

x3

1− x4

gj+1 is good for twice as many n as gj . Expanding repeatedly this way gives
gj as sum (10) up to k = j−1 inclusive and good for n < 6.2k.
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gturn at (3) is difference gTurnLpred − gTurnRpred after cancelling common
factor 1−x2.2k from numerator and denominator.

gturn(x) = gTurnLpred(x)− gTurnLpred(x) =

∞∑
k=0

x2k − x3.2k

1− x4.2k

Another sum can be made using turn as signs in a harmonic series 1/n,

∞∑
n=1

turn(n)

n
=
π

2
(11)

Odd turns n = 2m+1 alternate ±1 per (2) so give Gregory's series for π/4,
and which is the Taylor series for arctan(1) per Leibniz,

∞∑
m=0

(−1)m

2m+ 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
+ · · · = arctan(1) =

π

4

Terms with exactly k low 0-bits are these same terms scaled by /2k so
(π/4)/2k and total (π/4).(1 + 1

2 + 1
4 + · · · ) = π/2.

Adding terms for each k into the sum is a convergent series inserted at
regular intervals into another convergent series. Or an explicit convergence
calculation can be made by differences from the subseries limits. Each subseries
alternates, so each difference is bounded by the magnitude of the previous term.
At n = 2d+1−1, previous terms 0≤ k≤ d are each ≤ 1/2d and those k not yet
seen are at most 1/2k each so a simple total bound (d+1)/2d +

∑
k>d 1/2k =

(d+2)/2d → 0.
An integral of gturn(x) down-shifted is denominators n the same as (11),∫ 1

0

1

x
gturn(x) dx =

π

2

1.2.1 Turn State Machine

A state machine for BitAboveLowestOne (= TurnRpred) on bits of n from low
to high can look for the lowest 1 and then the next bit is the result. Albers
[2, figure 7.3 page 106, results L,R] gives the following form. This is simple
but allows usual state machine manipulations to mechanically answer questions
about intersections, consecutive terms, etc.

ST

0

1

start

0
1

0

1

0,1

0,1

Figure 3:

BitAboveLowestOne

by bits of n

low to high

n=0 has no 1-bits so remains in state S. It can be taken as result 0 in the
way noted after (10). State T is result 0 by reckoning high 0s above n.

To instead take bits of n high to low, the state must remember the result
bit so far, and the lowest bit (the bit just seen). The lowest bit becomes the
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new result bit if the next bit of n is 1. The following is equivalent to Albers
[2, figure 7.5 page 107].

00

01

10

11

start

0

10

1

0

1
0

1

BitAboveLowestOne = 0 BitAboveLowestOne = 1

Figure 4:

BitAboveLowestOne

by bits of n

high to low

These states can be numbered or labelled arbitrarily. The form above is
result bit and least significant bit, so two bits picked from n.

BitAboveLowestOne n mod 2state = (12)

Each 0 transition goes to a top row x0, and each 1 transition goes to a
bottom row x1.

Carpi [8, lemma 3.2] forms a family of bi-infinite words based on n written
in a base pm+1. Term an is the two digits from n above any low 0 digits, plus
p2(m+1) if there are one or more such 0 digits. n=0 is entirely 0 digits and Carpi
defines a0 = p2(m+1) + 1. For the case p=2 and m=0, this is the lowest 1-bit
of n and the bit above it, and +4 if n even. This is equivalent to (12) suitably
re-numbered ((14) below).

an =


5 if n= 0

n mod 4 if n odd

4 + (OddPart(n) mod 4) if n 6= 0 even

(13)

= 5, 1, 5, 3, 5, 1, 7, 3, 5, 1, 5, 3, 7, 1, 7, 3, . . . n≥0 A122002

OddPart(n) = n/2CountLowZeros(n)

= 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, . . . n≥1 A000265

At (13), mod 4 is understood as remainder 0 to 3. So odd n is an=1 or 3
alternating, and even n is an = 5 or 7 according to BitAboveLowestOne (and it
taken as 0 when n=0),

an = 2BitAboveLowestOne(n) + 1 + (4 if n even)

= n+1 mod 2 BitAboveLowestOne 1bits

= 5, 1, 7, 3 according as state 00, 01, 10, 11 in figure 4 (14)

Carpi gives a morphism h which for p=2,m=0 is as follows and is equivalent
to the high to low state machine figure 4 with states labelled per (14).

1→ 5, 3 3→ 7, 3 5→ 5, 1 7→ 7, 1 starting from 5

Carpi shows subsequences formed by taking every k'th term are square-free
(no repeat block E E for E of any length) when k not a multiple of p, so for p=2
here k odd. This includes k=1 so the whole sequence is an alternating parity
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square-free infinite word, where parity means odd or even state machine labels
or in Carpi's form is alternately an<4 (at odd n) versus an>4 (at even n).
Every odd k'th term for k > 1 alternates this same way.

Baker, McNulty and Taylor [4] have an equivalent among their family of
words Ωm,z too. Case Ω2,1 (OEIS A112658) is a morphism with values 0, 1, 2,
3 for states 01, 00, 11, 10 in figure 4 (flip the low bit). They too show this is a
square-free word.

Kao et al[27] show that all generalized paperfolding sequences with a change
of ``parity'' applied to every second term (so making 4 values) are odd k'th term
square-free, again including k=1 for the whole sequences. Their form of Carpi's
construction uses values 1, 2, 3, 4 for states 00, 01, 11, 10 in figure 4, so numbered
anti-clockwise around (OEIS A125047).

1.2.2 Turn Run Lengths

turn recurrence (1) gives lengths of turn runs. The odd turns L, R are parts
of runs of turns. The turn between each is the same as one or the other, so
forming runs of lengths 1, 2 or 3, as shown by Bates, Bunder and Tognetti [5].
All these lengths occur in curve k=4 and repeat by unfolding so that all occur
infinitely.

t1

L

run
m=0

R

run
1

t2

L

run
2

t3

R

run
3

t4

L

run
4

t4

R turn(2n+1)

turn(2n)

Figure 5: turn runs

Counting the first run as m=0, the run lengths of the curve continued in-
finitely are, using turn,

TurnRun(m) =


2 if m=0 (lefts)

2− 1
2

(
turn(m) + turn(m+1)

)
if m even ≥2 (lefts)

2 + 1
2

(
turn(m) + turn(m+1)

)
if m odd (rights)

(15)

= 2, 1, 2, 2, 3, 2, 1, 2, 3, 1, 2, 3, 2, 2, . . . A088431

gTurnRun(x) = − 1
2 +

2

1−x
+ 1

2

(
1− 1

x

)
gturn(−x)

= −1 +
2

1− x
+

1− x
1− x4

+ (1−x)

∞∑
k=1

x3.2k−1

1− x4.2k
(16)

For a curve of finite k, the run lengths instead end with a final 1 which is
an unfold of the initial 1.

The generating function sum (16) starts k=1 to take term /(1−x4) out of
sum (3). The alternating gturn(−x) negates that term since it has numerator
x3. In further terms, powers are all even so are unchanged by −x.

The pairs of consecutive turns in (15) can be written

TurnRun(m) =

{
2 if m=0

2 + (−1)m 1
2sturn(m) if m ≥ 1

sturn(n) = turn(n) + turn(n+1) (17)
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= turn(dn/2e) + (−1)bn/2c (18)

= 2, 0, 0, 2, 0,−2, 0, 2, 2, 0,−2, 0, 0,−2, 0, 2, . . . n≥1

For (18), a pair of integers n and n+1 is one odd and one even. turn for
the odd one alternates 1,−1 and the even one is the t turn in between as in
figure 5. Floor and ceil in (18) combine them. Pairs of consecutive turns like
this occur in the midpoint curve too, ahead in section 10.

The equivalent to sturn in terms of bits is sum of the two ``aboves'',

sBitAboveLowest(n) = BitAboveLowestOne(n) + BitAboveLowestZero(n)

(19)

= BitAboveLowestOne(n) + BitAboveLowestOne(n+1)

= BitAboveLowestOne(
⌈n

2

⌉
) + SecondLowestBit(n)

= 0, 1, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 1, 0, . . . n≥1

SecondLowestBit(n) = 0, 0, 1, 1, 0, 0, 1, 1, . . . n≥0 A021913

gsBitAboveLowest(x) = (1 + x)

∞∑
k=0

x3.2k−1

1− x4.2k
(20)

TurnRun(m) =

{
2 if m=0

2 + (−1)m
(
1− sBitAboveLowest(m)

)
if m ≥ 1

(21)

At (19), the lowest bit of n is either 0 or 1 so the second lowest bit is either
the Zero or One, and no effect on the other. So cases,

sBitAboveLowest(n) =


BitAboveLowestOne(n) if n ≡ 0 mod 4

BitAboveLowestZero(n) if n ≡ 1 mod 4

BitAboveLowestOne(n) + 1 if n ≡ 2 mod 4

BitAboveLowestZero(n) + 1 if n ≡ 3 mod 4

or with (6) for Zero in terms of One,

sBitAboveLowest(n) =


BitAboveLowestOne(n) if n ≡ 0 mod 4

BitAboveLowestOne(n+1) if n ≡ 1 mod 4

BitAboveLowestOne(n) + 1 if n ≡ 2 mod 4

BitAboveLowestOne(n+1) + 1 if n ≡ 3 mod 4

(22)

= BitAboveLowestOne
(
n+ LowestBit(n)

)
+ SecondLowestBit(n)

The effect of (21) and these various bit combinations is that TurnRun(m)
is determined by 3 bits extracted from m,

. . . h 6=l l...l s lm = binary, m ≥ 1

high low
≥ 1 bits Figure 6
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TurnRun(m) =


2 if m=0

3, 1, 2, 2, 2, 2, 1, 3 for hsl = 000, 001, 010, . . . , 111

respectively (as 3-bit numbers)

In figure 6, l is the lowest bit, s is the second lowest, and then h is above
the lowest bit 6= l. If s 6= l then h is immediately above s (the third lowest bit),
otherwise bits = l are skipped until finding 6= l.

Bits of m+1 can be considered in a similar way, with pattern h10...0s′ l′

and h is above the lowest 1-bit excluding low l′ but including s′. This suits
if indexing TurnRun so that the first run is at index 1 rather than m=0 as
here (and the general case starting from m+1 = 2). In this form, h is the same
position and value, l′= 1−l is opposite, and s′ = s or 1−s according as l= 0,1.

Bates, Bunder and Tognetti [5] show that runs of length 1 are located at
n ≡ 3 mod 16 for a single R and n ≡ 13 mod 16 for a single L. These are turn
sequences LRL or RLR respectively. These 3 and 13 mod 16 are not consecutive
so the longest stair-step in the curve is just 4 segments.

L

R
L

R run length 1

sequence LRL,

n ≡ 3 mod 16

Prodinger and Urbanek[43] consider BitAboveLowestOne (= TurnRpred) as
an infinite word of 0,1 symbols. They show it has bounded repetition so subword
repeats ww do not occur for w of length ≥ 6, nor of length 4. Their argument
can be adapted in a simple way to show no length 2 too, since ww positioned
anywhere has one w containing an n≡ 1 mod 4 and the other w containing an
n≡ 3 mod 4, but those BitAboveLowestOne = 0, 1 respectively, so different.

Repeats ww with w length 1 occur, being simply consecutive turns (each
TurnRun ≥ 2). A length 3 repeat can be seen at the start of n= 1 to 7 and a
length 5 within n= 1 to 15. Unfolding then gives infinite occurrences of these
lengths.

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1

3 3

5 5

BitAboveLowestOne(1...15)

repeat subwords

lengths 3 and 5

Shallit[48] and Kmo²ek[30] show that taking the run lengths with each term
doubled, an extra initial 1, and then used as continued fraction terms gives the
Kempner-Mahler number, a sum of powers of powers of 2 of a type Kempner
[28] had shown is transcendental.

KM cfracj =


0 if j=0 (the integer term)

1 if j=1

2TurnRun(j−2) if j ≥ 2

= 0; 1, 4, 2, 4, 4, 6, 4, 2, 4, 6, 2, 4, 6, 4, 4, 2, 4, . . . A007400
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0 +
1

1 +
1

4 +
1

2 +
1

4 + · · ·

= KM =
1

2
+

1

4
+

1

16
+

1

256
+ · · ·+ 1

22k
· · ·

= 0.81642150 . . .

= 0.11010001 . . . binary

(23)

A007404

A036987

Continued fraction terms t0, t1, . . . are descents down the Stern-Brocot tree
of rationals by t0 many levels left, t1 many right, and so on, alternating left
and right. Continued fraction terms which are in fact run lengths are therefore
successive descents left or right according to the original sequence, in this case
the dragon curve turn sequence with each value taken twice.

Stern-Brocot tree

descend 2 levels

in the direction of

each dragon turn

1/1

1/2
initial
left

2/3

3/4

turn(1)
= +1

4/5

5/6

turn(2)
= +1

9/11

13/16

turn(3)
= −1

22/27

31/38

turn(4) = +1

→ 0.81642150 . . .
= KM

The tree here is drawn across the page. A left descent is downwards and
a right descent is upwards. The initial 1 in the continued fraction goes to 1/2
and that is the starting point for the turns.

At each fraction, descent is to the right (the larger child) if dragon turn =
+1. Descent is to the left (the smaller child) if turn = −1. For example 1/2 has
children 1/3 and 2/3. Since turn(1) = +1 go to 2/3. Take two such descents
for each dragon turn value.

Any binary sequence can be taken as directions down the Stern-Brocot tree
like this. At a given node, the values in all deeper nodes are within a wedge-
shaped area. The children divide that into non-overlapping smaller wedges,
so any descent sequence converges towards some constant. Per Shallit and
Kmo²ek, the dragon turns duplicated converge on an attractive sum of powers.

A predicate for the n which is the start of a turn run is

TurnRunSpred(n) =

{
1 if n=1 or turn(n−1) 6= turn(n)

0 otherwise

=

{
1 if n=1 or turn(bn/2c) = (−1)dn/2e

0 otherwise
(24)

= 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, . . . n≥1 n≥2 1−A090678

Form (24) is by considering cases n odd or even. Each pair of even 2j, 2j+1
has the run start as one of the two. The odd turn is (−1)j and the (−1)dn/2e

expression gives opposites at 2j and 2j+1 to compare.
Different consecutive turns are where sturn = 0 so that, and the equivalent

using sBitAboveLowest ,

TurnRunSpred(n) = 1−
∣∣sturn(n−1)/2

∣∣ for n ≥ 2
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= sBitAboveLowest(n−1) mod 2 for n ≥ 2

The sequence of those n which are the start of a run, TurnRunSpred(n) = 1,
follows from the odd/even cases too. Counting the first run as m=0, each odd
turn is at n = 2m+1 but if preceded by the same turn then its run starts 1
earlier. This can be written as an expression (26).

TurnRunStart(m) = 1 +

m−1∑
j=0

TurnRun(j) (25)

=

{
2m if m≥1 and turn(m) = (−1)m

2m+ 1 otherwise

=

{
1 if m=0

2m+ 1
2 −

1
2 (−1)mturn(m) if m ≥ 1

(26)

= 1, 3, 4, 6, 8, 11, 13, 14, 16, 19, 20, 22, 25, . . .

For the sum at (25), the TurnRun at (15) has turn in pairs with alter-
nating signs. They cancel out leaving just 1

2 turn(1) = 1
2 at the start and

−(−1)m 1
2 turn(m) at the end, per (26).

1.2.3 Turn m'th

Theorem 3. The m'th left or right turn point n is given by mutual recurrences,
with the �rst turn index m=0,

TurnLeft(m) =


1 if m = 0

2k+1 if m = 2k

2k+2 − TurnRight(2k+1−1−m) if m > 2k
(27)

where 2k ≤ m < 2k+1, so k is high 1-bit position in m

= 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, . . . A091072

TurnRight(m) = 2k+2 − TurnLeft(2k+1−2−m) (28)

where 2k−1 ≤ m < 2k+1−1 (29)

= 3, 6, 7, 11, 12, 14, 15, 19, 22, 23, 24, 27, . . . A091067

Proof. In an expansion level k, there are 2k segments and 2k − 1 turns between
them. For k≥ 1, there are 2k−1 are lefts and 2k−1− 1 rights. This follows from
the unfolding since the turn between the unfolding is left so lefts in the next
level are lefts + 1 + rights and the rights are lefts + rights.

Expansion level k+2 unfolds as sub-parts level k+1,

O L

L

part 0

part 1

m = 2k+1

m = 2k

TurnLeft parts
k+2, sub-parts k+1
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The L at the unfolding is n = 2k+1. Its m is the number of L preceding,
which is 2k when k≥ 1 and so that case at (27).

Bigger m are in curve part 1 shown, which by unfolding is a reverse curve.
The right turns in the plain curve become left turns in the unfold, and hence
TurnRight there, with index reversed 2k+1−1 −m so that m = 2k+1 becomes
the last right at 2k−1 − 1. And the point n back from n = 2k+2.

Likewise TurnRight , but there are 2k−1 rights preceding the unfold and
hence the m range at (29). The unfold is then back from n = 2k+2 again.

Sequence TurnLeft(m)− 1 is segment numbers n where the turn at the end
of the segment is left, and similarly TurnRight(m)− 1,

TurnLeft(m)− 1 = 0, 1, 3, 4, 7, 8, 9, 12, . . .

TurnRight(m)− 1 = 2, 5, 6, 10, 11, 13, 14, 18, . . . A255068 (30)

Or TurnLeft(m) + 1 is points n where the previous turn is left, similarly right,

TurnLeft(m) + 1 = 2, 3, 5, 6, 9, 10, 11, 14, . . .

TurnRight(m) + 1 = 4, 7, 8, 12, 13, 15, 16, 20, . . . A060833

Theorem 4. n = TurnLeft(m) can be calculated by the following bit procedure

n ← 2m and t← 1

for each bit position high to low in n

if bit = t then n ← n− 1 and t ← 1− t
n ← n+ 1 (31)

And n = TurnRight(m) can be calculated by the following bit procedure

n ← 2m+2 and t← 1

for each bit position high to low in n

if bit = t then n ← n+ 1 and t ← 1− t

The bit tested at each bit position is in the successively modified n. t is an
alternating target bit value sought.

Proof. These procedures are implicit in the recurrences of theorem 3. For
TurnLeft , it's convenient firstly to consider its second half as left turns in a
reverse curve (instead of right turns counted from the end).

TurnLeft(m) =


1 if m = 0

2k if m = 2k−1

2k + TurnLeftRevk(m− 2k−1 − 1) if m > 2k−1

(32)

where 2k−1 ≤ m < 2k

TurnLeftRevk(m) =

{
TurnLeft(m) if m < 2k−2

2k−1 + TurnLeftRevk−1(m− 2k−2) if m ≥ 2k−2
(33)

for k≥ 2 and m in the range 0 ≤ m < 2k−1 − 1 (34)

k=2 = 1
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k=3 = 1, 2, 5

k=4 = 1, 2, 4, 5, 9, 10, 13

In general, a given level reverse curve is not a prefix of the next level reverse
curve, so TurnLeftRev is for a particular k. Its m range is the number of left
turns there, which is the number of right turns in the forward curve. At (32),
the TurnLeftRev case is when 2k−1 <m< 2k which means k≥ 2 as required at
(34).

The TurnLeft procedure starts from 2m. Consider a TurnLeft2 which takes
2m, and a TurnLeftRev2 which takes 2m+1,

TurnLeft2 (p) = TurnLeft(m) where p = 2m

TurnLeftRev2 k(p) = TurnLeftRevk(m) where p = 2m+1

Then (32),(33) become

TurnLeft2 (p) =


1 if p= 0

2k if p = 2k

2k + TurnLeftRev2 k(p− 2k − 1) if p > 2k
(35)

for p even in the range 2k ≤ p < 2k+1

TurnLeftRev2 k(p) =

{
TurnLeft2 (p− 1) if p < 2k−1

2k−1 + TurnLeftRev2 k−1(p− 2k−1) if p ≥ 2k−1
(36)

for k≥ 1 and p odd in the range 1 ≤ p ≤ 2k+1 − 3

The effect of the procedure is to hold the result so far in the high bits of n,
and p in the low bits.

result pn = binary

khigh low

t=1 is when within TurnLeft2 (35). Its case p=0 is all 0-bits in p so that
t=1 is not found by the procedure and there are no more changes to n. Result
1 for this case is the final n+1 at (31).

Case p= 2k is bit t=1 found, and the decrement goes to bits 011...11. The
procedure continues with t=0 which is not found in those 1s so no further change
to n. The final n+1 at (31) adds back the decrement so as to give 2k as required.

Case p > 2k takes the bit from p, puts it to the result, and decrements p.
Since p is not 2k, it has at least one further 1-bit where any borrow from that
subtract will stop, so the 2k bit is unchanged in the combined n.

The TurnLeftRev2 cases at (36) consider a p of k bits and whether its high
bit 2k−1 is 0 or 1. A 0-bit returns to TurnLeft2 with a decrement of p. Since
p is odd, this decrement simply clears the least significant bit to 0. A 1-bit at
2k−1 is moved from p to the result.

TurnLeftRev2 always returns to TurnLeft2 eventually since it is for p 6=
2k+1− 1 so has at least one 0-bit.

The two TurnLeft2 and TurnLeftRev2 are thus bit t= 1 or 0 sought alter-
nately and decrement of n when found.
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For TurnRight , similar holds. Firstly TurnRight in terms of right turns in
a reverse curve,

TurnRight(m) = 2k + TurnRightRevk

(
m− (2k − 1)

)
where 2k−1 ≤ m < 2k+1−1

TurnRightRevk(m)=


TurnRight(m) if m<2k−2−1

2k−1 if m=2k−2−1

2k−1+TurnRightRevk−1

(
m−(2k−2−1)

)
if m>2k−2−1

for k≥ 1 and m in the range 0 ≤ m < 2k−1

k=1 = 1

k=2 = 2, 3

k=3 = 3, 4, 6, 7

Then TurnRight2 and TurnRightRev2 on a doubled m,

TurnRight2 (p) = TurnRight(m) where p = 2m+2

TurnRightRev2 k(p) = TurnRightRevk(m) where p = 2m+1

with mutual recurrences

TurnRight2 (p) = 2k + TurnRightRev2 (p− 2k + 1)

for p even in the range 2k ≤ p < 2k+1

TurnRightRev2 k(p) =


TurnRight2 (p+ 1) if p< 2k−1 − 1

2k−1 if p= 2k−1 − 1

2k−1 + TurnRightRevk−1(p−2k−1) if p≥ 2k−1

for k≥ 1 and p odd in the range 1 ≤ p ≤ 2k

In the procedure, t=1 is when in TurnRight2 . There bit 2k moves from p
to the result, p increments, and go to TurnRightRev2 . Since p is even, this
increment simply sets the lowest bit.

In TurnRightRev2 , each high 1-bit at 2k−1 moves from p to the result. A
high 0-bit is go back to TurnRight with an increment, except for case p =
2k−1 − 1 which is bits 011...11. The procedure increments that to 100...00 and
seeks a 1-bit among the 0s, which there is none, so no further change and so the
desired 2k−1.

Finding alternating t= 1 or 0 (in the successively modified n) in the proce-
dures is almost the same as finding 01 or 10 pairs, but not quite. In TurnLeft ,
the case 2k at (35) decrements to 011...11 which would be a further 01 and
an unwanted decrement. Similarly in TurnRight2 case 2k−1 which increments
to makes a 10. Both can be made to work by checking for the increment or
decrement changing bit k and stop the loop when that happens. A separate t
seems easier.

Both TurnLeft and TurnRight are close to 2m. The procedures make in-
crements or decrements from there, or roughly speaking since there are 2k and
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2k−1 of each in expansion level k+1 so about half each turn. Offsets from 2m
can be expressed

TurnLeftOff (m) = 2m− TurnLeft(m) (37)

= −1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 2, 3, 1, 2, 1, 0, . . .

TurnRightOff (m) = TurnRight(m)− 2m

= 3, 4, 3, 5, 4, 4, 3, 5, 6, 5, 4, 5, 4, 4, 3, 5, 6, . . .

Substituting into (27),(28) gives mutual recurrences

TurnLeftOff (m) =


−1 if m=0

0 if e=0

TurnRightOff (2k−1− e) − 2 otherwise

where m = 2k + e, with 0≤e<2k

TurnRightOff (m) = TurnLeftOff (2k−1− e) + 4

where m = 2k−1 + e, with 0≤e<2k

2k+e takes a high bit, then the reversal is a bit flip so the descent into
the opposite Left/Right finds the next 0-bit below. The recurrences can be
expressed staying in left or right by taking a high run of 1s from m or from
m+1 for right.

1 1 . . . 1 0 . . .

ek l

high low

high run of 1s of m (or m+1)

bit positions 0 lowest

TurnLeftOff (m) =



−1 if m=0

0 if e=0 and k = l+1

1 if e=0 and l = 0, m ≥ 3

2 if e=0 and l = 1, m ≥ 6

3 if e=0 other

TurnLeftOff (e−1) + 2 otherwise

(38)

where m = 2k − 2l + e, with 0 ≤ e < 2l−1

TurnRightOff (m) =


3 if l = 0

4 if e = 2l−1 − 1

TurnRightOff (e) + 2 otherwise

where m+1 = 2k − 2l + e, with 0 ≤ e < 2l−1

The cases for left (38) are bit patterns 10...0 single bit, 1...1 all 1s, 1...10
single low 0. In both left and right, the recurrence descends with −1 on the new
m. In the lefts, this is e−1. In the rights, this is since e is formed from bit run
on m+1.

See ahead at (57),(58) for new highs in the offsets.

Increments between successive turns L or R are

dTurnLeft(m) = TurnLeft(m+1)− TurnLeft(m)
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= 1, 2, 1, 3, 1, 1, 3, 3, 1, 1, 2, 1, 4, 1, 3, 3, 1, . . . A088742

dTurnRight(m) = TurnRight(m+1)− TurnRight(m)

= 3, 1, 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, 4, 3, 1, . . . A106836

The expansions in figure 5 show steps are always 1, 2, 3, 4.
The dTurnLeft sequence follows from the turn sequence by a mapping of

turn pairs, starting at the start of the turn sequence, so that the first of each
pair is an odd n.

LL→ 1, 2, 1 LR→ 1, 3 RL→ 3, 1 RR→ 4 (39)

This is since the turn sequence expands with alternate L or R preceding each
existing turn. So a pair of turns n, n+1 where n is odd get new L,R,L as follows.

L R L
L L

1 2 1

L R L
L R

1 3

L R L
R L

3 1

L R L
R R

4

new turns
existing turn

Pairs of turns expand as follows. These are the above groups of 5, without
the final L of each.

LL→ LLRL LR→ LLRR RL→ LRRL RR→ LRRR starting LL

Substituting (39) into this gives a morphism for dTurnLeft

121→ 12131 13→ 1214 31→ 1331 4→ 134 starting from 121

This expansion is unambiguous since 2 occurs only in 121 triplets and taking
those 121s leaves each 3 with an untaken 1 either before or after but not both.
The expansions put each 3 in the middle of new terms, not at the start or end,
so no need to consider what might be before or after an originating term.

The m'th increment can be expressed by mutual recurrences,

dTurnLeft(m) =


1, 2 if m = 0, 1

1 if e = 0

3 if e = 2k−1

dTurnRight(2k−2− e) otherwise

where m = 2k + e, with 0≤e<2k and m ≥ 2

dTurnRight(m) =


3 if m = 0

4 if e = 2k−1

dTurnLeft(2k−2− e) otherwise

where m = 2k−1 + e, with 0≤e<2k and m ≥ 1

In curve unfolding, the direction reverses so the two turns which are the step
swap position. This makes it necessary to descend to 1 smaller 2k−2 − e back
from the end, to stay across the same step.

In these recurrences, nothing is accumulated, just descend down m by un-
folds until reaching one of the 1, 2, 3, 4 cases.
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dTurnLeft can also be calculated using the TurnLeft procedure to find n
where the step will start and then a dNextL(n) for the step there.

Theorem 5. The o�set dNextL(n) from any point n to the next left turn n is
given by the low bits of n of the following patterns, where 1 means zero or more
1-bits. High 0-bits are understood on n where needed to match.

dNextL(n) =


1 if n = ...001

2 if n = ...00110 or ...10111

3 if n = ...001101 or ...10110

4 if n = ...101101

And dNextR o�set to the next right turn,

dNextR(n) =


1 if n = ...101

2 if n = ...001 or ...100

3 if n = ...000 or ...0011

4 if n = ...001111

(40)

dNextL(n) = 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, . . .

dNextR(n) = 3, 2, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 2, 1, 1, 4, . . .

Proof. Bates, Bunder and Tognetti [5, section 4] show the forms of n which are
the first of each run of 1, 2 or 3 consecutive L or R in the turn sequence. (They
work with TurnLpred = 1,0.) For dNextL, the n immediately preceding a run
of 2 rights is dNextL=3 to step past them, or the first n of such a run is dNextL
= 2, and the n of the second is dNextL = 1. Similarly runs of 1 and 3, and right
and left vice versa.

Second Proof of Theorem 5. A mechanical approach can be made using the
state machines for TurnRpred in figure 3 or figure 4, and their complement
for TurnLpred . dNextL(n) = 1 is at those n where n+1 is L. This is next turn
left per (5), and is a pair ``any,L'' at n.

dNextL(n) = 2 is a triplet ``any,R,L'' at n, so R at n+1 and make some
state machine manipulations for a test of L at n+2, which is the bit strings of
left turns all subtract 2. The intersection of R next and L second next is all
dNextL = 2.

Similarly dNextL(n) = 3 is four ``any,R,R,L'' at n, and dNextL(n) = 4 is five
``any,R,R,R,L'' at n.

dNextR cases are likewise any,R, any,L,R, any,L,L,R, any,L,L,L,R.

The dTurnLeft and dNextL sequences are related by inserting into dTurnLeft
the successive steps down which are the non-left n,

1→ 1 2→ 2,1 3→ 3,2,1 4→ 4,3,2,1

dNextL starts with an initial 1 for n=0 too. Similarly dTurnRight related to
dNextR, with starting with initial 3, 2, 1 for n = 0, 1, 2.

dTurnLeft and dTurnRight can use dNextL and dNextR by

dTurnLeft(m) = dNextL
(
TurnLeft(m)

)
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dTurnRight(m) = dNextR
(
TurnRight(m)

)
These apply dNextL only to a left turn n, and dNextR only to a right turn

n, which reduces their cases a little.
For computer calculation, a modest optimization over the TurnLeft proce-

dure followed by dNextL can be made using the bits successively seen (high to
low) within the TurnLeft procedure. This has the attraction of being one-pass
so that once the bit at each position has been considered, it is not needed again.
Similarly TurnRight . The bits seen are not the n turn as such, but they suffice
to determine d.

Theorem 6. d = dTurnLeft(m) can be calculated by the following bit procedure

n ← 2m and d← 1a

for each bit position high to low in n

d← transition(d, bit of n)

if d = s1 ... s4 then n ← n− 1 (41)

where transition(d, bit) is in the state machine of �gure 7 below.

1 a 1 b 1 c2

3 a

3 b

4

s1

s2

s3

s4

decr

decr

decr

decr

start

Figure 7:

dTurnLeft state machine

bits seen high to low

0
1

0

1
0

1
0

1

0

1

0
1

0 1

0

1

0
1

0

1

0

1

d is a state and the final value 1, 2, 3, 4 is the result. The a, b, etc letters
are just to distinguish states. s1 to s4 are never final states and have no result
value. At (41), a transition going to any of s1 to s4 means decrement n.

Proof. The n progressed is the same as in the TurnLeft procedure of theorem 4.
The t bit there is in the states as

t=1 states: 1a, 3a, 4, s2, s4

t=0 states: 1b, 1c, 2, 3b, s1, s3

When bit = t, the transition goes to a state of the opposite t, per the Turn
Left procedure. Each state is reached either from previous states of the same t
as it, or the opposite t, but never a mixture. The result is to decrement n or
not according to the destination state (s1,s2,s3,s4).

The bit values seen at each bit position are not the final left turn n.
When the TurnLeft procedure ends with the 2k case of TurnLeft2 , the bits

of n are 1 000 and the decrement gives 0 111. The first bit is considered before
that decrement so 1 111 is seen by the state machine here.

There are 1 or more low 0s changed to 1s this way, since p in TurnLeft2 is
even. dNextL cases for n even and left turn (0-bit above lowest 1) are as follows.
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dNextL even n low 1s seen
1 ...01000 ...01111
2 ...0010 ...0011
3 ...1010 ...1011

Case dNextL = 1 is two or more low 0s on n which together with its lowest
1 become three or more. Cases dNextL = 2, 3 have none of their 1 repeats since
that would not be a left turn n. Consequently they are distinct from the 1 case.
dNextL = 4 is never an even n.

When the TurnLeft procedure ends in the 0 case of TurnLeft2 , the bits seen
are of n−1 (which the final (31) will increment). The low bit of n−1 is a 0 since
p is even, so n is odd. The dNextL cases on n−1 of an odd left turn n are as
follows. There is no 2 since its only odd n is ...11 which is not a left turn.

dNextL odd n n−1 seen
1 ...001 ...000
3 ...001101 ...001100
4 ...101101 ...101100

The state machine recognises all of the above cases. High 0-bits understood
on n as necessary for the cases. In the state machine, high 0s are optional. The
final state indicates the result d = dNextL.

s1 and s3 are not final states since they are reached only by bits 01. This
could only be from low 0s changed to 1s, but there is at least one such changed
bit, plus the lowest 1-bit, so always at least two low 1-bits seen.

s2 and s4 are not final states since they are reached only by bits 10 but that
would be an n−1 and its n = ...11 is not a left turn.

Theorem 7. d = dTurnRight(m) can be calculated by the following bit procedure

n ← 2m+ 2 and d← 3a

for each bit position high to low in n

d← transition(d, bit of n)

if d = s1, s2 or s3 then n ← n+ 1 (42)

where transition(d, bit) is in the state machine of �gure 8 below.

3 a 3 b

2 b

4

1 a

1 c

s1

s2 s3

incr

incr

incr

start

Figure 8:

dTurnRight

bits seen

high to low

0
1

0

1

0

1

0

1

0 1

0

1
0

1

0
1

0

1

d is a state and final value 1, 2, 3, 4 is the result. The a, b, etc letters are just
to distinguish states. s1 to s4 are never final states and have no result value.
At (42), a transition going to any of s1, s2, s3 means increment n.
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Proof. The n progressed is the same as the TurnRight procedure in theorem 4.
The target bit t there is in the states as

t=1 states: 1a, 2, 3a, s2

t=0 states: 1b, 3b, 4, s1, s3

When bit = t, the transition goes to a state of the opposite t, per the Turn
Right procedure. The states are arranged so that each state is reached either
from a same t or different t, but not a mixture. So increment n, or not, according
to the destination state (s1,s2,s3).

State s3 exists only for the purpose of this destination increment rule. It
could merge with 1c just for the result d, but a transition coming from s2 should
increment n whereas the self-loop at 1c should not.

The bit values seen at each bit position are not the final right turn n.
When the TurnRight procedure ends with the 2k−1 case of TurnRightRev2 ,

the bits of that n are 0 11...11 which increment to 1 00...00. There are one or
more such low bits so that this is an even n. The first bit is considered before
that increment so 0 00...00. is seen by the state machine here. The dNextR
cases from (40) on right turn n are then

dNextR even n seen dNextR odd n
1 ...110 ...100 1 ...10111
2 ...1100 ...1000 3 ...0011
3 ...110000 ...100000 4 ...001111

The even n cases are distinguished by having 2, 3, or ≥4, low 0-bits for
d = 1, 2, 3 respectively, so the cases are distinct.

The state machine recognises all of the above. High 0-bits understood on n
as necessary for the cases. In the state machine, high 0s are optional. The final
state indicates the result d = dNextL.

s1 and s3 are not final states since they are reached only by bits 01 which is
odd, so an unmodified n, but 0 above lowest 1 is not a right turn.

s2 is not a final state since it is reached only by bits 10 which is even and
would occur only as an n with lowest 1 cleared to 0, but such clear is not at the
least significant bit (p even as described above).

1.3 Direction

Davis and Knuth[12] give segment directions in the curve as net total turn +1
or −1 up to n. Let dir(n) be the direction of segment n, with first segment
numbered n=0,

start 0

1

2

1

2

3

2

turn(1) = +1

turn(2) = +1

−1

+1

dir(0) = 0

dir(1) = 1

... segment direction

dir(n),

net total turn

dir(n) =

n∑
j=1

turn(j) empty sum when n=0 so dir(0)=0
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= CountBitTransitions(n) (43)

= CountOneBits
(
Gray(n)

)
(44)

= 0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 3, . . . A005811

Gray(n) = BITXOR(n, bn/2c) binary reflected Gray code (45)

= 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, . . . A003188

CountOneBits(n) = 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, . . . A000120

CountBitTransitions is the number of 10 or 01 bits pairs (overlaps allowed).
Or equivalently, the number of places a bit differs from the bit immediately
above. High 0-bits are understood on n so the most significant 1-bit of n is
always a transition 01.

Gray code form (44) is per George P. Davis (Knuth [31, addendum]). The
shift and XOR for the Gray code gives a 1-bit at each bit transition, which
can then be counted. The Gray code is a permutation of the integers in blocks
0≤n< 2k so the dir sequence is such a permutation of CountBitTransitions,
and one which arranges successive steps always +1 or −1 (the turn sequence).

Davis and Knuth start their direction function g at g(1) = 0, so g(n) =
dir(n−1) and so g(n) is the direction of the segment preceding point n (point
n=0 as curve start still). The various relations they give have corresponding
forms in dir . Starting dir(0) = 0 has the attraction of bitwise interpretations
on n (rather than n−1), and the segment directions in curve k are over all n of
k bits.

A generating function for dir is a usual factor 1/(1−x) for cumulative turns
(per for example Ralf Stephan in A005811).

gdir(x) =
1

1−x
gturn(x) =

∞∑
k=0

x2k

(1− x) (1 + x2k+1

)

The direct interpretation of this sum is term k coefficient 1 where the bit at
k differs from the bit at k+1. This is 01 or 10 so x2k up to and not including
x3.2k , and replicated so arbitrary bits above.

x2k + · · ·+ x3.2k−1

1− x2k+2 =
x2k − x3.2k

(1− x) (1− x2k+2

)
(46)

=
x2k (1− x2k+1

)

(1− x) (1 + x2k+1

) (1− x2k+1

)

dir is a maximum when n has a bit transition at every bit. In curve level k,
this is

2k−1

max
n=0

dir(n) = k unique (47)

at n = DirMaxN k =
⌊

2
3 .2

k
⌋

(48)

= 0, 1, 2, 5, 10, 21, 42, 85, . . . A000975

= binary 0, 1, 10, 101, 1010, 10101, 101010, . . . A056830
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Davis and Knuth note DirMaxN k is the first n attaining dir(n) = k in the
curve continued infinitely. Or in their g numbering g(DirMaxN k + 1) = k, at
DirMaxN k + 1 = d 2

32ke (A005578).

start

. . .

dir(1) = 1

dir(2) = 2dir(5) = 3

dir(10) = 4

dir(21) = 5

dir(42) = 6

dir(85) = 7

dir(170) = 8

Some of the structure of dir can be illustrated in a plot. Each new high is
the unique dir maximum in level k at (47). The last n of each 2k block is the
return to dir(2k−1) = 1.

0 1 2 4 8 16 32 64 128

1

2

3

4

5

6

7

8

n

dir(n)

Blocks of n = 2k to 2.2k−1 are shown scaled to the same width, and linear
within them, in order to see successive refinements. The overall shape is pre-
served, just with some additional excursions up added. Arithmetically, this is
since a repeat of the low bit of n is dir unchanged, or opposite of the low bit is
+1. (Also ahead at (74).)

dir(. . . 00) = d1

dir(. . . 01) = d1 + 1

dir(. . . 10) = d2 + 1

dir(. . . 11) = d2

dir(. . . 0) = d1

dir(. . . 1) = d2

The number of left and right turns from 1 to n inclusive are

TurnsL(n) =

n∑
j=1

TurnLpred(n)

= 0, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 8, . . . n≥ 0

TurnsR(n) =

n∑
j=1

TurnRpred(n)

= 0, 0, 0, 1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 6, . . . n≥ 0 A255070
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gTurnsL(x) =
1

1−x
gTurnLpred(x) =

∞∑
k=0

x2k

(1− x) (1− x4.2k)
(49)

gTurnsR(x) =
1

1−x
gTurnRpred(x) =

∞∑
k=0

x3.2k

(1− x) (1− x4.2k)
(50)

All turns are left or right so total lefts plus rights is simply n. The difference
lefts minus rights is net direction dir . In the generating functions, this is seen
in gdir term form (46) which is difference (49)− (50).

TurnsL(n) + TurnsR(n) = n (51)

TurnsL(n)− TurnsR(n) = dir(n) (52)

Sum and difference of (51),(52) give

TurnsL(n) = 1
2

(
n+ dir(n)

)
TurnsR(n) = 1

2

(
n− dir(n)

)
(53)

Prodinger and Urbanek[43] show (53) by induction on an equivalent to turn
sequence flip and reverse unfolding. They use this to show the limit proportion
of rights and lefts is 1:1, since dir(n) ≤ 1 + log2 n,

lim
n→∞

TurnsL(n)

n
= lim
n→∞

TurnsR(n)

n
=

1

2

They calculate TurnsR also by a sum counting how many numbers of the
form 1100...00 are ≤ n, since these are all the BitAboveLowestOne(n) = 1. The
sum is over j many low 0-bits.

TurnsR(n) =
∑
j≥0

⌊
n+ 2j

2j+2

⌋
This is similar to the gTurnRpred sum at (10). The equivalent for lefts is

TurnsL(n) =
∑
j≥0

⌊
n+ 3.2j

2j+2

⌋
=
∑
j≥0

⌈
n− (2j−1)

2j+2

⌉

n with next turn right shown at (30) is OEIS A255068, as noted by Antti
Karttunen in that entry. That sequence is defined as A255068(t) = n where n
is the maximum n satisfying

1
2

(
n− dir(n)

)
= t

This is TurnsR(n) = t. TurnsR is non-decreasing and the maximum n where
it is a given t occurs when the next turn n+1 is to the right.

TurnLeft from theorem 3 and TurnsL are inverses in the sense that

TurnsL
(
TurnLeft(m)

)
= m+ 1

TurnLeft is the least inverse of TurnsL since its left turn at n = TurnLeft(m)
increments TurnsL. Or equivalently n−1 is the greatest for which TurnsL(n−1)
= m. Similarly TurnRight and TurnsR.
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The procedure for TurnLeft in theorem 4 finds, for givenm, the least solution
n of

TurnsL(n) = m+ 1
1
2

(
n+ dir(n)

)
= m+ 1 (54)

n = 2m+ 2− dir(n) (55)

The successive decrements in the procedure effectively apply the 01-transi-
tion counting of dir to reduce n and satisfy (55). But, roughly speaking, the
correctness of the procedure depends on decrement for a given transition not up-
setting higher ones already considered, and as noted after the proof of theorem 4
a little care is needed.

The procedure for TurnRight in theorem 4 finds in a similar way

n = 2m+ 2 + dir(n) (56)

These show too TurnLeftOff and TurnRightOff from (37) are

TurnLeftOff (m) = dir(n)− 2 where n = TurnLeft(m)

TurnLeftRight(m) = dir(n) + 2 where n = TurnRight(m)

New highs in TurnLeftOff are new highs in dir among left turn n. For n
of k≥ 1 many bits, the unique DirMaxNk at (48) is a left turn (0 above lowest
1-bit). Its m, per (54), is

m = 1
2 (DirMaxNk + k)− 1 (57)

=
⌊

1
3 2k + 1

2k − 1
⌋

= 0, 1, 3, 6, 12, 23, 45, 88, . . . k≥ 1 A086445− 1

New highs in TurnRightOff are new highs in dir among right turn n. To be
a right turn is 1-bit above lowest 1-bit. This is a non-transition for dir , so in
k≥ 2 bits maximum dir = k−1. So unique n = 10...10 11 when even k, or n =
10...10 110 when odd k, which in both cases is n = DirMaxNk + 1. Its m then,
per (56), is

m = 1
2

(
DirMaxNk + 1− (k−1)

)
− 1 (58)

= 1
4 (3k − 2k − 1)

= 0, 1, 3, 8, 18, 39, 81, 166, . . . k≥ 2 A178420

These offsets are the maximum number of decrements or increments made
by the TurnLeft and TurnRight procedures in theorem 4. In both cases for n
of k bits they make at most k−1 decrements or increments in their respective
loops, and the m (or n) where that maximum occurs is unique.

dir(n) mod 4 is a net segment direction East, North, West, or South.

0

1

2

3

direction mod 4

dir(n) mod 4 ≡ 0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 0, 3, 2, 3, 2, 1, . . . A246960
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≡ 0 at n = 0, 10, 18, 20, 22, 26, 34, 36, 38, 40, . . . A043724

≡ 1 at n = 1, 3, 7, 15, 21, 31, 37, 41, 43, 45, . . . A043725

≡ 2 at n = 2, 4, 6, 8, 12, 14, 16, 24, 28, 30, . . . A043726

≡ 3 at n = 5, 9, 11, 13, 17, 19, 23, 25, 27, 29, . . . A043727

Dekking[15, section 4.5] gives dir mod 4 (as letters a,b,c,d) in the form of an
expansion (morphism), or Arndt [3, figure 1.31-G] likewise (as numbers 0 to 3),

0→ 0, 1 1→ 2, 1 2→ 2, 3 3→ 0, 3 starting 0

These expansions are the segment expansions. The curve always turns left
or right so even directions 0, 2 are even segments which expand on the right,
and odd directions are odd segments which expand on the left.

A morphism like this is equivalent to taking bits of n high to low. The bits
go through the following state machine to find the direction mod 4 of n.

0

1

2

3

010

1

0 1 0

1

start

Figure 9:

dir(n) mod 4

by bits of n

high to low

Each time a bit differs from the preceding bit, the state steps +1, thereby
counting bit transitions as at (43), but with wrap-around mod 4. Similar can be
done for other moduli. An even modulus is an even state for a preceding 0-bit
or odd state for preceding 1-bit. An odd modulus would have separate states
for 0 or 1 preceding.

1.4 Coordinates

It's convenient to number the points of the dragon curve starting n=0 at the
origin and first segment directed East. Locations can then be calculated in
complex numbers using powers of base b = i+1 which is the end of a single
segment expansion.

0 1

b = 1+i = ω8

√
2

Davis and Knuth [12] calculate coordinates from the curve unfolding. n in
the second half of the curve is a point in that sub-curve directed back from bk,
giving a recurrence.

0 bk−1

bk

second
sub-curve,
rotate −i

2k−n

n
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point(n) = bk + (−i).point(2k−n) 2k−1 ≤ n ≤ 2k (59)

They expand (59) repeatedly and take the alternating sign powers of 2 as a
``folded'' representation of n, and corresponding point(n) form as a ``revolving''
representation of x+iy.

n = 2k0 + (−1).2k1 + (−1)2.2k2 + · · ·+ (−1)t.2kt folded (60)

point(n) = bk0 + (−i).bk1 + (−i)2.bk2 + · · · + (−i)t.bkt revolving (61)

k0 > k1 > · · · > kt high to low powers

= 0, 1, 1+i, i, 2i, −1+2i, −1+i, −2+i, −2+2i, . . .
Re A332383, Im A332384

In (59), the midpoint n = 2k−1 is the end of the first sub-curve and also the
end of the second sub-curve. The location is the same. In folded representation
(60), this is a final 2k−1 or 2k − 2k−1, or negatives of those when odd number
of terms above. The corresponding revolving point is the same since bk−1 = bk

+ (−i).bk−1.
For odd n, or the odd part of n, the geometric interpretation of these final

terms is to arrive at the target z either from the segment before or the segment
after, according as n final term +1 or −1 respectively.

0

4

67

8
Figure 10:

n=7, point(n)=−2+i
7 = 8 − 1
7 = 8− 2 + 1

For computer calculation, if n is represented in binary then there's no need
to manipulate it to form a folded representation. The sign changes for folded
are at the ends of runs of 1-bits. The +1 folded term is one place above the bit
run and the −1 folded term is at the last of the run.

0 1 1 1 1 0 · · ·n = binary

k l

1 0 0 0 −1 0 · · ·= folded

2k−1 + 2k−2 + · · ·+ 2l = 2k − 2l

Another approach to curve unfolding is to take n in binary and for the second
sub-curve calculate coordinates along a reversed curve.

0 bk−1

bk
forward n

0

i bk−1 bk
revPoint

n along reverse

Figure 11:

forward

and
reverse

Write n in k many bits with a the highest, either 0 or 1. Then the above
expansions become

for n = a.2k−1 + n1 with n1 < 2k−1
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point(n) =

{
point(n1) if a = 0

bk−1 + i.revPointk−1(n1) if a = 1

revPointk(n) = bk − point(2k−n)

=

{
i.point(n1) if a = 0

i.bk−1 + revPointk−1(n1) if a = 1

revPoint is for a particular expansion level k since in general a given reverse
level is not a prefix of the next. Both forward and reverse descend to point
or revPoint according as a=0 or a=1 respectively, so the bit above determines
which state.

forward reverse
0 1

0

1 bits of n
high to low

start

Both forward and reverse add power b at each bit a=1, but with factors of i
accumulating below. A run of 1-bits has factor i from point and further factor
i from each ibk term in revPoint .

It's convenient to put a factor −i through revPoint so its bk is without
further factor, just negations on switching forward/reverse.

revPointRot(n) = −i.revPoint(n)

point(n) =

{
point(n1) if a = 0

bk−1 − revPointRot(n1) if a = 1
(62)

revPointRot(n) =

{
point(n1) if a = 0

bk−1 + revPointRot(n1) if a = 1
(63)

Geometrically, this −i is taking the reverse curve at −90◦. The first halves
of both forward and reverse are forward curves to bk−1, hence point(n1) at (62),
(63). The second half of forward n has the reverse part there directed up to
i.bk−1 whereas the reverse curve is to end at −i.bk−1, hence negation to rotate
in (62).

0 bk−1

bk
forward n 0 bk−1

−i.bk
revPointRotn along

reverse

The −revPoint in (62) is at the highest 1-bit of n and at any later 01 bit
pair. n can be considered to have 0s above its highest 1-bit, so it is an 01 pair
too.

0 1 1 1 0 0 1 1 1 0 · · · n in binary

bk−1 bk−2 bk−3 bl−1 bl−2 bl−3

01 01−
negate

−
negate Figure 12: point negations

point(n) = bk−1 − bk−2 − · · · power for each 1-bit of n, (64)

− bl−1 + bl−2 + · · · sign change below each 01 in n
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+ bm−1 − bm−2 − · · ·
− · · ·

This is equivalent to the revolving representation (61) since sum of a run

bk−1 − bk−2 − · · · − bl = bk−1 − b
k−1 − bl

b− 1
= bk + (−i).bl revolving

The expansion of each individual segment also gives a coordinate formula
for a new low bit.

point(2n1 + a) = point(n1).b + i dir(2n1).a (65)

a is the low bit and n1 all bits above it. point(n1).b is existing points
expanded and if a=1 then the curve direction at 2n1 (so without low a bit) is
the direction to go to the new point in between.

0 1

23

45

7

8

dir(0) = 0

dir(2) = 2

dir(4) = 2

dir(6)=2

Each direction is horizontal dir = 0 or 2 since the curve turns ±90 at each
point so an even numbered segment is horizontal, ±1.

point(2n+1)− point(2n) = i dir(2n) even segment direction

= +1,−1,−1,−1,−1,+1,−1,−1,−1,+1,+1,+1,−1, . . . 0,1 A268411

Expanding (65) repeatedly is powers of b

n = 2k−1ak−1 + 2k−2ak−2 + · · ·+ 21a1 + a0

= binary ak−1ak−2 . . . a1a0

point(n) = bk−1 ak−1 high bit (66)

+ bk−2 ak−2 i
dir(ak−10)

+ bk−3 ak−3 i
dir(ak−1ak−20)

+ · · ·
+ b1 a1 i dir(ak−1ak−2 ···a20)

+ b0 a0 i dir(ak−1ak−2 ···a2a10) low bit

These powers of i are the same as the forward/reverse signs (64). dir(2n1)
changes only when a bit pair 01 introduces a new run of 1-bits, increasing the
bit transitions by 2 for dir .

All of the above coordinate formulas are expressed with i or ±1 factor de-
termined by bits of n from high to low. For computer calculation, the formulas
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can be applied low to high instead by assuming lowest b0 term has factor 1 and
proceeding upwards from there. The factors on all the powers are then correct
relative to each other and if the high bk−1 turns out not to have factor 1 then
divide through by that factor (a rotation) to adjust all.

1.5 Coordinates to N

point(n) can be inverted low to high to calculate n at a given location z. Davis
and Knuth do this from the revolving representation of z. It can also be done
from the forward/reverse b powers (64).

Suppose z = point(n) and that in (64) the total sign changes would be sign
s on terms below the lowest (so how many 01 bit pairs). Then

unpoint(z, s) z = Gaussian integer, s = ±1

loop until z = 0 or z = s.i
if z ≡ 1 mod b2 then s← −s
bit 0 or 1 = z mod b bits of n low to high
if bit=1 then z ← z − s step to multiple of b
z ← z/b divide out b

end loop

if z=0 and s=1 then n in arm 0
if z=i and s=1 then 2k−n in arm 1
if z=0 and s=−1 then n in arm 2
if z=−i and s=−1 then 2k−n in arm 3
where k is the number of bits of n generated

Arm means a copy of the curve rotated by iarm . The plain curve is arm 0.

arm 0

arm 1

arm 2

arm 3

In an unrotated copy of the curve, the two s = ±1 are directions d = 0, 2
(horizontal) at an even point and d = 3, 1 (vertical) at an odd point, respectively.

s = id+(1 if z odd)

This is s = idir(2n) which would be the next sign factor in (64). z odd is when
n odd so that dir(2n) is an extra bit transition.

Every point z 6=0 is visited exactly twice among the 4 arms, per theorem 2,
so s=+1 and s=−1 both lead to n values.

z ≡ 1 mod b2 is when the lowest two bits of n are 01 and so a sign change
for all powers below. The sign below is s so change to −s for the present term
and above.

For computer calculation, everything can be done in Cartesian coordinates
x+iy without full complex number arithmetic. bit ≡ z mod b is simply x+y ≡
0, 1 mod 2 and division z/b is (x, y) ← (x+y

2 , y−x2 ). The test for z≡1 mod b2 is
equivalent to x≡1 mod 2 and y≡0 mod 2 since z mod b2 goes in a 2×2 repeating
pattern.
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The loop reduces z by dividing b each time, except for the s subtraction.
Considering just magnitudes, |z| decreases when

|z| −
∣∣∣∣z − sb

∣∣∣∣ ≥ |z| − |z|+ 1√
2

=
(
1− 1

2

√
2
)
|z| − 1

2

√
2

> 0 when |z| > 1+
√

2

So |z| decreases until |z| ≤ 1+
√

2 and for points there it can be verified
explicitly that all integer z and s=±1 reach one of the loop ends.

The arm 0 case ending z=0, s=1 is a point in the plain unrotated curve. If
this arm is all that's of interest then note that it's not possible to loop until
z=0 because the z=s.i cases do not reach 0 but repeat forever generating 1-bits.
Those cases occur at single-visited points of arm 0.

The arm 2 case is z = −point(n). That negation does not change the bits
generated since z ≡ −z mod b2. The negation is on all terms so the high bk

ends with sign s=−1.
The arm 1 case works since the second half of arm 1 is the same direction

as first half of a plain unrotated arm 0, offset by ibk.

0

ibk

2k−n n

rotated i
plain curve

second half

i.point(n) = ibk + point(2k−n)

2k ≥ n > 2k−1

2k−n < 2k−1

This ibk does not change any of the z mod b2 etc calculations up to bit 2k−2

which is the high bit of 2k−n < 2k−1. It leaves z=i.b, s=1 which becomes
z=i, s=1, a=1 repeating forever so high 1-bits of 2k−n for ever larger k.

Similarly the arm 3 case which is −i.point(n) as second half of −point .

For a given n, let other(n) be the point number which is the other visit to
that location. This can be found from n without calculating the location as
such. Davis and Knuth give a procedure based on transforming the revolving
representation of n. Their folded n gives revolving z which after transformation
is folded other(n).

Another approach can be made using the bits of n written in binary.

. . . any 6=t 100 . . . 000
011 . . . 111

t
100 . . . 000
011 . . . 111

t 1 0...0

�ip �ip

repeat ≥0 times

high low Figure 13:

other(n)
bit �elds

other(n) n 6= 0

skip low 0-bits and lowest 1-bit of n
t = take next bit
loop
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n← flip 0↔1 run of bits plus the opposite bit above them
if n bits end before flip run complete
then end loop, result 2k − n arm −1 if t=0

arm +1 if t=1
where k is the number of bits of n

if take next bit 6= t
then end loop, result n

end loop

other(n) = 0, 3, 6, 1, 12, 23, 2, 11, 24, 27, 46, 7, 4, 47, 22, . . .

arm = 0,−1,−1, 1,−1,−1, 1, 0,−1,−1,−1, 0, 1,−1, 0, . . . (67)

n in binary is divided into the fields shown in figure 13. t is the bit above
the lowest 1-bit. This is the turn at n as from (4).

Above t is a bit run of one or more either 0-bits or 1-bits plus one further
bit which is the opposite and ends the run. Then a further t bit and another
such run plus one, etc. The pattern stops when the next bit is 6=t. Each run
plus one are bit flipped 0↔1 to give other(n).

High 0-bits are understood on n as necessary to make the fields shown.
Flipping a high zero 011...11→ 100...00 gives other(n) with more bits than n.
This happens when a location within level k has its second visit in the next level
k+1. (This is a join on unfolding, per section 4.2.)

If a flipped run continues infinitely into the high 0-bits on n then other(n)
is in an adjacent arm. If t=0 then it is the preceding arm (−90◦) since t=0 is a
left turn so the other arm is on the right. If t=1 then it is the next arm (+90◦)
since t=1 is a right turn so the other arm is on the left. In both these cases,
other(n) = 2k − flipped n.

The arm at (67) is therefore turn(n) when at a single-visited point (the
other visit being in that other arm). So with the single-visit predicate ahead in
section 5.1,

otherArm(n) = −turn(n) .Spred∞(n)

For computer calculation in a single machine word, the runs for other(n)
can be located and bit flips applied by some bit twiddling.

This other bit flip procedure is found by taking bits of n and the forward/
reverse powers they imply (64) then apply an unpoint to those powers with
opposite sign.

other(n) n 6= 0

s = 1 sign on n
h = −1 sign on other(n), starting opposite
δ = 0
loop

a0 = low bit of n, a1 = second lowest bit of n
if a1, a0 = 0, 1 then s← −s
z = b.a1 + a0 + δ
c0 = 0 or 1 ≡ z mod b other(n) bits, low to high
if z ≡ 1 mod b2 then h← −h
δ ← (δ + a0.s− c0.h)/b
drop lowest bit of n
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end loop

s is the sign below the last bit of n. If n bits are 01 then it changes to −s
for the present term of n and above. h is the sign below the bits of the other(n)
being calculated. Taking only the low bits of n and other(n) does not in general
give the same location. δ is the offset from location n to other(n). It changes
when the b powers in n and other(n) are not the same (different sign, or zero
and not zero).

Following up through possible bits of n gives combinations of s, h, δ, bit as
states of a finite state machine. The state incorporates a ``current'' bit since
two bits are required at each step. The next higher bit is taken as input and
the output is a bit of other(n) at the ``current'' position. The higher bit goes
into the new state. The initial state is s=1, h=−1, δ=0 and bit = low of n.

The states and outputs simplify to the bit flips above. δ takes seven possible
values 0, ±1, ±i, ±(1−i).

The turn bit t above lowest 1 is unchanged by this other going up by states
when within the same arm. This is a complicated way to see turn at first and
second visit are the same (see section 15.4).

A run 01...11 is flipped by adding 1. A run 10...00 is flipped by subtracting
1. Differences n − other(n) occurring within an arm are therefore ±1 at bit
positions with 2 zeros below, per the fields in figure 13.

±1 0 . . . 0 ±1 0 . . . 0

≥ 2 zeros ≥ 2 zeros

repeat

d = n− other(n)

(in same arm)

binary

Opred(d) =


1 if d =

∑
±2pj where

each pj+1 ≥ pj + 3 and p0 ≥ 2

0 otherwise

= 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .

=1 at |d| = 4, 8, 16, 28, 32, 36, 56, 60, 64, 68, 72, . . .

Differences can also be considered by BITXOR(n, other(n)) which is 1-bits
in the flipped runs and so length ≥2 with one 0-bit between each, and least two
0-bits at the low end.

11...11 0 0 · · · 0
≥2 ≥1

repeat 1 or more

binary OXpred

OXpred(c) =

{
1 if c = BITXOR(n, other(n)) for some n

0 otherwise

=1 at c = 12, 24, 28, 48, 56, 60, 96, 108, 112, 120, 124, . . .

= binary 1100, 11000, 11100, 110000, 111000, . . .
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1.6 Direction Cumulative

Blecksmith and Laud [6] count the number of bit blocks in n written in binary
(their bn). A bit block is a run of consecutive 1s or consecutive 0s (but not the
high 0 bits). The top of a block is at a bit different from the bit immediately
above (with high 0s understood) so block count is the dragon curve dir(n).

They consider a total dir summed from 0 to n inclusive, but here it's con-
venient to instead sum 0 to n−1, so n many terms,

DirCumul(n) =

n−1∑
j=0

dir(j) (68)

= 0, 0, 1, 3, 4, 6, 9, 11, 12, 14, 17, . . . A173318

They use chained probability matrices to calculate the sum by matrix mul-
tiplication and give an example to 2k inclusive, which for DirCumul here is

DirCumul(2k+1) =

{
1 if k=0

k.2k−1 + 2 if k ≥ 1

= 1, 3, 6, 14, 34, 82, . . . k≥2 2×A131056

This is dir of all segments of dragon curve k plus 1 more segment. The extra
is dir(2k) = 2. Within level k, the Gray form at (44) for dir is a permutation
of all n of k bits, so DirCumul is total 1-bits among all n of k many bits. Each
bit is 0 or 1 in all combinations so half of k.2k,

DirCumul(2k) = k.2k−1 (69)

= 0, 1, 4, 12, 32, 80, . . . A001787

Theorem 8. For n = ak...a0 in binary,

DirCumul(n) =

k∑
j=0

2j .aj .

(
j

2
+ dir

(
2
⌊ n

2j+1

⌋))
(70)

= 2k .ak . k
2 (71)

+ 2k−1.ak−1.
(
k−1

2 + dir(ak0 )
)

+ 2k−2.ak−2.
(
k−2

2 + dir(akak−10)
)

· · ·
+ 21 .a1 .

(
1
2 + dir(ak...a20 )

)
(72)

+ 20 .a0 .
(

0
2 + dir(ak...a2a10)

)
(73)

Proof. A recurrence for dir(n) removing the low bit of n can be formed in a
similar way to Knuth [31] (on g(n) = dir(n−1))

dir(n) = dir
(⌊n

2

⌋)
+ [0, 1, 1, 0] (74)

This follows since if the lowest bit of n differs from the second lowest then
it is an extra bit transition for dir(n) over what dir(bn/2c) has, hence +1 when
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n ≡ 1, 2 mod 4.
Applying this in DirCumul sum (68), successive j, j+1 give two copies of

bj/2c, which is two DirCumul of bn/2c, plus one extra dir if n odd. Term
[0, 1, 1, 0] in (74) is 1 on every second term so goes as n/2, with adjustment for
where n falls mod 4. So recurrence

DirCumul(n) = 2DirCumul
(⌊n

2

⌋)
+ dir

(⌊n
2

⌋)
.[0, 1] +

⌊n
2

⌋
+ [0, 0, 0, 1]

= 2DirCumul
(⌊n

2

⌋)
+ dir

(
2
⌊n

2

⌋)
.[0, 1] +

⌊n
2

⌋
(75)

Form (75) incorporates [0, 0, 0, 1] into dir by doubling its argument, giving
n with lowest bit zeroed out. (That term is only for odd n so it could instead
be written dir(n−1) if preferred.)

Repeatedly expanding (75) is the theorem. 2DirCumul in (75) puts terms
of successive expansions at successive higher powers of 2. The first expansion
is at 20, being dir of n with low bit zeroed out. Factor [0, 1] means that term
is only when n odd, which in (73) is expressed by factor bit a0.
bn/2c in (75) adds copies of bits of n at each power of 2. The first expansion

is bn/2c = ak...a1. Bit a1 is thus 1
2 in its 21 term at (72). Then the third lowest

bit a2 gets 2 copies, and so on successively up to k copies of the high bit ak at
(71).

Each term of (70) has bit aj as a factor so the effect is at each 1-bit to put
j/2, plus dir of bits above with aj cleared to 0. For example,

1 1 1 0 0 1 1 1

high low

n in binary

7 6 5 2 1 0 × 1
2
= 1

2
j

0 2 2 2 4 4 dir(ak...aj+10)

27 20

(76)

(77)

The 1
2j terms at (76) alone are

PosPowers(n) = 1
2

k−1∑
j=0

aj .j.2
j = 0, 0, 1, 1, 4, 4, 5, 5, 12, 12, . . . A136013

This is OEIS A136013. That sequence is conceived as repeated floors and
factor 2

PosPowers(n) = 2PosPowers
(⌊n

2

⌋)
+
⌊n

2

⌋
which is the expansion in DirCumul . Thinking of it as 1

2j at each 1-bit position
j, in the manner of Marc LeBrun's comment there, is perhaps easier.

Factor 1
2 in PosPower can also be treated by shifting the terms down 1 bit

position, so 1, 2, etc at one place below each 1-bit of n, and nothing for the
lowest bit of n.

The dir terms of (70) can also be considered by counts of bit runs. At each
1-bit, put 2× how many runs of 1-bits are above that bit, and not including
that 1-bit itself. Hence the example at (77) has 0 at the high bit of the top run
and 2 at the high bit of the second run.
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In (71), dir of bits above is similar to point form (66), but at (66) terms are
powers of b, and dir is just for 1, i,−1,−i, not its magnitude as here.

DirCumul can be treated by curve unfolding with the help of a sum of end
terms in level k, being n many values from dir(2k−1) downwards,

revDirCumulk(n) =

n−1∑
j=0

dir(2k−1 − j)

Then, like point , for an n in the range 2k−1≤n< 2k, the unfold means
DirCumul first half 2k−1 per (69) and second half remaining revDirCumul .

DirCumul(n) = (k−1).2k−1 + r + revDirCumulk−1(r) (78)

for n = 2k−1 + r with 0 ≤ r < 2k−1

The second half is turned +90◦ from the curve starting East, so each segment
there is dir + 1. This is +r at (78).

revDirCumul is for a particular k since in general the curve end of one level
is not a prefix of the next higher level. revDirCumul on unfolding is

revDirCumulk(n)=

{
n+ DirCumul(n) n<2k−1

(k−1).2k−2 + 2k−1 + revDirCumulk−1(r) n≥2k−1

where n = 2k−1 + r for the n≥2k−1 case

As back in figure 11, the first half of the curve is turned +90◦ so each dir + 1
there which is n for n< 2k−1, or is 2k−1 for n≥ 2k−1.

The (k−1).2k−2 terms here are the j of sum (71). The r, n, 2k−1 additions
give the dir terms.

The folded binary representation of Davis and Knuth at (60) locates bit
transitions. The representation with an even number of terms, which is t odd
and lowest term sign −1, gives dir as

dir(n) = t+ [1, 0]n folded t odd

The representation with an odd number of k powers, so t even, effectively
arrives at a point from the far end of the curve (figure 10) so gives direction of
the segment preceding the point

dir(n−1) = t+ [1, 0]n folded t even

For DirCumul , working through the powers and directions of folded terms
kj gives, for either folded representation of n,

DirCumul(n) =

t∑
j=0

(−1)j ( 1
2kj + j) 2kj folded n

Blecksmith and Laud [6] also consider a ratio of dir over bit length (their
δj = bj/kj). Bit length is the maximum dir (47), so DirRatio ranges up to 1.

DirRatio(n) =
dir(n)

bitlength(n)
for n≥ 1
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= 1, 1, 1
2 ,

2
3 , 1,

2
3 ,

1
3 ,

1
2 ,

3
4 , 1,

3
4 ,

1
2 , . . .

bitlength(n) = d log2(n+1)e length of n written in binary

= 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, . . . A029837

They consider then a cumulative total of this ratio

DirRatioCumul(n) =

n∑
j=1

DirRatio(j) for n≥ 1

= 1, 2, 5
2 ,

19
6 ,

25
6 ,

29
6 ,

31
6 ,

17
3 ,

77
12 ,

89
12 , . . .

and conjecture the mean ratio converges

DirRatioCumul(n)

n
= 1, 1, 5

6 ,
19
24 ,

5
6 ,

29
36 ,

31
42 ,

17
24 ,

77
108 , . . .

→ 1
2 as n→∞

Theorem 9.

lim
n→∞

DirRatioCumul(n)

n
→ 1

2

Proof. Let k= bitlength(n). DirRatioCumul(n) first sums over complete blocks
of j of each bit length p < k. A block of p is 2p−1 many terms is

all j = 1xxxx of length p, ie. all bitlength(j) = p

blockp =

2p−1∑
j=2p−1

DirRatio(j)

=
DirCumul(2p)−DirCumul(2p−1)

p

=
(
1 + 1

p

)
. 12 .2

p−1 (79)

= 1, 3
2 ,

8
3 , 5, 48

5 ,
56
3 ,

256
7 , 72, 1280

9 , 1408
5 , . . . 1

p×A001792

(79) follows from DirCumul form (69). Or directly, high 1 bit of j is always a
transition for dir , then p−1 many bits below it, each of which can be a transition
or not, so 1 + 1

2 (p−1) each, and divide p for ratios.
DirRatioCumul(2k−1−1) is all blocks up to k−1 inclusive,

DirRatioCumul(2k−1−1) =

k−1∑
p=1

blockp = 1, 5
2 ,

31
6 ,

61
6 ,

593
30 ,

1153
30 , . . .

= 1
2 (2k−1−1) + E (80)

where E =

k−1∑
p=1

2p−2

p
= 0, 1

2 , 1, 5
3 ,

8
3 ,

64
15 , . . .

(80) is 1
2 for each of its 2k−1−1 many terms, plus E. An upper bound on E

can be formed by decreasing each p denominator to its high bit alone,
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2p−2

p
≤ 2p−2

2bitlength(p)−1
= 2p−1−bitlength(p)

This is successive power-of-2 bits, with an overlap of one place where bit
length increases and so drops the bit position. For example, up to k−1 = 12,

1

11

1111

11111

p = 1

p = 3, 2

p = 7, 6, 5, 4

p = 12, 11, 10, 9, 8

1.11111111=

1.11+

2k−1−bitlength(k−1)

The row of 1s sum to < the bit position immediately above the high p = k−1
term, and the duplicates are at most the same too. So bound

DirRatioCumul(2k−1−1) ≤ 1
2 (2k−1−1) + 2k−bitlength(k)

This, and E≥ 0 for mean always≥ 1
2 , suffices for the theorem just at 2k−1−1.

DirRatioCumul(2k−1−1)

2k−1−1
≤ 1

2 +
2k−bitlength(k)

2k−1 − 1

< 1
2 +

4

2bitlength(k)

n has various DirRatioCumul terms with j of bit length k too. They can be
treated in sub-blocks. For n = 1a2a3 . . . ak binary bits,

top(n) =

n∑
j=2k−1

dir(j) all bitlength(j) = k (81)

= DirCumul(n+1)−DirCumul(2k−1)

= dir(n) +
k∑
q=2

aq.2
k−q.

(
1
2 (k−q) + dir(1a2...aq−10)

)
(82)

= 1
2k (n−2k−1+1) + F (83)

where F = dir(n)− 1
2k +

k∑
q=2

aq.2
k−q.

(
dir(1a2...aq−10)− 1

2q
)

(82) is where a 1-bit aq = 1 of n means sum a sub-block of dir(j) with j of
the form

j = 1a2 . . . aq−10xxxx k bits total

There are k−q many bits ``xxxx'' so 2k−q many j. Each of them has the
same bit transitions down to the q position, which is dir to there. Then xxxx
is all combinations of transition or not so 1

2 (k−q).
The powers 2k−q are all bits of n except the highest. (83) takes them and

1
2k out from the sum. Factor n−2k−1+1 is the total number of terms in sum
(81). For ratios, all are the same bit length k.
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top(n)

k
= 1

2 (n− 2k−1 + 1) +
F

k

An upper bound on F/k can be formed by firstly dir ≤ bitlength per (47) so
at most q− 1

2q each term. Then take all terms irrespective of the bits of n, plus
the separate dir(n) term, so

F/k ≤ 1
2 +

k∑
q=2

1
2

q

k
2k−q

Increase 1/k by decreasing k to its high bit alone so 1/2bitlength(k)−1. Increase
q to the bit above its length so 2bitlength(q).

F/k ≤ 1
2 +

k∑
q=2

2k−bitlength(k)−q+bitlength(q)

This is bits at 2k−bitlength(k) and successively down with q, but an overlap
when bitlength(q) increases. The first term q=2 has q − bitlength(q) = 0.

1 1

1 1 1 1

1 1 1 1 1

q = 2, 3

q = 4, 5, 6, 7

q = 8, 9, 10, 11, 12

1 1 1 1 1 1 1 1 1=

1 1+

2.2k−bitlength(k)

Like E, the row of 1s sum to at most a 1 bit above them, and the duplicates
at most the same, so

F/k ≤ 1
2 + 4.2k−bitlength(k)

Total upper bounds on E and F/k give

DirRatioCumul(n)

n
≤

1
2n+ 1

2 + 5.2k−bitlength(k)

n

≤ 1
2 +

1

2n
+

10

2bitlength(k)
→ 1

2

A lower bound for F/k is formed in the same way as the upper bound using
dir≥0 so have the same terms in k and q but negative. It and (80) for the initial
blocks total always each term ≥ 1

2 is then the same limit 1
2 from below.

2bitlength(k) etc are used to bring terms to a common form where a bound
on their sum is easily made. With 2bitlength(k) > k = log2dn+1e, the bound
decreases slowly, as 1/ log n. Actual descent of the mean can be illustrated in a
plot. Blocks of n = 2k to 2.2k−1 are scaled to the same width (and linear within
them) in order to show their similarity.
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16 32 64 128 256 512 1024

DirRatioCumul(n)
n

→ 1
2

n

2
3

1
2

Blecksmith and Laud conjecture a similar limit (b−1)/b for mean ratios
counting digit blocks in any base b. That should follow from an argument
similar to above. A same digit is 1 non-transition, so new blocks b−1 out of b.

1.7 Segments in Direction

Theorem 10. The number of segments in direction d = 0, 1, 2, 3 mod 4 of
dragon curve level k are

S(k, d) = 1, 0, 0, 0 for d ≡ 0 to 3 for k = 0

= 1
4

(
2k + bk(−i)d + bk(−i)d

)
for k ≥ 1 (84)

= 1
4

(
|bk + id |2 − 1

)
= 1

4

(
2k + s(k−2d) .2bk/2c

)
(85)

s(m) = 2, 2, 0,−2,−2,−2, 0, 2 2×A046980

according to m ≡ 0 to 7 mod 8

S(k, 0) = 1, 1, 1, 1, 2, 6, 16, 36, 72, 136, 256, . . . A038503

S(k, 1) = 0, 1, 2, 3, 4, 6, 12, 28, 64, 136, 272, . . . A038504

S(k, 2) = 0, 0, 1, 3, 6, 10, 16, 28, 56, 120, 256, . . . A038505

S(k, 3) = 0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, . . . A000749

Proof. The segments in direction d=0 are those n which have dir(n) ≡ 0 mod 4.
So from (44), a count 0, 4, 8, 12, etc many 1-bits among the k bits of Gray(n).
Gray(n) is a permutation of the integers 0 to 2k−1 so this is also those counts
on just n. The possible positions for the 1-bits are a binomial coefficient.

S(k, 0) =
(
k
0

)
+
(
k
4

)
+
(
k
8

)
+
(
k
12

)
+ · · ·

S(k, 1) =
(
k
1

)
+
(
k
5

)
+
(
k
9

)
+
(
k
13

)
+ · · ·

S(k, 2) =
(
k
2

)
+
(
k
6

)
+
(
k
10

)
+
(
k
14

)
+ · · ·

S(k, 3) =
(
k
3

)
+
(
k
7

)
+
(
k
11

)
+
(
k
15

)
+ · · ·

S(k, d) =
∑

j=d,d+4,...

(
k
j

)
(86)

These sums are from Cournot[11] (and Ramus[44]). The sin π
4 and cos π4 they

give are written here in (84) using b. Form (85) is a half power to emphasise
the result is always an integer. Factor s(m) is
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s(m) =
bm + bm

2bm/2c

1
42k in (85) shows S(k, d) has 1

4 of the segments in each direction, plus or
minus the half power term. When k is even there are two d which are exactly
1
42k due to s(2) = s(6) = 0. In the sample values above, the last column has
two counts of 256 = 1

4210.
The maximum difference between these counts, as binomial sums, was a

Mathematics Magazine problem[41]. In the s form (85), and for any k, there is
always s(m) factors 2 and −2 so that(

3
max
d=0

s(k−2d)

)
−
(

3
min
d=0

s(k−2d)

)
= 4 any k

and hence(
3

max
d=0

S(k, d)

)
−
(

3
min
d=0

S(k, d)

)
= 2
bk/2c

The total segments is simply 2k. Since the curve always turns ±90◦, the
number of verticals and horizontals are the same for k ≥ 1.

total S(k, 0) + S(k, 1) + S(k, 2) + S(k, 3) = 2k

horizontals S(k, 0) + S(k, 2) = 1
22k k ≥ 1

verticals S(k, 1) + S(k, 3) = 1
22k k ≥ 1

These counts are for segment directions along the curve. Various diagrams
here such as figure 2 have arrows in direction of expansion, so each segment ex-
pands on the right. Counts of those directions are obtained simply by swapping
the two verticals S(k, 1) and S(k, 3). The verticals are the odd numbered seg-
ments since the curve always turns ±90◦. They expand on the left so swapping
gives counts for expanding on the right. This arises in section 8 for the curve
centroid.

The segment counts are the same as in the Lévy C curve. Its dir direction
is CountOneBits(n) without the Gray of (44), so the same binomial sums (86).
The endpoint is consequently the same, but the sequence of segment directions
and the shape are not the same, for k≥ 2.

k=4

Dragon curve

startend

C curve

startend

same count
segments
in direction

S(k, 0) = 2 S(k, 1) = 4

S(k, 2) = 6 S(k, 2) = 4
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Theorem 11. Among the �rst n segments of the dragon curve, the number in
direction d mod 4 is

SN (n, d) = 1
4

(
n + 2 Re(−i)dpoint(n) +

(
(−1)d if n odd

))
(87)

SN (n, 0) = 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, . . .

SN (n, 1) = 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, . . .

SN (n, 2) = 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, . . .

SN (n, 3) = 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, . . .

Proof. Segments alternate horizontal and vertical so total horizontals are dn/2e
which is SN directions 0 plus 2. The difference of directions 0 and 2 is the net
horizontal position Re point ,

SN (n, 0) + SN (n, 2) = dn/2e (88)

SN (n, 0)− SN (n, 2) = Re point(n) (89)

(88)+(89) and (88)−(89) give

SN (n, 0) = 1
2

(
dn/2e+ Re point(n)

)
SN (n, 2) = 1

2

(
dn/2e − Re point(n)

)
Similarly for the verticals

SN (n, 1) + SN (n, 3) = bn/2c
SN (n, 1)− SN (n, 3) = Im point(n)

SN (n, 1) = 1
2

(
bn/2c+ Im point(n)

)
SN (n, 3) = 1

2

(
bn/2c − Im point(n)

)
The ±Re, Im parts here are selected in (87) by Re(−i)dpoint , and the floor

or ceil n/2 by the (−1)d offset part.

Second Proof of Theorem 11. These counts are a cumulative sum of a direction
predicate

DirPred(n, d) =

{
0 if dir(n) ≡ d mod 4

1 if not

DirPred(n, 0) = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . .

DirPred(n, 1) = 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, . . .

DirPred(n, 2) = 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, . . .

DirPred(n, 3) = 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, . . .

A segment step z = 1, i,−1,−i can be expressed as such a predicate by

1
4

(
2 + 2 Re(−i)dz − 2 |Im(−i)dz|

)
=

{
1 if z in direction d

0 if not

Then with steps dpoint(n) = point(n+1)− point(n) = idir(n)
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SN (n, d) =

n−1∑
j=0

DirPred(n, d)

= 1
4

((n−1∑
j=0

2
)

+
(

2 Re(−i)d
n−1∑
j=0

dpoint(j)
)

(90)

−
(

2

n−1∑
j=0

∣∣Im(−i)ddpoint(j)
∣∣ )) (91)

The Re part (90) cumulative dpoint is point(n). The |Im| part (91) is sum
of terms 0 or 1 according as dpoint is horizontal or vertical, after rotation by d.
The curve always turns left or right so segments are alternately horizontal and
vertical so half each giving

2

n−1∑
j=0

∣∣Im(−i)ddpoint(j)
∣∣ = n−

(
(−1)d if n odd

)
which subtracted from

∑
2 = 2n is per (87).

A complete level k is 2k segments SN (2k, d) = S(k, d). Its end point(2k) =
bk is the conjugate bk parts of (84).

2 Cubic Recurrence

Various formulas in the sections below have a cubic recurrence of the form

ak = ak−1 + 2ak−3

which has characteristic polynomial

x3 − x2 − 2 (92)

so ak can be written as powers of the roots r, r2, r3 of that polynomial

ak = X.rk + Y.rk2 + Z.rk3 (93)

The roots r, r2, r3 are found by the usual cubic formula (Ferro/Tartaglia/
Cardano). The real root r in decimal is per Daykin and Tucker [13].

C =
3

√
28 +

√
29× 27 = 3.825455 . . .

r =
1

3

(
1 + C +

1

C

)
= 1.695620 . . . A289265

continued fraction 1,1,2,3,1,1,59, 1,1,1,2,3,1,1,2,1,41, . . .

r2 =
1

6

(
2− C − 1

C

)
+

√
3

6

(
C − 1

C

)
i

r3 = r2

r2, r3 = −0.347810... ± 1.028852... i
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r2 and r3 are complex conjugates. The second highest polynomial coefficient
is Vieta's formula for roots one at a time r + r2 + r3 = −(−1) so real parts

Re r2 = Re r3 = 1
2 (1− r) (94)

The low polynomial coefficient is product roots for Vieta's formula all roots
r.r2.r3 = −(−2), so magnitudes

|r2| = |r3| =
√

2

r
=
√
r2 − r = 1.086052 . . . (95)

Chang and Zhang [9] show the Hausdorff dimension of the boundary of the
dragon fractal follows from the root r

dimH =
log r

log
√

2
= 2 log2 r = 1.523627 . . . A272031

In the power form (93), the imaginary parts of r2 and r3 cancel out. The rk

term dominates eventually since r2 and r3 are smaller in magnitude. Magnitudes
are seen in the decimals, or C > 3

√
27 = 3 so r > 1 and so at (95)

√
r2 − r < r.

|r2| = |r3| > 1 is again seen in the decimals, or their imaginary part alone
is greater than 1 by reducing

C >
3

√
28− 145

64 +
√

27×27 = 15
4

(Im r2)2 = (Im r3)2 > 3
36 ( 15

4 −
4
15 )2 = 1 + 481

43200 > 1 (96)

This means the contribution of r2, r3 to the powers (93) is unbounded and
it's not enough to take just X.rk and round to an integer or similar (the way
for example Fibonacci numbers from a single power of φ rounded).

A ratio of recurrence values approaches power of r which is their difference
in index. For example ratio k+1 over k approaches r

ak+1

ak
=
X.rk+1 + Y.rk+1

2 + Z.rk+1
3

X.rk + Y.rk2 + Z.rk3
→ rk+1

rk
= r as k →∞

Various formulas such as area Ak (section 4) include a 2k term. That power
dominates r eventually since r < 2.

3 =
3

√
0 +
√

27× 27 < C <
3

√
35 +

√
29× 29 = 4 (97)

r < 1
3 (1 + 4 + 1

3 ) = 16
9 < 2

Exactly when some 2k growth exceeds an rk depends on their respective
factors. For example theorem 33 is when double-visited points exceed single-
visited points.

Another simple relation is r >
√

2 using bounds (97) again. This shows rk

exceeds a half power
√

2k or 2bk/2c.

r2 >
(

1
3 (1 + 3 + 1

4 )
)

2 = 2 + 1
144 (98)

Coefficients X,Y, Z for the powers depend on the initial values of the re-
currence. They can be found by some linear algebra to make initial powers
sum to the initial values. A simple example is starting 0, 0, 1 which is dJAk
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(section 4.3). Other initial values can be constructed from sums of these. 1 1 1

r r2 r3

r2 r2
2 r2

3

XY
Z

 =

0
0
1


X =

1

(r − r2)(r − r3)
=

3

C2 + 1 +
1

C2

= 0.191053 . . .

Y =
1

(r − r2)(r3 − r2)
=

−6(
C− 1

C

)2

+
√

3
(
C2− 1

C2

)
i

= −0.095526... + 0.189727... i

Z = Y conjugate

dJAk = X.rk + Y.rk2 + Z.rk3

X is real since r2 and r3 are conjugates. The real part of Y is − 1
2X since

r3 − r2 is purely imaginary

Y

X
=

r − r3

r3 − r2
= −1

2
− 3r + 1

4 Im r2
i so ReY = − 1

2X

X can be simplified a little by the polynomial second highest coefficient
which is Vieta's formula roots two at a time r.r2 + r.r3 + r2.r3 = 0, and with
r2.r3 = 2/r from (95)

X =
1

r2 + 2r2r3
=

1

r2 + 4/r
=

1

3r2 − 2r
(99)

Q[r], being rationals and r, is a number field in the usual way, closed under
addition, subtraction, multiplication and division. Powers can be rolled up or
down with identity r3 = r2 + 2 to reach a desired basis, such as 1, r, r2 in the
denominator at (99).

Sometimes a form with one or two powers can be found. A computer search
helps that, then choose an attractive form. For example (94),(95) and then
rolling the resulting powers of r gives an (Im r2)2 form which is another way to
see |Im r2| > 1 as from (96).

(Im r2)2 = (Im r3)2 =
2

r
−
(

1
2 (1− r)

)
2

= 1 +
4

r8

Division in Q[r] can be done by a little linear algebra in the basis to ask
what quotient multiplied by divisor gives the dividend. For example X from
(99) would seek α, β, γ satisfying (α+βr+γr2) (3r2−2r) = 1, which has solution
X = − 3

58 + 5
29r −

1
58r

2. Sometimes coefficients of the reciprocal are simpler, as
is the case here for X.

Generating functions for the recurrence have a denominator which is the
characteristic polynomial with powers reversed in the usual way.

1

1− x− 2x3

It's helpful to write the generating functions in partial fractions so such a
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cubic part has numerator terms 1, x, x2. The coefficients in the numerator can
then show which formulas differ only by a factor etc. Sometimes there is a
geometric interpretation, or it could be merely numerical.

A generating function for ak−1 is x.ga(x), or for ak+1 is 1
x .(ga(x)−a0) in the

usual way. These forms too can be written in partial fractions with numerator
terms 1, x, x2. Again the coefficients can identify relations between different
quantities with an index offset. Usually a little computer search is needed as
several different sets of coefficients and possible offsets arise.

Any cubic linear recurrence values can be expressed as a linear combination
of at most 3 others (of the same kind of recurrence) by some linear algebra to
find factors which make their initial values terms sum to the desired target, or
the same on generating function numerator coefficients. This is similar to the
number field division above and is helpful to express one sequence in terms of
another when preparing to divide. This occurs in several limits and some of the
centroid calculations.

3 Boundary

3.1 Left Boundary

Theorem 12. The dragon curve left boundary length is

Lk =

{
1, 2, 4, 8 for k = 0 to 3

Lk−1 + 2Lk−3 for k ≥ 4
left boundary (100)

= 1, 2, 4, 8, 12, 20, 36, 60, 100, 172, 292, 492, 836, . . . k≥1 2×A203175

Generating function gL(x) = −1 + 2
1 + x2

1− x− 2x3
(101)

Proof. L0 through L3 are seen from the initial shapes in figure 1.
A level k+3 curve comprises eight level k sub-curves. They expand to make

k+4 as follows

0 1

23

45

67

8

Lk+3

0

1

2

3

4

5

6

7

8
Lk+1

Lk+1

Lk+4Figure 14: left boundary recurrence

Points 0, 3, 6, 7 are endpoints of level k curves meeting at 90◦ angles. End-
points are not re-visited and the perfect meshing of curves at right angles means
no other curve section touches them, so those points are on the left boundary.

The Lk+4 boundary sections 3 to 6 and 6 to 7 are Lk+1, ie. curve k+1. The
remaining parts 0 to 3 and 7 to 8 are the shape and sub-curve directions of
Lk+3. So a direct geometric form of the recurrence

Lk+4 = Lk+3 + 2Lk+1 for k ≥ 0 (102)
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Point 6 in figure 14 is the midpoint between curve start and end. That
midpoint is on the left boundary for k ≥ 2, since in k=2 it is single-visited and
the absent sub-curves remain absent on subsequent expansion.

Daykin and Tucker[13] consider the number of unit squares on the boundary,
as in the following example. Each boundary square may have 1, 2 or 3 curve
segments on its sides and is counted just once each.

k=4
left boundary squares

LQ4 = 6
start

end

Theorem 13 (Daykin and Tucker). The number of unit squares on the left
boundary of dragon curve k is

LQk =

{
1, 1, 2 for k = 0 to 3

LQk−1 + 2LQk−3 for k ≥ 4
left squares (103)

= 1, 1, 2, 4, 6, 10, 18, 30, 50, 86, 146, 246, 418, . . . A203175

Generating function gLQ(x) =
1 + x2

1− x− 2x3

Proof. In figure 14, the sub-curves which meet at points 3, 6, 7 do so at 90◦

angles so they have no boundary squares in common. The same recurrence
(102) for the left boundary segments applies

LQk+4 = LQk+3 + 2 LQk+1 for k ≥ 0

except it can begin from LQ0,1,2 = 1, 1, 2.

Theorem 14 (Daykin and Tucker). The left boundary squares are symmetric
in 180◦ rotation about a point 1

2 b
max(1,k) where b = 1+i. For k≥ 1 this is half

way between curve start and end.

Proof. For k=0 there is a single left side boundary square so it is symmetric in
180◦ rotation about its centre 1

2 + 1
2 i = 1

2b.
For k ≥ 1, arrange four dragon curves k−1 in a square. This begins as a unit

square which is a subset of the grid in theorem 1 so remains non-overlapping.

A

B

C

D

0

bk
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The sides A and B are the expansion of a curve level k going across the
diagonal from 0 to bk. Likewise sides C and D by symmetry in 180◦ rotation.

Copies of the dragon curve traverse all segments in the plane without cross-
ing so this square arrangement traverses all segments within the square. And
so the boundary squares of the two diagonal curves must coincide and so are
symmetric in 180◦ rotation about the middle 1

2b
k.

Further nature of the two left halves is ahead in theorem 18 as two right
sides, and theorem 30 as four joins.

A consequence of this symmetry is that the number of left boundary seg-
ments and left boundary squares are related

Lk = 2 LQk for k ≥ 1 (104)

In the half of the boundary up to midpoint 1
2b
k, each boundary square has

1, 2 or 3 boundary segments. Then in the second half they are in 180◦ rotation
so the same but 3, 2 or 1 segments, giving net 2 segments per square.

In the L and LQ recurrences, this is seen from the starting values L1,2,3 =
2 LQ1,2,3 and then same recurrence for each maintains that factor.

Likewise a factor of 2 between the generating functions, but with a constant
which adjusts for initial L0 = LQ0 = 1 not doubled.

gL(x) = 2 gLQ(x) − 1

The squares each touch 1, 2 or 3 boundary segments. The number of squares
with each number of sides can be counted separately. The total is LQ .

LQk = LQ1 k + LQ2 k + LQ3 k

Theorem 15. The number of left boundary squares on dragon curve k which
touch 1, 2 or 3 boundary segments respectively are

LQ1 k = 1, 0, 1, 2 for k = 0 to 3 (105)

LQ2 k = 0, 1, 0, 0

LQ3 k = 0, 0, 1, 2

LQsk = LQsk−1 + 2 LQsk−3 each s= 1, 2, 3, for k ≥ 4

LQ1 k = 1, 0, 1, 2, 2, 4, 8, 12, 20, 36, 60, 100, 172, . . . k≥3 2×A203175

LQ2 k = 0, 1, 0, 0, 2, 2, 2, 6, 10, 14, 26, 46, 74, . . . k≥1 A052537

LQ3 k = 0, 0, 1, 2, 2, 4, 8, 12, 20, 36, 60, 100, 172, . . . k≥3 2×A203175

Generating functions gLQ1 (x) = 1
2 + 1

2

1− x+ 2x2

1− x− 2x3

gLQ2 (x) =
x− x2

1− x− 2x3

gLQ3 (x) = gLQ1 (x) − 1

Proof. In figure 14, the sub-curves which meet at points 3, 6, 7 do so at 90◦

angles. No new sides touch the squares on each side of those points, so the same
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recurrence (103) as for LQ applies to each separate count, with the different
initial values.

Boundary segments Lk is sum of boundary squares and how many sides they
have,

Lk = LQ1 k + 2 LQ2 k + 3 LQ3 k

The symmetry of theorem 14 gives 1-side and 3-side equal,

LQ1 k = LQ3 k for k ≥ 1

In the recurrences (105), these two have identical starting values at k = 1,
2, 3 and the recurrence is the same so they continue to be equal. This equality
can also be seen geometrically from the turn at each square.

The segment after a square does not turn left or it would be a further side.

no turn left or would be an extra side
on this square

The segment after a square does not go straight ahead because there are
no straight ahead segments on the boundary. If there was then the segment
perpendicular could not be traversed without crossing or repeating when four
curves fill the plane.

if boundary went straight ahead then could
not traverse the perpendicular segment

Figure 15: boundary not straight ahead

So the next boundary segment after a square is to the right. Taken relative
to the first segment of the square, this is −90◦, 0◦ or +90◦ for 1, 2 or 3 sides
respectively.

1 side, net −90◦ 2 sides, net 0◦ 3 sides, net +90◦

Figure 16:

boundary
square
turns

For k≥ 1, the last segment of the curve is North dir(2k−1) = 1 since it is a
90◦ unfold of the initial East segment, or by dir and 2k−1 as all 1-bits.

dir of a segment is the sum of all turns. For a boundary segment, dir is
also sum of just turns along the boundary because there are no crossings in the
non-boundary parts of the curve.

The last segment has a 1-side square since the first turn in the curve is to the
left which unfolded is a preceding right turn at the end. The boundary turns
after the squares up to but not including the last square must be total net

−1.
(
LQ1 k − 1

)
+ 0.LQ2 k + 1.LQ3 k = dir(2k−1) = 1 for k ≥ 1

so LQ1 k = LQ3 k
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LQ1 ,LQ3 can be written in terms of LQ by noticing LQ1 3,4,5 = 2, 2, 4 is 2×
the start LQ0,1,2 = 1, 1, 2, and the same recurrence thereafter. The remaining
squares are LQ2 .

LQ1 k = LQ3 k = 2LQk−3 k ≥ 3

LQ2 k = LQk − 4LQk−3

Since LQk grows as a power r
k from section 2, the proportions of 1, 2, 3-side

squares among the total left squares are, with equality LQ1 k = LQ3 k for k≥1,

LQ1 k
LQk

=
LQ3 k
LQk

→ 2

r3
= 0.410245 . . . as k→∞ (106)

LQ2 k
LQk

→ 1− 4

r3
= 0.179509 . . .

3.2 Right Boundary

L0

L1

L2

L3

L4

L5

L6

start

end

Right boundary
as sum of left boundaries

R7 = 1 + L0 + L1 + · · ·+ L6

R0

L0

L1

L2

L3

L4

L5

L6

Theorem 16. The dragon curve k right boundary length is

Rk = 1 +

k−1∑
j=0

Lj right boundary (107)

=

{
1, 2, 4, 8, 16 for k = 0 to 4

2Rk−1 −Rk−2 + 2Rk−3 − 2Rk−4 for k ≥ 5
(108)

= 1, 2, 4, 8, 16, 28, 48, 84, 144, 244, 416, 708, 1200, 2036, . . . k≥1 A227036

Generating function gR(x) = 1− 2

1− x
+

2 (1 + x+ x2)

1− x− 2x3
(109)

When k=0 the sum in (107) is taken as empty so R0 = 1.

Proof. For k=0 the curve is a single line segment R0 = 1. Thereafter, per
Daykin and Tucker, the curve k unfolds to become k+1

Draft 23 page 54 of 391

http://oeis.org/A227036


Lk

Rk

LkRk
unfold

Rk+1 = Lk +Rk

Figure 17:

right boundary unfold

The midpoint is two dragon curve endpoints meeting at 90◦ so there is no
change to the boundary on the outside of the two curves at that point.

Rk+1 = Lk +Rk (110)

= Lk + Lk−1 + · · ·+ L0 +R0

Usual ways to sum recurrence Lk (100) give the Rk recurrence (108). Or
substitute Lk = Rk+1 −Rk into (100),

(Rk+1 −Rk) = (Rk −Rk−1) + 2(Rk−2 −Rk−3) for k ≥ 4

The generating function gR(x) follows from the recurrence or derive it from
gL(x). Multiply 1

1−x to sum terms, multiply x to shift that to begin at term
k=1 and add all-ones 1

1−x for R0 = 1 in each term.

gR(x) =
1

1−x
+ x

1

1−x
gL(x)

Theorem 17 (Daykin and Tucker). The number of boundary squares on the
right side of dragon curve k is

RQk = 1 +

k−1∑
j=0

LQj right boundary squares (111)

=

{
1, 2, 3 for k = 0 to 2

RQk−1 + 2RQk−3 for k ≥ 3
(112)

= 1, 2, 3, 5, 9, 15, 25, 43, 73, 123, 209, 355, 601, . . . A003476

Generating function gRQ(x) =
1 + x+ x2

1− x− 2x3

Proof. The same sum of left sides applies for squares as is does for segments
since the segments at the end of each LQ unfold are at right angles so squares
on them do not overlap, hence (111).

Recurrence (112) follows from some recurrence or generating function ma-
nipulations. It also has a direct geometric interpretation,
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start

end

RQk−3RQk−3

U

RQk−1

Figure 18:

right boundary

squares RQk

recurrence parts

k ≥ 3

The boundary squares in the U shaped part are RQk−3 since they are also
boundary squares on the right of the absent sub-curve at the top.

U

R

A square of curves like this encloses the area within, and since all enclosed
unit squares have all 4 sides traversed, the squares on the boundary of the U
coincide with the squares on the boundary of the R. (The same holds for a left
side LQ squares, when it is that side which is absent.)

The same recurrence as R holds for RQ , with different initial values. The
initial values of RQ allow it to simplify to 3 terms instead of 4.

The two RQk−3 in figure 18 together are the unfolded left side of k−2, and
its symmetric halves per theorem 14.

Theorem 18 (Daykin and Tucker). The left boundary squares are related to
right boundary squares by

LQk = 2RQk−2 k ≥ 2 (113)

and similarly for boundary segments

Lk = 2Rk−2 + 2 k ≥ 3 (114)

Proof. Both relations follow numerically from the generating functions or the
recurrences. LQ and RQ are as simple as initial values LQ2,3,4 = 2LQ0,1,2 and
the same recurrence.

The geometric interpretation is

R

start

end

R

Figure 19:

left boundary

as two right

boundaries k−2

The U shape boundary squares are RQ the same as in theorem 17. The left
side here is the second half of the curve there.
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L and R both grow as powers of the cubic root r as from section 2. The
limit for ratio L over R follows from the unfolding difference Lk = Rk+1 −Rk.
The same limit holds for boundary squares LQ over RQ .

Lk
Rk

=
Rk+1 −Rk

Rk
→ r − 1 = 0.695620 . . . as k→∞ (115)

Inverse R over L is 1
r−1 = 1

2r
2 from r as root of polynomial (92) divided

through by r2 so r−1 = 2/r2. Or using (114) for R in terms of L, for k≥1,

Rk
Lk

=
1
2Lk+2 − 2

Lk
→ 1

2 r
2 = 1.437564 . . . as k→∞

Unfolding also gives counts of 1, 2, 3 side right boundary squares as sums of
corresponding lefts from theorem 15.

RQ1 k = 1 +

k−1∑
j=0

LQ1 j =

{
1, 2, 2 if k = 0 to 2

2RQk−3 + 1 if k ≥ 3

=

{
1 if k=0

LQk−1 + 1 if k≥ 3
(116)

= 1, 2, 2, 3, 5, 7, 11, 19, 31, 51, 87, 147, . . .

RQ2 k =

k−1∑
j=0

LQ2 j = dJAk ahead at (163) (117)

= 0, 0, 1, 1, 1, 3, 5, 7, 13, 23, 37, 63, . . . k≥2 A077949

RQ3 k =

k−1∑
j=0

LQ3 j =

{
1 if k=0

RQ1 k − 2 if k≥ 1
(118)

= 0, 0, 0, 1, 3, 5, 9, 17, 29, 49, 85, 145, . . .

gRQ1 (x) =
(1 + x)(1− x− x3)

(1− x)(1− x− 2x3)
= − 1

2 +
1

1− x
+ 1

2

1 + x

1− x− 2x3

gRQ2 (x) =
x2

1− x− 2x3

gRQ3 (x) =
(1 + x)x3

(1− x)(1− x− 2x3)
= 1

2 −
1

1− x
+ 1

2

1 + x

1− x− 2x3

The sub-parts of figure 18 give recurrences for these squares too. In the
reversed end RQk−3 part, sides flip 1↔3. 2-side squares are unchanged so for
them a direct recurrence the same as full RQ .

RQ1 k = RQ1 k−1 + RQ1 k−3 + RQ3 k−3 (119)

RQ2 k = RQ2 k−1 + 2 RQ2 k−3

RQ3 k = RQ3 k−1 + RQ3 k−3 + RQ1 k−3

The sub-parts of figure 18 also give a top-down recurrence for how many
sides a particular boundary square has. Number right boundary squares starting
m=0 for the first, then the 1↔3 flip in the second RQk−3 becomes cases
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RQsides(m) =


1, 1, 2 if m = 0 to 2

RQsides
(
m− RQk−1

)
if m−RQk−1 < RQk−3

4−RQsides
(

RQk − 1−m
)

if m−RQk−1 ≥ RQk−3

(120)

where RQk−1 ≤ m < RQk for k≥ 3

= 1, 1, 2, 1, 3, 1, 1, 3, 3, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 3, . . .

1

1

2

1

3

1

1

3

3

start
...

RQsides

The sides sequence can be used to draw the boundary. The boundary turns
right around each boundary square, for its number of sides, and then left be-
tween squares, like shown for the left side in figure 16. See section 18.6 for an
L-system, and see Rturn ahead in theorem 22 for turns individually.

3.3 Total Boundary

Theorem 19. The dragon curve total boundary length is left plus right,

Bk = Rk + Lk = Rk+1 (121)

= 2, 4, 8, 16, 28, 48, 84, 144, 244, 416, 708, 1200, . . . A227036

Generating function gB(x) = 1
x (gR(x)− 1)

=
2 + 2x2

(1− x)(1− x− 2x3)
(122)

= 2

(
−1

1− x
+

2 + x+ 2x2

1− x− 2x3

)
Proof. Bk = Rk+1 follows from (110), being one more unfolding. The first term
is dropped from the generating function gR(x) in (109) and that simplifies the
terms for gB(x).

All the boundary lengths start by doubling with k but when the curve begins
to touch and enclose area then the boundary is less than double. For B this
happens at B4 = 28 onwards.

Total boundary squares are

BQk = RQk + LQk = RQk+1 (123)

= 2, 3, 5, 9, 15, 25, 43, 73, 123, 209, 355, 601, . . . A003476

Generating function gBQ(x) = (gRQ(x)− 1)/x

=
2 + x+ 2x2

1− x− 2x3

And similarly 1, 2 or 3 side squares

BQ1 k = RQ1 k + LQ1 k = RQ1 k+1 (124)
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BQ2 k = RQ2 k + LQ2 k = RQ2 k+1

BQ3 k = RQ3 k + LQ3 k = RQ3 k+1

The proportion of right boundary out of the total follows from B in terms
of R from (121). B grows as a power rk from section 2 so

Rk
Bk

=
Bk−1

Bk
→ 1

r
= 0.589754 . . . as k→∞ (125)

The rest 1−1

r
is left boundary, or by L in terms of R from (114), and hence B,

Lk
Bk

=
2Bk−3 + 4

Bk
→ 2

r3
= 0.410245 . . . as k→∞ (126)

The total 1
r + 2

r3 = 1 is r as root of the cubic polynomial (92), divided
through by r3.

The limits are the same for boundary squares in both cases, as from (123)
and (113). The L/B limit (126) is the same as LQ2/LQ from (106).

3.4 Right Boundary Segment Numbers

The 1-side and 3-side boundary squares can be taken in two types each, accord-
ing to their ends being odd or even and consequently how they expand. There
are then 5 types of boundary squares,

1e→ 1e, 1o

start end

1e 1o

1o→ 2

start end

2→ 1e, 3o

start

end

1e

3o→ 3e, 3o

start end

3e→ 2
start end

Figure 20:

1e through 3e
expansions

1e and 1o are ``even'' or ``odd'' according as their start location is even or
odd (x+y even or odd). Arrows are shown forward and reverse so expansion is
on the right.

3o and 3e are similarly odd or even according as their start location. The
``e'' of 3e can also be thought of as ``enclosing'' since its expansion encloses a
unit square (and leaves a 2-side).

2-side squares are a single type RQ2 from (117).
The expansions of figure 20 are mutual recurrences. A given type in k−1

goes to 1 or 2 types in k. For example, 1e in k is reached from 1e or from 2 in
k−1.

RQ1ek = RQ1ek−1 + RQ2 k−1 RQ3ok = RQ3ok−1 + RQ2 k−1

RQ1ok = RQ1ek−1 RQ3ek = RQ3ok−1
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RQ2 k = RQ1ok−1 + RQ3ek−1 starting RQ1e0 = 1 and others 0

The effect is 1e and 3o are cumulative 2, starting at RQ1e0 = 1 and RQ3o0

= 0. 1o and 3e are one later 1e and 3o respectively.

RQ1ek = 1 +

k−1∑
j=0

RQ2 j = JAk + 1 ahead in theorem 25

= 1, 1, 1, 2, 3, 4, 7, 12, 19, 32, 55, 92, . . .

RQ3ok =

k−1∑
j=0

RQ2 j = JAk ahead in theorem 25

= 0, 0, 0, 1, 2, 3, 6, 11, 18, 31, 54, 91, . . . A003479

gRQ1e(x) = 1
2

( 1

1− x
+

1

1− x− 2x3

)
gRQ3o(x) = 1

2

( −1

1− x
+

1

1− x− 2x3

)
Total 1-side or 3-side are per (116),(118)

RQ1ek + RQ1ok = RQ1 k

RQ3ek + RQ3ok = RQ3 k

The sub-parts of figure 18 apply to the square types. In the U part, the
boundary flips sides 1↔3 like (119), and also flip e↔o since reversed start
becomes end.

RQ1ek = RQ1ek−1 + RQ1ek−3 + RQ3ok−3

RQ1ok = RQ1ok−1 + RQ1ok−3 + RQ3ek−3

RQ3ek = RQ3ek−1 + RQ3ek−3 + RQ1ok−3

RQ3ok = RQ3ok−1 + RQ3ok−3 + RQ1ek−3

By unfolding, the whole curve boundary is 1 later. On continuing around
to the left boundary, the ``e'' or ``o'' type is reckoned by going anti-clockwise.
For example in k=0 single segment, the right side is 1e and the left is 1o.

BQ1ek = RQ1ek+1 BQ3ek = RQ3ek+1 (127)

BQ1ok = RQ1ok+1 BQ3ok = RQ3ok+1

Expansions can be illustrated in a tree

1e

1e 1o

1e 1o 2

1e 1o 2 1e 3o

1e 1o 2 1e 3o 1e 1o 3e 3o

1e 1o 2 1e 3o 1e 1o 3e 3o 1e 1o 2 2 3e 3o

1e 1o 2 1e 3o 1e 1o 3e 3o 1e 1o 2 2 3e 3o 1e 1o 2 1e 3o 1e 3o 2 3e 3o

k=0

k=1

k=2

k=3

k=4

k=5

k=6
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The reversals of figure 18 are seen for example where 1e and 3o sibling
subtrees (underneath each 2) are mirror image and flip 1↔3, e↔o. The two
right-most in row k=3 are the biggest shown.

The expansions are a bottom-up definition for RQsides at (120). That se-
quence is 1, 2, 3 without distinguishing e or o, but the rule is

RQsides(m) = 1 =

{
1o when second of a pair of consecutive 1,1
1e otherwise

RQsides(m) = 3 =

{
3e when first of a pair of consecutive 3,3
3o otherwise

1o occurs solely from expansion 1e → 1e, 1o so is second of a pair. Three
consecutive 1s do not occur, since that 1o becomes 2 on next expansion. Or
geometrically, the boundary turning away from 3 squares of 1-side would be a
segment overlap, as shown in the following diagram. If S was curve start, so no
preceding segment, then that would be no overlap, but the curve does not start
this way.

11

1

S

three consecutive 1-side

right boundary squares

would be segment overlap

3e occurs solely from expansion 3o → 3e, 3o so is first of a pair. Three
consecutive 3s do not occur, since that would be a 1-wide gap S--T in the
following diagram, into which an adjacent curve cannot enter without segment
overlaps for plane filling. If S was curve start, so no segment below it, then that
would permit filling, but the curve does not start this way.

33

3

S T

three consecutive 3-side
right boundary squares

would be a hole unreachable
for plane-�lling

Theorem 20. For k 6= 1, RQk is odd and the half-way RQ square has its centre
located at

RQhalf k =


1
2 −

1
2 i if k=0

3
2 + 1

2 i if k=2(
3
10−

4
10 i
)
bk +

(
3
10+ 1

10 i
)
(−1)k if k=1 or k≥3

(128)

= 1
2−

1
2 i, 1, 3

2+ 1
2 i,

1
2+ 3

2 i, −
3
2+ 3

2 i, −
5
2+ 1

2 i, . . .

For k=1, RQ1 = 2 is even and RQhalf 1 is taken as the corner where those
2 squares touch. This corresponds to the general formula k≥ 3.

Proof. The theorem can be verified explicitly for k ≤ 3. Boundary squares and
types (figure 20) around k = 3 are
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start

end

k=3

R L T R R

1e = R

1o = L

2 = T

1e=R

R
3o

RQhalf 3 = 1
2
+ 3

2
i

It's convenient to combine boundary square types 1e etc into R,L,T accord-
ing as they grow like a right, left or two-side respectively. The expansions of
figure 20 are then

R = 1e or 3o → R,L for 1e, or L,R for 3o

L = 1o or 3e → T

T = 2 → R,R

k=3 square types are R,L, T, R,R. One R each side will expand to the same
number of squares, which leaves L,T,R to consider on expansion.

T in the orientation of k=3 expands by multiplying b and segment replace-
ments as follows

startend

b.RQhalf 3

RQhalf 4 2 = T expansion

Square types L,T,R expand to T, R,R=3o, R,L. So the new half way is the
R type 3o which is second of expanded T. There is an R each side which will
again expand the same way each, leaving T,R=3o,L to consider. The centre
location is offset by RQhalf 4 = b.RQhalf 3 − 1

2 −
1
2 i.

R = 3o oriented with its open side upwards expands,

start

end

b.RQhalf 4

RQhalf 5

R = 3o expansion

Square types T,R=3o,L expand to R,R, L,R, T. So the new half way is the
L type 3e which is first from R=3o. The centre location is offset by RQhalf 5 =
b.RQhalf 4 + 1

2 + 1
2 i. R,R, L,R, T has again an R each side which expand the

same subsequently, leaving R,L,T to consider.
L=3e with its open side to the left expands,
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start

end

b.RQhalf 5

RQhalf 6

L = 3e expansion

Square types R, L=3e, T expand to R,L, T, R,R. So the new half way is the
T. There is again an R each side which expand the same subsequently, leaving
L,T,R to consider. The centre location is offset by RQhalf 6 = b.RQhalf 4− 1

2−
1
2 i.

L,T,R is the same as k=2, but with the T oriented 180◦ around. So the pattern
of which square types and offsets repeats

RQhalf k = RQhalf k−1 + [− 1
2−

1
2 ,

1
2+ 1

2 ] k≥4

For all boundary squares, unfolding from theorem 19 is BQk=RQk+1 so the
whole curve half-way is half-way of RQk+1. Since RQk > LQk for k≥ 1, this is
before the unfolding of the left, so location

BQhalf k = RQhalf k+1 (129)

For k=0, BQ0 = 2 is even. (129) gives curve end BQhalf 0 = 1. This can be
reckoned as where the two squares touch when going anti-clockwise around the
curve.

For the curve scaled to unit length, the right boundary half way limit is
coefficient of bk at (128).

RQhalf k
bk

→ fRQhalf = 3
10 −

4
10 i (130)

BQhalf k
bk

→ fBQhalf = b.fRQhalf = 7
10 −

1
10 i (131)

0

1

1
2

fRQhalf = 3
10
− 4

10
i

fBQhalf

= 7
10
− 1

10
i

Each RQhalf square has a first and last point number n.

RQhalfNSkRQhalfNEk
startend

RQhalf k unit square
�rst and last points n
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The steps forward or not for each expansion in theorem 20 gives recurrences
for these, and with initial values at k=3 formulas

RQhalfNSk = 2RQhalfNSk−1 + [0, 1, 0] k≥ 3

=


0 if k=0

1 if k=1
9
28 2k − 1

7 [4, 1, 2] if k ≥ 2

(132)

= 0, 1, 1, 2, 5, 10, 20, 41, 82, 164, . . .

RQhalfNEk = 2RQhalfNEk−1 − [0, 0, 3] k≥ 3

=

{
1 if k = 0 or 1
11
28 2k + 1

7 [6, 12, 3] if k ≥ 2

= 1, 1, 2, 4, 8, 13, 26, 52, 101, 202, . . .

For k=1, RQhalf 1 is the point between two squares. It is reckoned as same
n = RQhalfNS 1 = RQhalfNE 1 = 1 start and end.

Theorem 21. Segments n on the right boundary of the dragon curve are all
and only those of the following bit pattern

Rpred(n) =

{
0 if bits of n form �gure 21

1 if bits of n not of that form

=1 at n = 0...20, 25...41, 50, 51, 52, 57, . . .

=0 at n = 21...24, 42...49, 53...56, . . .

· · · 1
100 . . . 000
011 . . . 111

0
100 . . . 000
011 . . . 111

000
101 or 110 or 111

· · ·n

high low

repeat
none or more

lowest triplet
(high bit in run)

1 above run is non-boundary
Figure 21:

NonRpred
bit �elds

Triplet 000, 101, 110, or 111, is at the lowest place such a triplet occurs. A
run 100...00 or 011...11 is above it. The high bit of the triplet is the low bit
of the run, so determines its type. If a 0 above the run then the next run is
determined just by the next higher bit. If a 1 above then that is a non-right-
boundary n.

Various n are not of this form, for example no such triplet at all, or bits
ending before a run completed or no 1 above a run. Such n are Rpred .

Proof. The following segment types in boundary square types occur. The thick
horizontal is the segment. Expansion is in the manner of figure 20, with the ex-
pansion of the particular segment being of interest. The first expanded segment
is a new low 0-bit and the second is a new low 1-bit. They may be enclosed by
the expansion of adjacent segments.
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start end

0→1e

(self)

1→1o
1e

start

0→2eA 1→2eB

1o

Figure 22

start end

0→1e

1→3oA

2eA

start end

0→3oB

1→3oC
2eB

3oA

start end

0→3eA

1→3eB

3oB

start end

0→3eC 1→3oA

3oC

start end

0→3oB

1→3oC (self)

3eA

start end

0→2eA

1→non

3eB

start end

0→non 1→non

3eC

start end

0→non

1→2eB

The 2 and 3 side segments are shown with their further sides. The expansion
of those can enclose to make non-boundary segments. In 3eA, the expanded 1-bit
segment is enclosed so that it and all further expansions of it are non-boundary.

Only surrounding segments which may touch the given segment need to be
considered. Anything at more than a 90◦ angle cannot touch since it would
overlap possible further segments in between. In 1e, both the 0-bit and 1-bit
cases can ignore the other segment since they are 270◦ away and so cannot
touch.

Transitions between configurations are then

1e 1o

2eA

2eB

3oA

3oB

3oC

3eA non

3eB non

3eC non
Figure 23:

Rpred state machine,

bits of n high to low

0

1
0

1

0 1

0

1

0

1

0

1

0

1

0
1

0,1

0

1

start
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States 2eB and 3oC can be merged as a single state self-loop or to 3oB, the
same as 3oC. The first side in 3oC is too far away to affect the end segment,
so behaves the same as 2eB.

A given n is identified as boundary or non-boundary by following its bits
high to low through the states. The initial state is 1e which is a single even-
numbered segment n=0.

Usual DFA state machine manipulations can reverse to take bits of n from
low to high. rm0 is the initial state, representing no bits at all.

rm0

rm1

rm2

rm3

rm4

rm5

rm6

rm7

rm9rm8non

0

1

0

1

0

1

0

1

0
1

0

1

0

1

0

1

01

0

1

start

Rpred state machine,

bits of n low to high

The initial six states rm0 to rm5 find the lowest occurrence of a triplet 000,
101, 110 or 111. Triplet 000 goes to rm6. Triplets 101, 110 or 111 go to rm7.

rm6 is a run 100...00 and rm7 is a run 011...11. There is at least one bit
and its opposite in a run, so minimum 10 or 01 respectively. The high 0 or 1
from the triplet goes to rm6 or rm7 and is thus part of the lowest run.

Both run types end in rm8 and from there a 1 above is a non-boundary, or
0 above goes to another run.

Boundary segments are any n which does not reach a 1-bit above a run in
this way.

The minimum for a non-boundary is a 1-bit above a run of two bits, of which
one is the high of the triplet. So for example 11000 is non-boundary with 000
triplet, or 10110 with 110 triplet.

In high to low figure 23, and with 2eB and 3oC states merged as a 2eB,
it can be noticed at 1o, 2eB or 3oA bits 001 loop around to repeat that state.
Transitions among those states by runs 00...001 suffice to express Rpred ,

1e 1o

2eB
3oC =

non

3oA non

Rpred by

runs 0001

start

1

1

01

00...01
≥ 2 zeros

1
001

01

000

001
≥ 3 zeros
00...01

01, 10, 11
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At 3oA, a single 1 bit remains boundary, but a further bit either 10 or 11
goes to non-boundary. In the full high to low, this is 3eB where either further
bit goes non.

1o is reached by a run of ≥3 zeros, either from 3oA or such a run remaining
in 1o. The initial 1-bit for 1e to 1o can be thought of as infinite zeros above so
also a run ≥3 zeros. 2eB is reached by a run of no zeros. 3oA is reached by a
run of 1 zero. In each case, a run of 2 zeros remains in the same state.

With Rpred as 1 or 0, its sum is right boundary length.

Rk =

2k−1∑
n=0

Rpred(n)

This sum can be calculated from the bit patterns of figure 21. It's convenient
to count the non-boundary segments and from that by difference the boundary
segments. This is more complicated than theorem 12 and theorem 16 but is a
combinatorial interpretation for the boundary lengths.

Runs 100...000 or 011...111 with 0 or 1 above are ≥3 bits of 2 types.
Triplet and bits below are also a run ≥3 bits and no choices in the bits below

the triplet. Two arbitrary low bits reach one of rm3, rm4, or rm5. To avoid
making a triplet yet the bits must stay among those states and only a single
value in each does that (1, 0, 0 respectively).

The high bit of the triplet is part of the run above it and the triplet deter-
mines the run type 100...00 or 011...11. So there are 4 types of triplet and 1
type of lowest run. It's convenient to treat that as net 2 types each.

The number of ways to form such runs is a sum of binomials

Rnonk = 2k−Rk =

k∑
l=5

2k−l
l−2 ≥ 3t∑
t=1

2t+1

(
l−2− 2t

t

)
(133)

There are l bits for the non-boundary 1-bit and all below it. The k−l bits
above it are arbitrary so 2k−l.

Within the l bits there are to be t≥ 1 many runs plus the triplet run. As
above, there is net 2 types for each so 2t+1.

Each combination of runs is a composition (partition with order) l = l0+l1+
· · ·+ lt, with each part ≥3 except the second last which is ≥2. Those minimums
can be treated by starting them each with 2 bits or 1 bit respectively, and the
remaining length l− (2t+1) is then a composition of t+1 parts each ≥1. In the
usual way for compositions, this is binomial

(
l−(2t+1)−1

t

)
.

Another way to think of the run compositions is that there are l positions
where t+1 runs might end, except the minimum lengths remove 2t+1 possible
end positions, and the highest run must end at the top l position, leaving choices
t ends within l − (2t+1)− 1 positions.

Let the number of runs in the l bits from (133) be

TwoRuns(l) = number of compositions of l as ≥2 parts,

one ≥2, the rest ≥3, and each part 2 types

=

l−2−2t ≥ t∑
t=1

2t+1

(
l−2− 2t

t

)
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= 0, 0, 0, 0, 0, 4, 8, 12, 24, 44, 72, 124, 216, . . . 4×A003479

Taking the ≥2 part separately as length h, of 2 types, leaves one or more
parts each ≥3.

TwoRuns(l) = 2

l−h ≥ 3∑
h=2

OneRuns(l−h)

OneRuns(m) = number of compositions of m as ≥1 parts
each part ≥3 and 2 types

=

m−3−2t ≥ t∑
t=0

2t+1

(
m−3− 2t

t

)
= 0, 0, 0, 2, 2, 2, 6, 10, 14, 26, 46, 74, 126, 218, 366, 618, . . .

2×A077949, n≥1 A052537

OneRuns can be written as a recurrence sum by counting either the whole
of m as a single part of 2 types, or initial part f ≥ 3 of 2 types and the rest
further OneRuns.

OneRuns(m) =


0 if m < 3

2 + 2

m−f ≥ 3∑
f=3

OneRuns(m−f) if m ≥ 3

The sum is taken as empty when m< 6, so OneRuns(3, 4, 5) = 2.
Taking the f=3 highest term 2OneRuns(m−3) out of the sum leaves the

terms of OneRuns(m−1). This is the dragon curve recurrence,

OneRuns(m) = OneRuns(m−1) + 2OneRuns(m−3)

starting OneRuns(0, 1, 2, 3) = 0, 0, 0, 2

OneRuns and TwoRuns occur variously elsewhere as dragon cubics, or count-
ing runs for other(n) from figure 13. TwoRuns values are in section 4.2 at (161)
as join area TwoRuns(l) = 4JAl−2. OneRuns values are in section 4.3 as join
area increment OneRuns(m) = 2dJAm−1. The connection to area is that 4
right-side non-boundary segments make a right-side enclosed unit square, so
Rnonk = 4ARk.

The high to low states of figure 23 are how many sides on the unit square
to the right of segment n.

Rsides(n) = 1, 2, 3, 4 per states 1,2,3,non of figure 23 (134)

= 1, 1, 2, 2, 1, 3, 3, 3, 1, 1, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 2, 4, . . .

Rsides does not depend on a curve level k, since level end turn(2k) = 1 left
so the continuing curve puts no additional segment on the last boundary square.

For Rsides, states 2eB and 3oC are kept separate to distinguish 2 sides from
3 sides. States 3eB and ``non'' are separate to distinguish 3 from 4. A sides
predicate testing for just certain combinations could merge one or both those
state pairs if the respective distinctions are not needed. For example a predicate
identifying just n with 1-side square needs neither distinction.
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Rsides is related to RQsides (120), but RQsides is only boundary squares so
without the 4-sides, and it counts each square just once however many sides it
has. So Rsides with 4s omitted is sequence RQsides with each entry replicated
its own number of times (2 becomes 2,2, and 3 becomes 3,3,3).

Runs of non-boundary segments are always a multiple of 4 long because they
form enclosed squares with 4 sides each. But how many boundary segments are
between such runs can vary.

Right boundary segment numbers can be iterated using the bit flips of
other(n) from figure 13.

Rnext(n) =

{
other(n+1) if turn(n+1)=1 and other(n+1) same arm

n+1 if not

When turn(n+1) = +1 (left) at a double-visited point, the curve is turning
into an enclosed area,

n

n+1

other(n+1)
...

turn(n+1) = +1
left

right boundary with

segment number

Rnext(n) = other(n+1)

Stepping across to other(n+1) is the segment where it comes out to resume
the boundary. This happens first at n=20 where Rnext(20) = other(20+1) =
25.

This step across is only when turn(n+1) = +1. turn(n+1) =−1 right re-
mains on the boundary. Some of those right turns might be double-visited, but
their other would either skip some boundary or go to a non-boundary segment.

The previous boundary segment similarly

Rprev(n) =

{
other(n)− 1 if turn(n)=1 and other(n) same arm

n− 1 if not

The boundary square sides RQsides and their expansions can be used to form
a right boundary turn sequence. Squares are RQsides − 1 many right turns to
go around the square, then a left turn between squares. A direct calculation
can be made of the boundary turns as follows.

Theorem 22. Number right boundary points of the dragon curve starting m=0
at the origin, so the �rst boundary turn is at m=1. The turn +1 left or −1 right
is given by recurrence

Rturn(m) =


1 if m = 1, 2

Rturn(m−Rk) if m < RJ k

−1 if m = RJ k

Rturn(m− Lk) if m > RJ k

(135)

where m is in the range Rk ≤ m < Rk+1 for k ≥ 1 (136)
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= + +−+ +−−+ + +−−+−− . . .

RJ k = 1
2Rk+2 − d 2

3ke (137)

= 2, 3, 6, 12, 21, 38, 68, 117, 202, 348, . . .

gRJ (x) = 2
3

2− x
(1− x)2

+ 1
3

1 + x

1 + x+ x2
+

3 + 2x+ 4x2

1− x− 2x3

Proof. For an m in the range (136), consider the curve up to Rk+1 and its k−1
sub-curves as follows,

start

RJk

Rk+1

Rk

2eA

2eB

E

E′

S

S′

Rturn
sub-curve
parts

Some of sub-curve 2eA is enclosed, but the portion marked S preceding where
it touches 2eB is the same as curve start S′, so can reduce to m−Rk.

Some of sub-curve 2eB is enclosed, but the portion marked E after where
it touches 2eA is the same as E′. Per the unfolding in theorem 16, difference
Rk+1−Rk = Lk so reduce to m− Lk.

2eA and 2eB meet at point RJ . If k−1 = 1 so that the sub-curves shown are
unit segments, then it is already a right turn as shown. But in later expansion
levels the curve turns left at RJ to go into enclosed area whereas the boundary
turns right to skip that. Hence −1 turn at RJ in (135).

Point RJ k along the boundary is Rk up to the 2eA, and then the number
of unenclosed segments in 2eA (of level k−1). The expansions of figure 22 are
mutual recurrences for 2eA length,

R2eAk = Rk−1 + R3oAk−1 starting R2eA0 = 1

R3oAk = R3eAk−1 + R3eBk−1 starting R3oA0 = 1

R3eAk = R2Ak−1 + R3eBk−1 starting R3eA0 = 1

R3eAk =

{
1 if k = 0

0 if k > 0

R2eAk = 1, 2, 4, 5, 10, 20, 33, 58, 104, 177, . . .

R3oAk = 1, 2, 1, 2, 4, 5, 10, 20, 33, 58, . . .

R3eAk = 1, 1, 2, 4, 5, 10, 20, 33, 58, 104, . . .

RJ k = Rk + R2eAk−1

Working through the recurrences shows RJ is per (137). That formula can
define an initial RJ 0 too, though the proof here only uses k≥ 1.

k=4 curve through to k+1 = 5 is the first where the curve at RJ turns left
into enclosed area but the boundary turns right.
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start

S′

S

E

E′

Rk+1

Rk

J

k=4 to k+1=5

R4 = 16

RJ 4 = 21

R5 = 28

The right boundary is the whole curve until RJ 4 = 21. So Rturn(m) =
turn(m) for m ≤ 20, which is an alternative to continuing recurrence (135)
down to m= 1, 2.

In (135), all right turns −1 occur at RJ points, suitably reduced. The effect
is to identify all m where the curve turns into enclosed area and have boundary
right turn there. The 2-side squares, which are right turns already, with nothing
enclosed, can be thought of as prospective subsequent enclosures. RJ k is the
biggest enclosure in its Rk to Rk+1 range, then the parts S′,E′ reduced may
contain smaller ones.

A similar recurrence gives the segment number n which is m'th on the right
boundary, reckoning the first as m=0. These are all the n which are Rpred(n).

Rn(m) =


m if m ≤ 1

2k + Rn(m−Rk) if m < RJ k

2k + Rn(m− Lk) if m ≥ RJ k

(138)

where m is in the range Rk ≤ m < Rk+1 for k ≥ 1

= 0...20, 25...41, 50, 51, 52, 57, . . .

The reductions by Rk or Lk both reduce n by a block of 2k segments. The
first non-boundary segment is n=21 so that (138) can be Rn(m)=m for m≤ 20
instead of the recurrence all the way down to m≤ 1 if desired.

3.5 Left Boundary Segment Numbers

Some of the left boundary in level k is enclosed by level k+1 and so is no longer
on the boundary. This is unlike the right boundary which is never enclosed so
its level k boundary segment numbers are a prefix of the level k+1 boundary
segment numbers.

Three forms of left boundary segment numbers are considered here

� segments on boundary for particular level k
� segments on boundary for every level, so the curve continued infinitely
� segments on boundary for some level, a union of all left boundaries
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start

end

left boundary
level k=7

start

left boundary
in�nite curve

start 0

1

23

4

5

6 7

left boundary
all levels

A level k left boundary unfolds to the right boundary of level k+1.

left

Lpredk(0) = Rpred(2k+1−1)

Lpredk(2k−1) = Rpred(2k)

Lpredk(n) = Rpred(2k+1−1− n) 0 ≤ n < 2k

This subtraction is n bit flipped 0↔1 and extra high 1-bit. That 1-bit has
the effect of starting in state 1o.

1 n �ipped 0↔12k+1−1− n =

k bits

For the curve continued infinitely, it suffices to consider an extra curve at
the end. The segments of n < 2k enclosed by that extra are not on the boundary
continued infinitely.

left

top

Lpred∞(0) = Rpred(2k+2−1)

Lpred∞(2k−1) = Rpred(3.2k)

unfold

The possible further curve section marked ``top'' does not touch the left
boundary since both are left sides and so do not touch (the two opposing right
sides of the square touch).

Unfolding brings the left side to the end of the right side.

Lpred∞(n) = Rpred(2k+2−1− n) any k where 2k > n

=1 at n = 0...6, 11, 12, 13, 22...27, 44...54, . . .

=0 at n = 7...10, 14...21, 28...43, 55...90, . . .

This subtraction is n bit flipped 0↔1 like above, but this time an extra two
high 1-bits above however many bits are necessary to represent n. These two
high 1-bits have the effect of starting in state 2eB.

1 1 n �ipped 0↔12k+2−1− n

k bits, with 2k > n
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For the left boundary of any level k, the minimum enclosing is when k is
the smallest 2k > n, being the bits required to represent n with no high 0s.

Lpredany(n) = Lpredk(n) k smallest 2k > n

=1 at n = 0...7, 11...15, 22...31, 44...63, . . .

=0 at n = 8, 9, 10, 16...21, 32...43, 64...90, . . .

Similar holds for an Lsides number of sides on the unit square to the left
of segment n, in terms of the corresponding terms of the corresponding Rsides
from (134).

Lsidesk(n) = Rsides(2k+1 − 1− n)

k=0 = 1

k=1 = 2, 2

k=2 = 3, 3, 3, 1

k=3 = 3, 3, 3, 3, 3, 3, 1, 1

Lsides∞(n) = Lsidesk+2(n) where k big enough n < 2k

= 3, 3, 3, 3, 3, 3, 2, 4, 4, 4, 4, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 1, . . .

Or left boundary squares numbered by an index m starting m=0, in terms
of the corresponding RQsides from (120).

LQsidesk(m) = LQsides
(
RQk+1 − 1−m

)
k=0 = 1

k=1 = 2

k=2 = 3, 1

k=3 = 3, 3, 1, 1

LQsides∞(m) = LQsidesk+2(m) where k big enough m < LQk

= 3, 3, 2, 3, 1, 3, 3, 1, 1, 3, 3, 2, 2, 1, 1, 3, 3, 2, 3, 1, 3, . . .

Left boundary segment numbers can be iterated similar to the right bound-
ary using the bit flips of other(n) from figure 13, stepping across a double-visited
right turn.

Lnext∞(n) =

{
other(n+1) if turn(n+1)=−1 and other on same arm

n+1 if not

Within a level k, the other(n) should be taken only within the same k,

Lnextk(n) =

{
other(n+1) if turn(n+1)=−1 and other<2k on same arm

n+1 if not

For the previous segment, no distinction is needed between k or continued
infinitely, though within k it's necessary to check decrease other(n) < n so as
not to go to across a join into bigger k.
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Lprev(n) =

{
other(n)− 1 if turn(n)=−1 and other<n on same arm

n− 1 if not

4 Area

Where the dragon curve touches, it encloses unit squares. This can be on the
left or right side of the curve.

Since the curve always turns ±90◦ the left or right side enclosed squares
alternate. Left squares have an even x+y lower left corner. Right squares have
an odd x+y lower left corner.

start

end

Figure 24: area k=6

AL6 = 7

AR6 = 4

A6 = 11 total

Lemma 1. Consider line segments on a square grid where any enclosed unit
square has segments on all 4 sides. The enclosed area A and boundary B are
related to total line segments N by

4A+B = 2N (139)

Proof. Count the sides of the line segments. There are N segments so total 2N
sides. Each side is either a boundary or is inside.

side

side

4 sides
inside

There are B outside sides on the boundary. The inside sides are all in
enclosed unit squares. Each area A square has 4 inside sides, so 4A and total
B + 4A = 2N .

Theorem 23 (Daykin and Tucker). The area enclosed by dragon curve level
k is

Ak = 1
22k − 1

4Bk area

=

{
0, 0, 0, 0, 1 for k = 0 to 4

4Ak−1 − 5Ak−2 + 4Ak−3 − 6Ak−4 + 4Ak−5 for k ≥ 5
(140)

= 0, 0, 0, 0, 1, 4, 11, 28, 67, 152, 335, 724, 1539, . . . A003230

Generating function gA(x) =
x4

(1−x)(1−2x)(1−x−2x3)
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= 1
2

( 1

1−x
+

1

1−2x
− 2+x+2x2

1−x−2x3

)
(141)

Proof. In the dragon curve, an enclosed unit square always has all four sides
traversed exactly once. If there was ever a bigger area then the curve would
have to cross itself to traverse the inner lines to produce the ``all segments
traversed'' pattern when four curves fill the plane. So lemma 1 applies.

4Ak +Bk = 2.2k

The recurrence (140) is from the usual way to work a power into an existing
linear recurrence. It can also be obtained from the generating function which
introduces 1/(1−2x) for 2k to subtract from. The characteristic equation of the
recurrence has a new factor x−2 for 2 as a new root.

Second Proof of Theorem 23. When each segment expands, an existing enclosed
unit square becomes 2 enclosed unit squares. A BQ3e type boundary square
expands to 1 enclosed unit square. Other square types of figure 20 do not enclose
new area (they do not have opposing right sides).

=⇒

enclosed
unit square

=⇒

BQ3e
boundary square

Ak = 2Ak−1 + BQ3ek−1 =

k−1∑
j=0

2k−1−jBQ3ej (142)

Some recurrence or generating function manipulation then gives Ak. The
sum of descending powers of 2 of BQ3e is factor 1

1−2x on gBQ3e(x), then further
factor x for index shift so the sum starts k−1.

gA(x) =
x

1−2x
gBQ3e(x)

where gBQ3e(x) = gRQ3o(x)

The limit area for the curve scaled to endpoints a unit length is the coefficient
of the 2k term,

Ak
2k
→ 1

2
(143)

4.1 Area Left and Right Sides

The curve does not cross itself so an enclosed unit square is either on the left
or right side of the curve. The two sides can be counted separately

Ak = ARk + ALk
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Theorem 24 (Daykin and Tucker). The area enclosed on the right side of
dragon curve level k is

ARk =

{
0 for k = 0

Ak−1 for k ≥ 1
right area

= 0, 0, 0, 0, 0, 1, 4, 11, 28, 67, 152, 335, 724, . . . A003230

Generating function gAR(x) = x gA(x)

= 1
4

(
−1 +

2

1− x
+

1

1− 2x
− 2(1 + x+ x2)

1− x− 2x3

)
and on the left side

ALk =

{
0 for k = 0 to 3

Ak −Ak−1 for k ≥ 4
left area

= 2k−2 − 1
4Lk (144)

= 0, 0, 0, 0, 1, 3, 7, 17, 39, 85, 183, 389, 815, . . . A003478

Generating function gAL(x) =
x4

(1− 2x)(1− x− 2x3)

= 1
4

(
1 +

1

1− 2x
− 2

1 + x2

1− x− 2x3

)
Proof. Per Daykin and Tucker, the unfolding of figure 17 can be drawn with
areas on the left and right of the curve.

ALk

ARk

ALkARk
unfold

ARk+1 = ARk + ALk

At the midpoint the two curves meet at 90◦ so no new area is enclosed on
the right, making the right area the previous total area.

ARk+1 = ARk + ALk = Ak (145)

The left side follows from that as total area difference,

ALk + ARk = Ak

ALk = Ak −ARk = Ak −Ak−1 (146)

The generating function follows as gAL(x) = gA(x)− x gA(x).
Form (144) is lemma 1 applied only to left sides of each segment, with total

2k such sides.
4ALk + Lk = 2k

Repeated unfolding gives all area as successive copies of the left area, so a
cumulative AL,
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Ak =

k∑
j=0

ALj (147)

This is also in the generating functions. Factor 1
1−x is a cumulative sum

gA(x) =
1

1−x
gAL(x)

Bates, Bunder and Tognetti[5] consider runs of consecutive turns left or right
in the paperfolding sequence. They show the number of runs of 3 consecutive
lefts or rights in curve level k are

A3 leftk = 2k−4 for k ≥ 4

A3rightk = 2k−4 − 1

They show too that the n where a run of 3 lefts start or 3 rights start are
respectively

8TurnLeft = 8, 16, 32, 40, 64, 72, 80, 104, . . . A106841

8TurnRight − 2 = 22, 46, 54, 86, 94, 110, 118, 150, . . . A106838

since expanding the curve 3 times is additional turns before each existing turn,

t1

LLRLLRR

before odd

LLRRLRR

before even

t2

LLRLLRR

before odd

...

... turn(n 6≡ 0 mod 8)

turn(8n)

The new turns before odd are the turns of n = 1 to 7. The new turns before
even are the turns of n = 9 to 15. By unfolding, the latter are a reverse and L↔
R flip of 1 to 7. Unfolding puts these alternately before odd and even existing
turns. The only way to make a run LLL is for an existing turn to be an L to go
with the LL following it. The only way to make a run RRR is an existing turn
R to go with the RR preceding it.

Runs of 3 turns left or right form an enclosed unit square on the left or right
of the curve respectively.

+1

+1turn = +1
three consecutive left turns,

left-side enclosed unit square

start

end

k=8

LLL squares black
RRR squares grey

total
A3 left8 = 16

A3right8 = 15
A8 = 67
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Limits for the proportion of these types of enclosed squares out of the total
left or right side areas are, since AL and AR both grow as 2k−2,

A3 leftk
ALk

→ 1

4

A3rightk
ARk

→ 1

4

No segment has a 3-turn square on both sides. That would be a turn sequence
LLLRRR or RRRLLL and they do not occur. There is no such sequence in k=4
and thereafter unfolding makes a new 3-turn at the unfold, but the preceding
and following turns are not then a pair of 3s.

4.2 Join Area

When the dragon curve unfolds the two copies enclose the same area each and
where they meet encloses a further join area.

start

end

join

unfold

join area

JA6 = 6

between two

k=6 curves

meeting

JAk

Theorem 25 (Daykin and Tucker). The join area enclosed by two dragon
curves level k is

JAk = Ak+1 − 2Ak join area (148)

= ALk+1 −Ak (149)

=

{
0, 0, 0, 1 if k = 0 to 3

2 JAk−1 − JAk−2 + 2 JAk−3 − 2 JAk−4 if k ≥ 4

= 0, 0, 0, 1, 2, 3, 6, 11, 18, 31, 54, 91, 154, 263, 446, . . . k≥3 A003479

Generating function gJA(x) =
x3

(1− x)(1− x− 2x3)
(150)

= − 1
2

1

1− x
+ 1

2

1

1− x− 2x3

Proof. The join area is the additional area Ak+1 has over two copies of Ak.
This is entirely on the left side of the curve so the join is the additional area

which ALk+1 has over ALk + ARk = Ak which is the unfolding on that side,
giving (149).

(148) is the BQ3e increment of A as from (142) so that

JAk = BQ3ek (151)

Join area can also be calculated from the shortfall of boundary Bk+1 over
two Bk. Each new enclosed unit square in the join is 4 boundary sides no longer
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on the boundary

JAk = 1
4

(
2Bk −Bk+1

)
The join is on the left of the curve and so is the shortfall of left boundary

Lk+1 over a left and right Rk +Lk which is the unfold on that side. Then with
Rk + Lk = Rk+1 from (110) a left right difference

JAk = 1
4

(
Rk+1 − Lk+1

)
Join as extra over area doubling (148) also gives total area as a sum of joins

Ak = JAk−1 + 2Ak−1

= JAk−1 + 2JAk−2 + 4JAk−3 + 8JAk−4 + · · · (152)

=

k−1∑
j=0

2k−1−j JAj

This sum is in the generating functions. Factor 1
1−2x is such a sum of

descending powers of 2. Factor x is an index shift since Ak in (152) has highest
term JAk−1.

gA(x) = x
1

1−2x
gJA(x) (153)

Theorem 26. The join area is right boundary squares in successive 3-index
steps,

JAk = RQk−3 + RQk−6 + · · ·+ RQ0 or 1 or 2 (154)

These right boundary parts are directed at successive 180◦ angles, starting from
−90◦ relative to the start of the curve.

Proof. After 3 expansions, the join meeting is

R

join

start

end

unfold

start

end

join

=⇒

Figure 25:

join after 3 expansions

So the join is a right side turned −90◦ followed by a further join of the same
kind as the original but rotated 180◦,

JAk = RQk−3 + JAk−3 for k ≥ 3 (155)

= RQk−3 + RQk−6 + · · ·+ RQ0 or 1 or 2 + JA0 or 1 or 2

which is (154) since the initial joins are empty JA0 = JA1 = JA2 = 0.
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M

RQ7

RQ4

RQ1

Join area k=10

JA10 = RQ7 + RQ4 + RQ1

54 = 43 + 9 + 2

M

At point M the squares are the right side RQ7 of a curve with initial segment
downwards (−90◦) and then curling around in its usual way. Those initial
segments are shown dashed. They are at the end of the first joining sub-curve
and are some of a right side since the end of that sub-curve is an unfolding of
its previous level.

The next part RQ4 starts in the opposite direction +90◦ and the final part
RQ4 opposite again back to −90◦.

The index steps by 3 mean the RQ parts decrease in size quickly. The
proportion of the first to total join area follows from (155) and JA growing as
power rk (section 2),

RQk−3

JAk
=

JAk − JAk−3

JAk
→ 1− 1

r3
= 0.794877 . . .

Or simply the rest being JAk−3 so its proportion,

JAk − RQk−3

JAk
=

JAk−3

JAk
→ 1

r3
= 0.205122 . . .

The first point where a level k curve touches its unfolded copy is the smallest
vertex number in the join and is the end-most part of that join area. The vertex
numbers on each side can be calculated.

start

endk=4
�rst point where
unfold touches

JNother4 = 22 = 24 + 3JNDk

unfold at n=24 = 16

JN 4 = 14 = 24−JNDk

JNDk = 2

Theorem 27. Number the vertices of the dragon curve starting from n=0. The
�rst vertex (smallest n) of a level k curve join is vertex number
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JN k = 1
7 (6.2k + 2k mod 3) =

⌈
6
7 2k

⌉
join n (156)

= 1, 2, 4, 7, 14, 28, 55, 110, 220, 439, 878, . . . A057744

= binary 011 011 . . . 011 (zero or more repeats)

then 1 or 10 or 100 total k+1 bits (157)

and the opposing point it touches other(JN k) is

JNotherk = 1
7 (10.2k − 3.2k mod 3) join n other

= 1, 2, 4, 11, 22, 44, 91, 182, 364, 731, 1462, . . .

= binary 101 101 . . . 101 (zero or more repeats)

then 1 or 10 or 100 total k+1 bits

Or each measured back from the unfold point 2k,

JN k = 2k − JNDk join n from unfold

JNotherk = 2k + 3 JNDk (158)

JNDk = 1
7 (2k − 2k mod 3) =

⌊
1
7 2k

⌋
(159)

= 0, 0, 0, 1, 2, 4, 9, 18, 36, 73, 146, 292, . . . A155803

= binary 100 100 100 . . . total k−2 bits

2k mod 3 means 1, 2, 4 according to k ≡ 0, 1, 2 mod 3. For k≤ 2, there is
nothing enclosed by the join and JN k = JNotherk = 2k. For k≥ 3, there is join
area enclosed.

In the binary (157) for JN , the repeats of 011 have a high 0 bit. That bit is
included in the k+1 total bit count.

Proof. Expand a join three times as per figure 25. The R side is a sub-curve of
2k−3 segments and then further join k−3 so

JNDk = 2k−3 + JNDk−3

= 2k−3 + 2k−6 + · · ·+ 20 or 1 or 2 + JND0 or 1 or 2

The power formula (159) follows from initial JND0 = JND1 = JND2 = 0
which are no squares enclosed by join k ≤ 2.

For JNotherk, there are 3 lengths of 2k−3 from the unfold to the meeting.
That factor 3 is in each such expansion so JNotherk = 2k + 3JNDk (158).

The bit pattern of JNDk shows how it doubles each time plus 1 when k ≡
0 mod 3. There is a new meeting only on every third expansion.

JNDk = 2 JNDk−1 + (1 if k ≡ 0 mod 3)

For JN k, this is double each time and subtract 1 when k ≡ 0 mod 3. For
JNotherk, this is double each time and add 3 when k ≡ 0 mod 3.

Out of the total 2k+1 segments the join point limits are half the coefficients
of their 2k terms.

JN k

2k+1
→ 3

7

JNotherk
2k+1

→ 5

7
(160)
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Join points n where curve k joins to its unfolded copy can be characterized
from the other(n) bit pattern of figure 13. A join point has n within its k bits
but the corresponding other(n) requiring k+1 bits. This occurs when the top-
most flip is an 011...111 and that 0-bit is the next above the k bits of n, so flip
to k+1 bits. This requires t=1 so that a 0 above the top of n is the 6=t bit. This
is a right turn, which is also since the join is on the left of the curve.

0 6=t 0 11 . . . 111 t=1
100 . . . 000
011 . . . 111

t=1 1 0...0

�ip �ip

k bits repeat ≥ 0 times
≥ 0 zeros

high low

n binary

JPpredk(n) =

{
1 if n < 2k and other(n) ≥ 2k same arm

0 otherwise

=1 at n = 7 for k = 3

14, 15 for k = 4

28, 30, 31 for k = 5

55, 56, 59, 60, 62, 63 for k = 6

The smallest n with JPpredk(n) = 1 is the join end point n = JN k from
theorem 27.

All the even n in a given join are the previous level doubled. An n with
JPpredk(n) = 1 can have a low 0-bit added to its bit form to give JPpredk+1(2n)
= 1. Conversely any JPpredk+1(2n) = 1 can have a low 0-bit removed and
satisfies JPpredk(n). For example k=4 points 14 and 15 become 28 and 30 in
k=5.

Each join point completes a join area square so

JAk =

2k∑
n=0

JPpredk(n)

This sum can be calculated by counting JPpred bit patterns. Optional low
0-bits, lowest 1-bit and t=1 are a run of ≥ 2 bits. Each flipped run and t above
are ≥ 3 bits and of 2 types each, except just 1 type for the highest. These run
lengths are the compositions TwoRuns of section 3.4, but factor 1

4 since the first
and last runs are not of 2 types each.

JAk = 1
4TwoRunsk+2 (161)

4.3 Join Area Increment

The relations in this section between JA, dJA, LQ and RQ follow numerically
from their respective recurrences. The geometry shows their shapes are the
respective parts too.

Theorem 28 (Daykin and Tucker). The join area grows by a unit square at
the join end and two copies of its second previous self at the middle

(
1
2 + 1

2 i
)
bk.
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1
bk

(
1
2

+ 1
2
i
)
bk

JAkJAk−2

JAk−2

JAk+1 = JAk + 1 + 2JAk−2

dJAk = JAk+1 − JAk increment

= 2 JAk−2 + 1 k≥ 2

= dJAk−1 + 2dJAk−3

(162)

(163)

dJAk = 0, 0, 1, 1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, . . .

A077949

Generating function gdJA(x) = x2 1

1− x− 2x3

Proof. Arrange four curves in a square. They expand as follows so that the two
right sides touch in the middle. The two left sides never touch, otherwise they
would overlap that middle.

L

R R

L

=⇒
Figure 26:

square expansion

middle touch

The join area JA is where two curve ends touch. Expanding one level gives

Jk

=⇒
RLa

Lb

Jk+1 Figure 27:

join area

one expansion

The opposing left sides La and Lb do not touch as per figure 26 above. So
the join JAk+1 is the area enclosed by the two adjacent sides R and Lb. This
is the join between two curve starts.

Consider the unit squares on the boundaries of four curves arranged in a
square,

Lk

Rk Rk

Lk

4

Jk+1 Jk

Jk Jk+1 3

3

Jk Jk+1

Jk+1 Jk

Rk Rk

Lk

Lk

M

Figure 28: boundary square overlaps

Since dragon curves traverse all segments of the plane, this square arrange-
ment must enclose all unit squares inside. The unit squares on the boundaries
of the curves must overlap.
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The top-left and bottom-right corners are curve end meetings and so join
area JAk. The top-right and bottom-left corners are curve start meetings and
so JAk+1.

There cannot be a single point in the middle where all 4 sides touch or it
would be visited 4 times. There could be a single square in the middle common
to all 4 sides, or there could be two squares which are each common to the two
right sides and one left, with (possibly empty) middle squares M between the
right sides.

For k=0, each curve is a single line segment which is the 4-overlap case.
The joins are all empty JA0 = JA1 = 0.

4-overlap for k=0 unit sides

For k ≥ 1, the 3-overlap occurs because the two right sides R touch per
figure 26.

Expand the join from figure 27 a second time,

L

Ra

Rb

Jk+2
Figure 29:

join second

expansion

The join is the overlap of the three sides marked Ra, L and Rb. Each of
those sides is a level k curve and the join is k+2.

This is the square arrangement of figure 28 turned 90◦. If k=0 then it's
the single-segment 4-overlap case. That single square is not enclosed and so
JA2 = 0.

If k ≥ 1 then it's the 3-overlap case. The first 3-square is common to all of
Ra, L and Rb and is part of the join. The second 3 square is common only to
Ra and Rb. Its third side would be the absent vertical which would complete
the square. That second 3 is therefore on the boundary and not part of the join.
So

JAk+2 = JAk+1 + 1 +M

The nature of the middle part M is seen by expanding the 3-overlap square
of figure 28 by one level as follows.
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Lk−1

Lk−1

3

3

Jk
Jk+1

Jk+1 Jk

M = 2× Jk−1

The right sides expand to touch in the middle as per figure 26. The middle
squaresM are therefore two endpoint meetings which are each join Jk−1. Hence
the join area growing by copies of its previous self.

M = 2 Jk−1

JAk+2 = JAk+1 + 1 + 2 JAk−1

The generating function gdJA(x) follows from the gJA(x) formula (150).

gdJA(x) = (1− x) gJA(x) term-wise differences

The 1
1−x factor in gJA(x) form (150) represents a cumulative sum, in this

case a sum of dJA.

Theorem 29. The left and right boundary squares are two joins with a unit
square in between

1

JAk+1

JAk

1
JAk+2

JAk

LQk = JAk+1 + 1 + JAk

RQk = JAk+2 + 1 + JAk

(164)

(165)

Proof. In the square of figure 28, the left boundary is JAk+1 + 1 + JAk.
In the second join expansion of figure 29, JAk+2 goes to the second ``3''

square. The missing vertical in that figure is a downward curve and so the rest
of the Rb boundary is from the curve end to that points, which is JAk.

The proportion of join squares out of these left or right boundary squares
follows from (164) and (165) and JA growing as a power rk (section 2).

JAk

LQk

=
JAk

JAk + JAk+1 + 1
→ 1

1 + r
= 1

4 r
3 − 1

2 r = 0.370972 . . .
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JAk

RQk

=
JAk

JAk + JAk+2 + 1
→ 1

1 + r2
= r − 1

2 r
2 = 0.258055 . . .

The second r forms are division in Q[r] per section 2. Some equivalent
recurrence or generating function manipulations gives identities expressing JA
in terms of terms of LQ or RQ ready to divide.

JAk = 1
4LQk+3 − 1

2LQk+1 − 1
2

JAk = RQk+1 − 1
2 RQk+2 − 1

2

Daykin and Tucker give right and left boundary squares difference

RQk − LQk = dJAk+1 (166)

Geometrically this is the difference between JAk+1 in LQ and JAk+2 in RQ ,
which is join increment dJAk+1.

The left and right boundary breakdowns of theorem 29 correspond to the
four fractal boundary parts used by Chang and Zhang[9]. Their A1A∞ is JAk+2

on the right boundary taken as a sum of increments JAk+2 =
∑k+1
j=0 dJAj . Each

increment is dJA = 2JA + 1, with the +1 part →0 for the fractal. Their A1B1

and B1A2 sections are the 2JA of that increment, one forward and one rotated
backward, so curling in or out. The last increment in JAk+2 is dJAk+1 =
2JAk−1 + 1 which is 3 levels down and hence shrink factor (1/

√
2)3 so A1B1 =

B1A2 = 2−3/2A1A∞. Their algorithm 2 for expanding the parts corresponds to
the increment again JAk = JAk−1 + 1 + 2JAk−3 (162).

start

J0 = 0

J1 = 0

J2 = 0J3

J3J4

J4

J5
J5

J6

J6

J7

J7

curve right boundary squares
as joins forward and backward
with extra square in between.

Theorem 30. For k ≥ 2, the two symmetric halves of the left boundary squares
are each two joins with a unit square in between.

left

squares

1

JAk

JAk−2

JAk−2

JAk

LQk = 2
(
JAk + 1 + JAk−2

)
for k ≥ 2
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The join parts may be empty. For k=2, both JAk and JAk−2 are empty
and the boundary is just the unit squares between, LQ2 = 2. The rotational
symmetry of LQ is per theorem 14.

Proof. This is as simple as the left boundary squares being two inward pointing
right boundary squares as from figure 19, and theorem 29 above.

It can also be seen in a square arrangement as follows in the style of figure 28.
The sides are level k−1. The diagonal from 0 to bk is a level k curve.

0 bk−1

bk

Jk−2

Jk−2

Jk

Jk

a

b

Sides a and b are the expansion of the diagonal. The left boundary squares
of a and right boundary squares of b are the joins JAk and JAk−2 established
above.

4.4 Join End Square

Theorem 31. The boundary square at the end of the join, which is the 3 or 4
overlap square of �gure 28, is located at

JEQk = 3+i
5 bk − 1−3i

10 (−1)k end square centre (167)

= 1
2+ 1

2 i,
1
2+ 1

2 i, −
1
2+ 3

2 i, −
3
2+ 1

2 i, −
5
2−

1
2 i, −

3
2−

7
2 i, . . .

JEC k = JEQk −
(

1
2+ 1

2 i
)

lower-left corner

= 0, 0, −1+i, −2, −3−i, −2−4i, 1−5i, 6−4i, . . . −Re = A077870

JEQk is the centre of the square so a Gaussian integer plus 1
2+ 1

2 i. The
combination of bk and (−1)k give real and imaginary parts a multiple of 5
leaving fraction 1

2 .

Proof. The following diagrams show how the end of the join expands. J is the
end of the join (at N = JN k). Q is the centre of the boundary square and is
the JEQk to be calculated.

k ≡ 0 mod 6

J

Q

k ≡ 1 mod 6

J

Q

k ≡ 2 mod 6

J

Q

Figure 30:

join end square
expansions

Draft 23 page 87 of 391

http://oeis.org/A077870


k ≡ 3 mod 6

J

Q

k ≡ 4 mod 6

J

Q

k ≡ 5 mod 6

J

Q

The dashed lines are the expansion on the right of each line segment. X
is the centre of the new boundary square. The expansions rotate by +45◦ for
multiplying by b. For example the L shape of k≡0 expands to a U shape pointing
diagonally upward and then rotates +45◦ to be left in k≡1.

For k≡2, the join gains a new unit square and the Q point is the new join
point J for k≡3. Likewise k≡5 rotated by 180◦. Each of k≡3, 4, 5 are 180◦

rotations of k≡0, 1, 2 respectively. At k≡5 the expansion returns to the pattern
and orientation of k≡0.

The distance Q to X is alternately up or down 1
2 i so

JEQk = b
(

JEQk−1 + 1
2 i(−1)k

)
= bk JEQ0 − b 1

2 i

k−1∑
j=0

bj(−1)k−1−j

= bk
(

1
2+ 1

2 i
)
− b 1

2 i
bk − (−1)k

b− (−1)

Second Proof of Theorem 31. From figure 25 the join end square is given by the
square 3 levels down, and with that level located at 1

2b
k and turned 180◦

JEQk = 1
2b
k − JEQk−3

= 1
2b
k − 1

2b
k−3 + 1

2b
k−6 − · · · ± 1

2b
3 or 4 or 5 ∓ JEQ0 or 1 or 2

The same argument can be made with the lower-left corner point JEC k.
The diagrams of figure 30 would have the corner point either unchanged or +i,
instead of ± 1

2 i as for JEQk.
Figure 30 also show how the join endpoint goes anti-clockwise around the

corners of the boundary square. The top-right corner is repeated in k≡1, 2. The
bottom-right corner is repeated in k≡4, 5. So a period-6 pattern around the 4
corners.

The boundary square type goes in a pattern 2, 3e, 3o, repeating.

The above 3-repeat pattern is similar to RQhalf from theorem 20. The RQ
half-way is in fact a join end,
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start

end

unfold

m

RQ

LQ

RQ

LQ

RQ

RQ

bk bk−1

RQhalf k = join end

Figure 31

m is a k−3 sub-curve. The join end between it and the ``unfold'' sub-curve is
RQhalf k because there is the same number of boundary squares before and after.
Before and after are both two RQ and one LQ , less JA which is non-boundary.
The U part is RQ per theorem 17.

RQk = 2
(

2RQk−3 + LQk−3 − (JAk−3+1)
)

+ 1 k≥ 3

RQhalf k = bk−1 − i.JEQk−3

5 Points

Lemma 2. Consider a path on a square grid which does not repeat any segment
and which traverses all four sides of any enclosed unit square.

The number of single-visited points S, double-visited points D, enclosed area
A and boundary length B are related

D = A double-visited = area (168)

S = B/2 + 1 single-visited and boundary (169)

The starting point of the path can be revisited. If it is then that point is
double-visited.

Proof. A path of no line segments is taken to be a single point at its start. The
relations hold with D = A = B = 0 and S = 1.

When a further line segment is added to the end of the path it either goes
to an unvisited point or it re-visits a point,

A unchanged
D unchanged

S + 1
B + 2

unvisited point

A+ 1
D + 1

S − 1
B − 2

re-visited point

On going to an unvisited point a new single is added so S+1, and D un-
changed. No new area is enclosed so A unchanged. The boundary increases
by 2 (one on each side of the new line) so B+2. These new values satisfy the
relations.
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On re-visiting, a single-visited point becomes a double, so S−1 and D+1.
A new unit square is enclosed so A+1. The boundary changes by −3 enclosed
and +1 new outside so B−2. These new values satisfy the relations.

It also suffices here to show just one of (168) or (169) then the other follows
from 4A + B = 2N of lemma 1 with segments N being N+1 points as singles
and doubles N+1 = S + 2D.

Area A = D Doubles
(168)

Boundary B Singles S

B + 4A = 2N
(139)

total points

S + 2D = N + 1

S = 1
2
B + 1

(169)

5.1 Single and Double Points

dragon k=8
single-visited points

S8 = 123

Theorem 32. The number of single-visited points in dragon curve k is

Sk = BQk = 1
2Bk + 1 A003476

and double-visited points

Dk = 1
2 (2k + 1− Sk) = Ak doubles = area A003230

Proof. The dragon curve does not repeat any segment and always traverses all
four sides of any unit square so lemma 2 applies, giving Dk =Ak and Sk =
1
2Bk + 1.

For Sk = BQk, all single-visited points are on the boundary since they have
only two segments going to them, or one segment at the start and end of the
curve. So each single-visited point is at the corner of some boundary square.

At a single-visited point the boundary may turn either left +90◦ or right
−90◦. The first and last corner of a boundary square are where the curve turns
away from that square. This is a +90◦ turn since the boundary never goes
straight ahead (as from figure 15).

S

S

S

−90◦

S

S

−90◦ −90◦

S
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So there is a +90◦ single-visited between each boundary square.
The 2 and 3-side boundary squares also have corners with −90◦ turns. If

those points are single-visited then they are on the opposite side boundary.
Following the curve around anti-clockwise they are +90◦ on that side and so fall
between boundary squares and are counted there. So all single-visited points
are between boundary squares on one or the other side of the curve, giving
Sk = BQk.

Second Proof of Theorem 32. Single and double points can also be counted by
how line segments expand into adjacent unit squares.

Every line segment expands to a new vertex. Visits to the original vertices
are unchanged so the new ones add to the counts of singles and doubles.

A new double is formed when there are opposing right sides,

=⇒ opposing sides expand to
new double-visited point

This occurs in 4-sided enclosed unit squares Ak and in BQ3e type squares as
from figure 20. There are no 2-sided squares with opposing sides since it would
be impossible for a subsequent unfold or adjacent curve to traverse both the
absent sides without overlap when filling the plane (theorem 1 and theorem 2).

The new vertices are odd points, being odd n (and odd x+y). So new Dodd
points in k, and all existing points becoming even, are

Doddk =

{
0 if k = 0

Ak−1 + BQ3ek−1 if k ≥ 1
= ALk

Devenk =

{
0 if k = 0

Dk−1 if k ≥ 1

Dk = Devenk + Doddk =

k∑
j=0

Dodd j = Ak (170)

Dodd = AL follows from BQ3e = JA as at (151) and relation JA to AL at
(149) of theorem 25. Then cumulative sum of AL is per (147) for Ak. Single-
visited points follow by difference.

Singles can be taken odd and even too. New singles Sodd are where boundary
squares 1e, 2, 3o expand to a new single within the square. Expansion to a new
point outside the square might be single-visited too, but if so then it is in a
boundary square on the opposite side of the curve, so counted there.

Soddk =

{
1 if k=0

BQ1ek−1 + BQ2 k−1 + BQ3ok−1 if k ≥ 1
odd singles

= LQk

Sevenk =

{
1 if k = 0

Sk−1 if k ≥ 1
even singles
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Sk = Sevenk + Soddk = Seven0 +

k∑
j=0

Sodd j (171)

S0 through S3 are Sk = 2k + 1 since for k≤ 3 all points are singles. For
k≥ 4, some points double so there are fewer singles.

Sk count is odd for k ≥ 1 since S+ 2D = total points means it has the same
parity as 2k+1. Any double point is made by taking away from the total points
what would have been 2 singles.

When existing singles and doubles are preserved in expansion to 2n, they
gain an extra low 0-bit on their point numbers. The sums (170),(171) are
therefore over how many singles or doubles there in level k with a given number
of low 0-bits. Terms Doddk and Soddk are odd n, terms Doddk−1 and Soddk−1

for how many with a single low 0-bit, etc.
Geometrically those m low zero bits make the point locations a multiple of

bm, as from point formula (66). So the sums are also over locations which are
odd x+y, etc.

Theorem 33. For the �rst few curve levels there are more single-visited points
than double-visited, but doubles come to dominate

Dk > Sk i� k ≥ 11

If each double-visited point is counted as 2, for total 2Dk + Sk = 2k + 1
vertices then those which are part of a double exceed those which are singles,

2Dk > Sk i� k ≥ 8

Proof. Seeking Dk > Sk means 1
2 (2k + 1− Sk) > Sk so want

Sk ≤ 1
3 2k (172)

Suppose this is true at k−1 and k−3. Applying the S = BQ recurrence of
theorem 32 to those bounds shows it true at k too

Sk = Sk−1 + 2Sk−3 ≤ 1
3 2k−1 + 2 1

3 2k−3 = 1
4 2k

(172) is first true at k=11, 12, 13 and so is then true of all k ≥ 11.
Similarly for 2Dk > Sk which becomes Sk ≤ 1

22k and first true at k =
8, 9, 10.

In general this sort of question when and whether Dk − Sk > 0 is a linear
recurrence positivity problem. In this case an easy one since a single largest
root 2.

The other(n) procedure of section 1.5 identifies single and double points by
whether other(n) is on the same arm for double-visited or different arm for
single-visited.

Spredk(n) =

{
1 if other(n) different arm or > 2k

0 otherwise
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Dpredk(n) =

{
1 if other(n) same arm and ≤ 2k

0 otherwise

Dpred = 1− Spred opposites

Dpred is 1 at both n and other(n), so half is D,

Sk =

2k∑
n=0

Spredk(n) Dk = 1
2

2k∑
n=0

Dpredk(n) (173)

These sums can be calculated from the bit fields of other(n) from figure 13.
This is more complicated than the proofs of theorem 32 above, but gives a
combinatorial interpretation to S and D.

Dpred is bits in the form of figure 13. Low 0-bits, lowest 1-bit and t are a
run of ≥ 2 bits of 2 possible types (t = 0 or 1). Each flip run and t above it is a
run of ≥ 3 bits of 2 types (run of 0s or 1s). These runs and types are the same
as TwoRuns from section 3.4.

Dk = 1
2

k+1∑
l=5

2k−lTwoRuns(l)

l is the number of bits comprising the runs up to and including the 6=t bit.
The further k−l bits above are arbitrary so factor 2k−l.

There are only k bits of n but the sum extends to l = k+1 since when t=1
the 6=t bit is 0 and is satisfied by high 0s understood above the top of n. This
does not apply for t=0 where the 6=t bit would be 1. So 1

2TwoRuns(l) when
l = k+1. The 2k−l factor gives that 1

2 .

At a double-visited point, the curve turns either left or right. The turn is
BitAboveLowestOne which is t in figure 13.

DpredLeftk(n) = Dpredk(n) and turn(n) = 1

DpredRightk(n) = Dpredk(n) and turn(n) = −1

A double with a right turn encloses area on the left of the curve since the
curve must eventually curl around to revisit the point and it cannot encircle the
curve origin (that would overlap the 4-arm plane filling of theorem 2). Similarly
a double with a left turn encloses area on the right of the curve.

right
turn

AL double-visited point
right turn encloses

square on left of curve

Each such double corresponds to an enclosed unit square as per lemma 2, so
similar to (173)

ARk = 1
2

2k∑
n=0

DpredLeftk(n) ALk = 1
2

2k∑
n=0

DpredRightk(n)

The predicates can be applied to the curve continued infinitely by asking
just for other(n) in the same arm for double-visited, or different arm for single-
visited.
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Spred∞(n) =

{
1 if other(n) different arm

0 otherwise

= 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, . . .

=1 at n = 0...6, 8, 9, 10, 12, 13, 16, 17, 18, 20, 23, 24, . . .

Dpred∞(n) =

{
1 if other(n) same arm

0 otherwise

= 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, . . .

=1 at n = 7, 11, 14, 15, 19, 21, 22, 25, 28, 30, 31, 35, . . .

Spred∞ has runs of at most 3 consecutive single-visited points after the
initial 7 of n=0 to 6. The start and end of each blob are double-visited and have
just 2 singles between. Within a blob, a single-visited is on the boundary and
there are at most 3 consecutive singles (a hanging square) since all segments of
the enclosed area are traversed.

The number of visits to the location of an n is 1 for Spred or 2 for Dpred ,

Visitsk(n) = Dpredk(n) + 1 (174)

Visits∞(n) = Dpred∞(n) + 1

= 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, . . .

5.2 Distinct Points

k=5
distinct visited points

P5 = 29

The number of distinct points visited by the dragon curve k is singles plus
doubles.

Pk = Sk +Dk (175)

= 2k + 1−Ak with doubles = area (176)

=

{
2, 3, 5, 9, 16 for k = 0 to 4

4Pk−1 − 5Pk−2 + 4Pk−3 − 6Pk−4 + 4Pk−5 for k ≥ 5

same recurrence as Ak area, different initial values

= 2, 3, 5, 9, 16, 29, 54, 101, 190, 361, 690, 1325, 2558, . . .

Generating function gP(x) = 1
2

( 1

1−2x
+

1

1−x
+

2+x+2x2

1−x−2x3

)
The generating function has the same form as gA(x) partial fractions (141)

except for sign of the cubic term. That term is Sk, as in the relations

Ak = 1
2 (2k + 1− Sk) from S + 2D = 2k + 1 (177)

Pk = 1
2 (2k + 1 + Sk) and (176) (178)

If there were no singles then it would be D doubles = P distinct = 1
2 (2k+1)
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half total points. Every 2 singles reduces the doubles by 1 and increases the
distinct points by 1 (as +2 singles, −1 double).

As noted above, Sk is the same parity as the total points 2k + 1 so (177),
(178) are integers.

P and A relation (176) is Euler's formula for regions of a connected planar
graph. Vertices are the points P , edges are the 2k segments, and regions are A
enclosed unit squares.

vertices + inside regions = edges + 1

Points are at locations x+y even or odd. Even locations are a multiple of b
so are the expansions of the preceding level points. The odd locations are the
new points.

Pevenk = Sevenk + Devenk =

{
1 if k=0

Pk−1 if k ≥ 1

Poddk = Soddk + Doddk =

{
1 if k=0

dPk−1 if k ≥ 1

dPk = Pk+1 − Pk (179)

= 2k −
(
Ak + BQ3ek

)
(180)

= 2k − dAk where dA = Ak+1 −Ak (181)

= 1, 2, 4, 7, 13, 25, 47, 89, 171, 329, 635, 1233, . . .

At (180), there is a new point in k+1 between of the each 2k segments of k,
except in each enclosed unit square and each BQ3e type boundary square the
opposing segments touch on expansion, so reducing new points.

Each such touch is a new enclosed unit square, so (181). That follows also
simply from difference of P form (176) for k+1 and k.

5.3 Point Di�erences

Theorem 34. The distinct di�erences
∣∣n− other(n)

∣∣ in dragon curve k occur
at the join points. The sum of all these di�erences is

Odistinctk =
∑4JNDk−1

d=0
d.Opred(d)

=

{
0 if k=0
1
68 2k

(
2JAk − 13JAk+1 + 9JAk+2 − 1

)
− 4

17 if k≥1
(182)

= 0, 0, 0, 0, 4, 12, 28, 124, 444, 1340, 4668, . . .

gOdistinct(x) =
4x4

(1− x) (1− 2x− 2(2x)3)
(183)

Proof. The join is the only place new double-visited points occur on unfolding, so
differences elsewhere are replications of differences occurring in joins of previous
levels.

In curve k, the join of previous levels is JAk−1. In the manner of figure 25,
and with join increment from theorem 28, JAk−1 comprises its preceding JAk−2
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and increment dJAk−2

k−4
sub-curves

JAk−2

dJAk−2

dJAk−2 is symmetric each side of the new touching point. The
∣∣n−other(n)

∣∣
differences are offsets from the difference 4.2k−4 around the big square shown.
The differences forward and backward cancel out, leaving just 4.2k−4 for each
point there, which is dJAk−2 many. So

Odistinctk = Odistinctk−1 + 4.2k−4.dJAk−2 for k ≥ 4

=

k−2∑
j=0

2jdJAj

This sum is generating function (183). The cubic part there is gdJA(2x)
which is the power 2j , and factor 1

1−x for cumulative sum.
Recurrence or generating function manipulations give (182).

Odistinctk at (182) uses JA with a view to taking a mean, since there are
JAk−1 many distinct differences. The mean distinct difference n to other(n),
as a fraction of the total length 2k of the curve, is

Odistinctk
2k.JAk−1

→ 1
68

(
2r − 13r2 + 9r3

)
=

1

r2 + 4
= 0.145451 . . .

The inverted 1/(r2+4) is by dividing, or by an identity,

2k.JAk−1 = 1
4Odistinctk+2 + 4Odistinctk − 2k−1 + 1

The distinct differences range from 4 up to maximum 4JNDk−1 at the end
of the join per theorem 27. As a fraction of the length 2k this maximum is

4JNDk−1

2k
→ 2

7
= 0.285714 . . . A021039

The mean difference as a fraction of this maximum difference is then

Odistinctk
JAk−1 .4JNDk−1

→ 7

2r2 + 8
= 0.509081 . . .

The total of all differences in curve k follows from the distinct differences,
since all double-visited points arise from joins. This total takes a pair of visits
n1, n2 to a point just one way around, not also n2, n1.

Oallk =

2k∑
n=0

n− other(n) when n ≥ other(n) same arm
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= Odistinctk + 2Oallk−1 =

k∑
j=0

2j Odistinctk−j (184)

= 1
68 2k

(
8JAk+2 − 4JAk+1 − 2JAk − 16

)
− 4

17

= 0, 0, 0, 0, 4, 20, 68, 260, 964, 3268, 11204, . . .

gOall(x) =
4x4

(1− x) (1− 2x) (1− 2x− 2(2x)3)

This generating function is a further factor 1
1−2x on gOdistinct to sum de-

scending powers of 2 at (184), similar to gA at (153).

gOall(x) =
1

1− 2x
gOdistinct(x)

The number of differences in Oall is the number of double-visited points Dk.
Oall grows only as JA so a mean difference Oallk/Dk → 0.

Another measure of the differences can be made by considering how many
bits are flipped. On the same set of join points as Odistinct above, the number
of bits flipped is

OdistinctX k =

2k−1∑
n=0

CountOneBits
(
BITXOR(n, other(n))

)
where other(n) > 2k−1 and same arm

= 1
2

k−1∑
m=1

m−3−2t ≥ 0∑
t=0

(
m−t−1

)
2t+1

(
m−3−2t

t

)
(185)

= 1
58

(
−(k+3)JAk − (16k+6)JAk+1 + (19k−20)JAk+2 + k

)
(186)

= 0, 0, 0, 0, 2, 5, 9, 22, 48, 91, 179, 352, . . .

gOdistinctX (x) =
2x4 − x5

(1− x) (1− x− 2x3)2

For example in k=4 there is one double-visited point n = 7, 11. These are
binary 111 and 1011 which differ at 2 bit positions, so OdistinctX 4 = 2.

The binomial sum (185) is the possible bit patterns for other(n) ending with
the high bit flipped so n in the first half and other(n) in the second. The bit
runs are m bits comprising t+1 runs, each of which has one unflipped bit so
m−t−1 bits flipped, and binomial ways to arrange the runs.

Form (186) is by recurrence or generating function manipulations, and us-
ing JA since there are k.JAk−1 total bits in the points, giving a limit for the
proportion flipped

OdistinctX k

k.JAk−1
→ 1

58

(
−r − 16r2 + 19r3

)
= 1

58

(
38− r + 3r2

)
= 0.774651 . . . bit flip proportion

Total bits flipped by all n to other(n) pairs in level k are, similar to (184),
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OallX k =

2k∑
n=0

CountOneBits
(
BITXOR(n, other(n))

)
where n > other(n) and same arm

= OdistinctX k + 2OallX k−1 =

k∑
j=0

2j OdistinctX k−j

= 3.2k − 1
4 −

1
116

(
(38k+46)JAk+(−k+39)JAk+1+(3k+22)JAk+2

)
= 0, 0, 0, 0, 2, 9, 27, 76, 200, 491, 1161, 2674, . . .

gOallX (x) =
1

1− 2x
gOdistinctX (x) =

2x4 − x5

(1− 2x) (1− x) (1− x− 2x3)2

OallX grows as its 2k term, so among double-visited points, the mean num-
ber of bits flipped to go to other(n) has limit

OallX k

Dk
→ 6 bits flipped

5.4 Lines

Some line segments in the dragon curve are consecutive and they can be con-
sidered in runs making horizontal and vertical lines.

start

end

start

end

Horizontals5 = 12 lines Verticals5 = 12 lines

k=5

lines

The end of each line is a single-visited point. Since the curve always turns
left or right 90◦, every single-visited point is an end of a vertical and an end
of a horizontal, except the curve start and end. The curve start is only an end
of a horizontal since the first segment is horizontal. The curve end for k ≥ 1
is only the end of a vertical since the last segment is vertical (an unfold of the
first segment).

Horizontalsk =

{
1 if k = 0
1
2 (Sk − 1) = 1

4Bk if k ≥ 1

= 1, 1, 2, 4, 7, 12, 21, 36, 61, 104, . . . k≥1 1
2 A164395

Verticalsk =

{
0 if k = 0

Horizontalsk if k ≥ 1

Linesk = Horizontalsk + Verticalsk

= Sk − 1 = 1
2Bk

= 1, 2, 4, 8, 14, 24, 42, 72, 122, 208, . . . A164395

The number of horizontals and verticals are equal for k ≥ 1 since they use
each single-visited point and the respective curve ends the same ways.
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Equality can also be seen from the unfolding. Points where the curve touches
on unfolding have both a horizontal and a vertical on each side so reduce the
same. If there's the same horizontals and verticals in the preceding level then
the unfolding doubles them both and the touching reduces them both. There is
one join point for each join square JAk.

Horizontalsk = Horizontalsk−1 + Verticalsk−1 − JAk−1

Verticalsk = Horizontalsk−1 + Verticalsk−1 − JAk−1

5.5 Centreline

The line passing through curve start and end is the ``centreline''. The curve
has various segments with one or other end on that line, and some segments
entirely on it when k even.

start
end

centreline

k = 10

CentrelineP10 = 30

CentrelineSegments10 = 48

Point n is on the centreline of curve k when its imaginary part is 0 after
rotating back for curve start to end horizontal.

CentrelinePointPredk(n) =

{
1 if Im point(n).ω8

k = 0

0 otherwise
(187)

k=0 = 1, 1

k=1 = 1, 0, 1

k=2 = 1, 0, 0, 1, 1

Segments touch the centreline when either end is on the line,

CentrelineSegmentPredk(n) = CentrelinePointPredk(n)

or n<2k and CentrelinePointPredk(n+1)

k=0 = 1

k=1 = 1, 1

k=2 = 1, 0, 1, 1

Theorem 35. CentrelineSegmentPredk(n) segments of dragon curve k are char-
acterized by the following state machine on n written in k many bits taken high
to low. An n ever reaching �non� is not on the centreline.
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h

s1s2

s3

non

e1

e2e3

non

hr

a2d2

start
0 1

0
1

0
1

0
1

0
1

0
1

0

1

0 1

0

10

1

Figure 32: n segment on centreline, bits high to low

Proof. The states are segments in the following orientations relative to the
centreline.

start endh

s1s2s3

forward

e1 e2 e3

start endhr

d2

e3 = a1 a2 a3 = e1

reverse

Figure 33

Arrows are in direction of expansion, so all expand on the right. Forward
segments are forward along the curve (even n) so their expansion is bits 0,1.
Reverse (odd n) are reverse along curve so 1,0. For example,

h

s3 0 1 a1

h expand
hull

centreline

a2a1 1

non 0

s2
expand

For h, bit 0 is orientation s3, or rather s3 rotated 180◦. All states include
their 180◦ rotation since the centreline is unchanged by 180◦ rotate. Bit 1 is a1.

For a2, bit 0 is end-most since a2 is a reverse state. The expanded segment
at 0 is ``non''. A segment which doesn't have an end on the centreline will
never touch the centreline on further expansion. This is since all the centreline
segments and orientations of figure 33 are from expansion of a k−1 segment
which was touching the centreline. A non-touching never produces a touching.

Or alternatively, the ``non'' is too far away from the centreline. Any further
expansions of it are within the convex hull (ahead in section 7), shown drawn
around the segment, scaled to that sub-curve length. Working through the hull
vertex formulas shows the hull never extends to the centreline. Similarly other
``non'' expansions.

State a1 expands to the same new states as e3 does, so a1 and e3 are com-
bined as e3 in the state machine. Similarly a3 expands to the same as e1 and
they are combined as e1.
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The number of n in each state follows by mutual recurrences on the transi-
tions. The total not in ``non'' is

CentrelineSegmentsk =

{
1 if k=0

[ 3
2 , 2] . 2bk/2c if k ≥ 1

= 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, . . . A029744

Segments h,s1,s2,s3 and reverses hr,d2 (arrow end) have their n start on the
centreline. Reckoning only those as accepting is CentrelinePointPred (187).

CentrelinePointPredk(n) = centreline states h,s1,s2,s3, hr,d2

Counting these states, and +1 for the curve endpoint, is number of n visits to
the centreline. This is visits in the sense that double-visited points are counted
for both n.

CentrelineVisitsk = 2bn/2c + 1

= 2, 2, 3, 3, 5, 5, 9, 9, 17, 17, . . . A051032

For k even, this count can also be derived from h and hr states. Together
they are

CentrelineH k =


1 if k=0
1
2 . 2

bk/2c if k even ≥ 2

0 if k odd

h or hr

= 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, . . . k≥2 A077957

The curve always turns left or right, so each point which is a turn on the
centreline is start or end of h or hr. Curve start and end are not turns. Curve
start is h (so counted) when k ≡ 0 mod 4 but not when k ≡ 2 mod 4. Curve
end is opposite, hr when k ≡ 2 mod 4 and not when k ≡ 0 mod 4, k ≥ 4. So +1
for all even k≥ 2.

CentrelineVisitsk = 2 CentrelineH k + 1 k even ≥ 2 (188)

Single and double visited points on the centreline can be distinguished by
some state machine manipulations for intersection of CentrelinePointPred and
Spred . The result as high to low is 34 states, or is simplified a little by reversing
low to high. Mutual recurrences on the transitions give counts of singles. Counts
of doubles follow by subtracting from CentrelineVisits at (189). CentrelineD is
number of double-visited locations, like the whole curve D.

CentrelineSk = [ 5
3 ,

5
3 , 3, 3] .3bk/4c single-visited

= 2, 2, 3, 3, 5, 5, 9, 9, 15, 15, 27, 27, . . . k≥2 dup A083658

CentrelineDk = 1
2

(
2bk/2c + 1− CentrelineSk

)
double-visited (189)

= 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 3, . . .

CentrelinePk = CentrelineSk + CentrelineDk total points

= 1
2

(
2bk/2c + 1 + CentrelineSk

)
= 2, 2, 3, 3, 5, 5, 9, 9, 16, 16, 30, 30, . . .
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The centreline just from curve start to end has 2bk/2c+1 points, so for curve
scaled to unit length start to end, a limit measure for the amount of centreline
in the curve, both within and beyond curve start to end, is

CentrelinePk

2bk/2c + 1
→ 1

2

In the manner of section 5.4, for even k, some curve segments are consecutive
and so form contiguous lines. Each end of such a line on the centreline is a
CentrelineS single, except curve start and end when perpendicular so as at
(188) but −1.

CentrelineLinesk =


1 if k=0
1
2

(
CentrelineSk − 1

)
if k even ≥ 2

0 if k odd

contiguous

= 1, 0, 1, 0, 2, 0, 4, 0, 7, 0, 13, 0, . . .

CentrelineH is power 4k/4 but CentrelineS is only 3k/4 so a mean line length
grows

CentrelineH k

CentrelineLinesk
= [ 3

5 , 0,
2
3 , 0] .( 4

3 )bk/4c k even ≥ 2

+
1

[ 25
9 , 0, 3, 0] .( 3

2 )bk/2c − [ 5
3 , 0,

3
2 , 0] .( 3

4 )bk/4c

= 1, 1, 1, 1, 8
7 ,

16
13 ,

16
11 ,

8
5 ,

128
67 ,

256
121 , . . .

The centreline state machine figure 32 also identifies points or segments on
lines at ±45◦ or 90◦ from curve start by starting in states s1,s2,s3. s3 has its
target centreline at +45◦, so starting in that state answers for a line at −45◦

relative to the segment. Similarly s1 having the centreline at +135◦. And
similarly curve end and the e states.

start s1

start s2

start
s3

curve start curve end

start
e1

start e2

start e3

Figure 34:
starts for
other lines

6 Enclosure Sequence

As each segment is successively appended to the dragon curve it may enclose a
new unit square on the right or left of the curve, or not.
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start

right enclosures

...

start

left enclosures

...

In the manner of lemma 2, a new enclosed unit square is formed when a
point is re-visited. So a segment enclosing a unit square has a second-visit point
at its end. A second visit in the bit patterns of figure 13 has highest run 1000
which is flipped to 0111 for the first visit. Other run flips are arbitrary.

DpredFirstk(n) = Dpredk(n) and n < other(n)

DpredFirst∞(n) = Dpred∞(n) and n < other(n)

= 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, . . .

=1 at n = 7, 14, 15, 21, 28, 30, 31, 39, 42, 45, 53, . . .

DpredSecond(n) = Dpred∞(n) and n > other(n)

= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .

=1 at n = 11, 19, 22, 25, 35, 38, 43, 44, 49, 50, 57, . . .

DpredFirstk is first visit to a point which will be re-visited within level k.
DpredFirst∞ is first visit to a point which will eventually be re-visited by the
curve continued infinitely, which for n of bit length k means a revisit either
within the same k, or in k+1 across the join.

For DpredSecond , no distinction is needed between a level k and continuing
infinitely since the other visit precedes n.

Total through to 2k is the number of double-visited points Dk,

Dk =

2k∑
n=0

DpredFirstk(n) =

2k∑
n=0

DpredSecond(n)

At each second-visit, the curve turns either left or right. When it turns left
it is away from a unit square just enclosed on the right. When it turns right it
is away from a unit square just enclosed on the left. The turn is never to the
same side as the square as that would overlap a side of that square.

right
enclose

n−1 n turn left at right side enclosure
or would overlap segment
of square just enclosed

Second-visit with turn left or right is

DpredSecondL(n) = DpredSecond(n) and turn(n) = +1

turn to left, encloses on right
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=1 at n = 25, 49, 50, 57, 89, 97, 98, 100, 113, 114, 121, . . .

DpredSecondR(n) = DpredSecond(n) and turn(n) = −1

turn to right, encloses on left

=1 at n = 11, 19, 22, 35, 38, 43, 44, 67, 70, 75, 76, . . .

The totals of these are left and right side areas

ALk =

2k∑
n=0

DpredSecondR(n) ARk =

2k∑
n=0

DpredSecondL(n)

An explicit calculation of enclosure bit patterns can also be made by con-
sidering how segments expand. On the left side a line segment may have 0, 1, 2
or 3 segments. Configuration ls0 has no side segments. This is initial segment
n=0.

EpredL sides

ls0

a

ls1,2

a

b

c

ls3

=⇒

0 1

a

a

b b

c

c

ls0rev

a

ls1rev

a

b

ls2rev

a

b

c

ls3rev

=⇒

0 1a

a b b

Side c cannot occur without b since that would require the curve to curl
around on the right to reach c, and that would overlap 4-arm plane filling
(theorem 2). Likewise b cannot occur without a.

The arrows show the direction of segment expansion. An odd n segment is
the reverse direction. Each expansion is a new low bit on n. The sides are on
the left of the curve in each case.

Configurations ls1 and ls2 expand the same. They differ only in side b and
it is not a side of either 0 or 1 on expansion.

Each side a, b, c, when present, precedes the segment n. The new configura-
tion for the 0-bit segment does not include the 1-bit segment since that segment
is after.

The state transitions on expansion are as follows. Both ls3 and ls3rev are
where segment n encloses a unit square on the left.

ls0 ls1,2 ls3

ls0rev

ls1rev ls2rev ls3rev

EpredL left enclosure state transitions, bits high to low

0

1

0
1

0
1

0

1

0

1

0

1
0

1

start enc enc
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Usual DFA state machine manipulations can reverse to match bits from low
to high.

lm1lm2

non

lm4lm5lm6

lm7

start

enc

enc
Figure 35:

EpredL
bits low
to high

0

10
10

1

0

1

0

1

0,1

States lm6 and lm7 are both a segment enclosing a square on the left. A
high 0-bit above the top of n could be understood to send lm6 to lm7 if a single
enclosing state is desired.

These state transitions are based on segment numbers with the first segment
numbered 0. Point n+1 is the segment end so

EpredL(n) = DpredSecondR(n+1)

=1 at n = 10, 18, 21, 34, 37, 42, 43, 66, 69, 74, 75, . . .

The bit pattern of other(n+1) from figure 13 can be seen in the low-to-high
states of figure 35. other(n+1) seeks the bit above lowest 1 in n+1, which
means bit above lowest 0 in n. This is at lm2 . A 1-bit is required there for
right turn. A 0-bit is a left turn so not a left-side enclosure and it goes to ``non''
for not-enclosed.

The loops match 1000 or 0111 bit runs with t=1 above. 0111 is the same as
the initial bit above lowest 0. The loop ending lm6 is the 1000 case and only it
gives an enclosing segment lm6 , being the bigger of the two visits to the point.

Up to 3 unit squares can be enclosed consecutively on the same side. There
cannot be more than 3 or the turns away would make segments overlap.

Some state machine manipulations can test whether n+1 is also the respec-
tive left or right enclosure, and intersection n, n+1, n+2 for a triple. Taking
that low to high shows they are the original digit forms with certain fixed extra
low bits. EpredR even means the bits there must be EpredR and lowest bit 0.

EpredR3 = EpredR 1111 EpredL3 = EpredL 101

high low high low

EpredR even 0111or

EpredR3 (n) = EpredR(n) and EpredR(n+1) and EpredR(n+2)

=1 at n = 391, 399, 775, 783, 799, 903, 911, 1415, . . .

EpredL3 (n) = EpredL(n) and EpredL(n+1) and EpredL(n+2)

=1 at n = 85, 149, 173, 277, 301, 341, 349, 533, . . .

The next segment encloses the square between those 3 on the other side.
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right
encleft

enc

left
enc

left
enc

3 left enclosures
are 3 right turns
so next segment
is a right enclosure86

Runs of left and right enclosures can occur. A run of 9 enclosures is the
longest which occurs. A run of 10 or more do not occur since the intersection
of 10 predicates n through n+9 is empty.

The first run of 9 enclosures occurs starting at segment n=701. The following
diagram is where it occurs within the part of blob 10 up to that point (blobs
ahead in section 12).

blob 10 start

...

n=701
binary 1010111101

nine

enclosures

LLLRR

LRRL

EpredNine(n) = all Epred(n) through Epred(n+8)

=1 at n = 701, 1213, 1405, 2237, 2429, 2749, 2813, 4285, . . .

State machine manipulations forming EpredNine as an intersection show
also that the enclosure sides (and corresponding turns) are always the same
sequence LLLRR LRRL.

The number of runs of 9 within a given level k follows from the state machine
intersection too by the transitions as mutual recurrences on how many strings
in each state,

EncNinek =


0 if k ≤ 7
7
3 2k−9 + 1

8n−
1
96 [61, 83, 61, 35]

+ 1
32

(
dJAk+1 + dJAk

) }
if k ≥ 8

(190)

= (10 zeros), 1, 3, 7, 17, 40, 90, 197, 424, 900, 1889, . . .

The last point of a level k is single-visited so the last segment is non-enclosing
and a run of enclosures does not extend across levels. The cubic part at (190)
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is expressed using dJA only for convenience. The same cubic part arises ahead
in BlobBnohang (369), but without obvious geometric relationship to that.

The coefficient of the 2k term is the limit for how many 9s occur. Each of
them is 9 unit squares so as a fraction of total area this is

9EncNinek
Ak

→ 21

28
=

21

256
= 0.08203125

Let A(n) be the area enclosed by the first n many segments, and AL(n),
AR(n) similarly area enclosed on the left and right sides. These are total Epred ,

A(n) = AL(n) + AR(n) =

n−1∑
j=0

Epred(j) =

n∑
j=0

DpredSecond(j)

AL(n) =

n−1∑
j=0

EpredL(j) AR(n) =

n−1∑
j=0

EpredR(j)

The 2k segments of level k are

A(2k) = Ak AL(2k) = ALk AR(2k) = ARk

The area of the first n segments can be calculated efficiently by following
the enclosure states. For AL(n), let ALk(state) be the area enclosed on the left
side of a level k curve in configuration state of EpredL. The adjacent sub-curves
of each state add join area or boundary squares so

ALk(ls0 ) = ALk ALk(ls0rev) = ARk (191)

ALk(ls12 ) = ALk + JAk+1 ALk(ls1rev) = ARk + JAk

ALk(ls3 ) = ALk + LQk ALk(ls2rev) = ARk + JAk+1

ALk(ls3rev) = ARk + RQk

For example, ALk(ls3 ) is the left area ALk plus all of the left boundary
squares LQ because side ls3 is entirely enclosed. ls1rev is the JA join area
configuration. ls12 is the join after one expansion.

At a 1-bit of n, AL(n) counts the whole of the sub-curve with a 0-bit there,
with forward/reverse and surrounds according as the EpredL state there. Then
remaining n is the bits of n below there, likewise in their respective EpredL
states. So for n = ak−1ak−2 · · · a1a0 binary bits,

AL(n) = ak−1 .ALk−1(ls0 ) high bit (192)

+ ak−2 .ALk−2(EpredLstate(ak−10))

+ ak−3 .ALk−3(EpredLstate(ak−1ak−20))

+ · · ·
+ a0 .AL0(EpredLstate(ak−1ak−2 · · · a2a10)) low bit

AR(n) can be written in a corresponding way from similar EpredR states.
At (143), the limit area of the whole curve scaled to a unit length is 1

2 . The
same limit holds within a level too.
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Theorem 36. The proportions of enclosing segments have limits

lim
AL(n)

n
→ lim

AR(n)

n
→ 1

4
lim

A(n)

n
→ 1

2
(193)

Proof. Among the AL area by EpredL states (191), the smallest is either ALk
= 1

4 .2
k − 1

4Lk or ARk = 1
4 .2

k − 1
4Rk. Working through the L,R cubics shows

R is the bigger subtraction so

ARk ≤ ALk (194)

A lower bound for AL(n) can be formed from (192) by reducing each of its
area terms to this minimum AL(ls0rev) = ARj . The sum of each 1

42j part of
ARj gives 1

4n, then less the 1
4Rj parts. A simple lower bound is to subtract all

those possible R, irrespective which bits of n actually set, so

AL(n) ≥ 1
4n−

k−1∑
j=0

1
4Rj = 1

4n + 1
2k + 1

4 −
1
8Rk+2 (195)

AL(n)

n
≥ 1

4 −
Rk+2

n
≥ 1

4 −
Rk+2

2k−1

The sum to Rk+2 at (195) follows by R is 1
2L (114) and sum L is R (107).

Then R grows only as rk so that Rk+2/2
k−1 → 0.

An upper bound on AL(n) follows in a similar way, but taking the biggest
of the state areas. Working through the cubics shows this is ls3rev , but they
all differ from 1

42k by at most a cubic which /2k → 0.
The same argument holds for AR(n) which has similar quantities and bounds.

A(n) is their sum.

Knowing AR smaller at (194) is not needed if took B = L+R for the sub-
traction. It sums to B which again grows only as a cubic.

Roughly speaking, convergence at (193) depends on the enclosure sequence
being uniform enough that A(n) etc don't go too far away within blocks. It's
possible for a sequence to have mean 1

2 in 2k blocks, but not converge. For
example if all A enclosures were in the first half of each 2k block then the
middle would be always exactly 2

3 . In the case of A, every 2j sub-block encloses
at least ARj so total enclosures only ever depart from the overall mean by a
cubic.

The way AL(n)/n→ 1
4 can be illustrated in a plot. Blocks of n = 2k to

2.2k−1 are scaled to the same width in order to show successive refinements.

16 32 64 128 256 512 1024

1
4

AL(n)/n

n

The sawtooth pattern at n=16 is where AL(n) steps up for a new enclosure
then the mean descends in the shape of a hyperbola as n increases but AL(n)
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unchanged. Each run of non-enclosures is a descent this, but in log scale they
are soon too small to see.

AR can be illustrated similarly. It differs in dropping to a low within each
2k block whereas AL rises to a peak.

16 32 64 128 256 512 1024

1
4

AR(n)/n

n

7 Convex Hull

A convex hull is the smallest convex polygon which can be drawn around a
given set of points. Benedek and Panzone[7] show that the convex hull around
the dragon curve fractal is a 10-sided polygon. The convex hulls around finite
iterations k=6 onwards are 10-sided polygons too.

start

end

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

Figure 36:

convex hull
for k ≥ 6

Vertices P1 to P10 are numbered per Benedek and Panzone. Curve expan-
sion here is on the right here whereas they expand on the left, so figure 36 is a
vertical mirror image of their drawing.

Theorem 37 (Finite form of Benedek and Panzone). The convex hull around
dragon curve level k ≥ 6 is a set of 10 vertices

P1(k) = − 1
3

(
bk+3 + p(k+3)

)
for k ≥ 6 (196)

P2(k) = − 1
3

(
bk+2 + p(k+2)

)
P3(k) = − 1

3

(
bk+1 + p(k+1)

)
P4(k) = − 1

3

(
bk + p(k)

)
P5(k) = − 1

3

(
bk−1 + p(k−1)

)
P6(k) = 1

3

(
(2+i)bk + ip(k+1)

)
= bk − iP3(k) (197)

P7(k) = 1
3

(
(3+i)bk + ip(k)

)
= bk − iP4(k) (198)

P8(k) = 1
3

(
(3+4i)bk−1 + ip(k−1)

)
= bk − iP5(k) (199)
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P9(k) = 1
3

(
7i bk−2 + ip(k−2)

)
P10(k) = 1

3

(
(4+i)bk−1 + p(k)

)
b = 1+i

p(m) = −1, −b, −b2, −b3−3, 1, b, b2, b3+3 Re = A118831

for m ≡ 0 to 7 mod 8

For k < 6, the above points are the hull vertices but with some duplications
and some points excluded.

k vertices duplication exclude

0 2 P2=P3=P4 and P1=P6=P7 P5, P8, P10
(P9 on boundary)

1 3 P1=P2=P10 and P3=P4=P5 P9
and P6=P7=P8

2 4 P1=P10 and P2=P3 and P4=P5
and P7=P8=P9 (P6 on boundary)

3 6 P3=P4 and P8=P9 (P10 on boundary)

4 7 P1=P10 and P4=P5 and P7=P8

5 9 P8=P9

The vertices are all Gaussian integers, each being a point visited by the
curve. The various bk and p(k) terms result in multiples of 3 so factor 1

3 gives
integers.

The fractal hull vertices of Benedek and Panzone are limits P1(k)/bk →
(2 + 2i)/3 etc as k→∞. (Conjugates due to left rather than right expansion
noted above.)

Proof. For k=0 to k=5, the convex hulls and point formulas are as follows. In
k=0 the hull is empty. P9(0)= 1

2 is on its boundary but not a vertex.

(P9= 1
2 )

P2
=P3
=P4

P1
=P6
=P7

k=0 k=1

P3
=P4
=P5

P1
=P2
=P10

P6
=P7
=P8

start

end

k=2

P4
=P5

P2
=P3

P1=P10

P7
=P8
=P9

P6

start

end

k=3

P5 P3
=P4

P2

P1P10

P8
=P9

P6
= P7 start

end

k=4

P2

P3

P4=P5

P6
P7=P8

P9

P1
=P10

start

end

k=5

P1

P2 P3

P4

P5

P6

P7P8=P9

P10
start

end

For k=6, the hull is calculated explicitly and the vertices are per the formulas
and are all distinct.
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−5−5i = P1

−5 = P2

−3+2i = P3
P4 = 2i

P5 = 1+i

P6 = 2−5i

P7 = 2−8i

P8 = 1−9i−9i = P9

−4−6i = P10

start

end

Figure 37:

k=6

convex hull

Proceed then by induction. Suppose the formulas are true of level k−1.
Level k comprises level k−1 and an unfolded copy of k−1. The convex hull
around level k is the hull around the hulls of those two copies.

The unfolding is shown in figure 38 below. O is the origin. E = bk is the
endpoint of level k. M = bk−1 is the midpoint where the two level k−1 copies
meet. O to M is the first copy with vertices P1a etc. E to M is the unfolded
copy with vertices P1b etc.

O

M

E = bk

P2(k)

P3(k)

P4(k)

P5(k)

P6(k) P7(k)

P8(k)

P9(k)

P10(k)

P1(k)

P1a

P2a

P3a

P4a
P5a

P6a

P7a

P8a

P9a

P10a

P1b

P2b P3b

P4b

P5b

P6b

P7b

P8b

P9b

P10b

Figure 38: convex hull k from two unfolded copies of k−1

For the top P5(k)--P6(k) shown dashed, the sub-hull side P4a--P5a relative
to the bk direction is

P5(k−1)− P4(k−1)

bk
=

1

6
+
p(k−1)− p(k−2)

3 bk
k ≥ 7 (200)

and this p(k) difference has imaginary part

Im
p(k−1)− p(k−2)

bk
= 0 all k (201)

So side P4a--P5a is horizontal. Point P2b is above that line since

Im
P6(k)− P5(k)

bk
= 1

6 + 1
3 [1,−1,−1, 1] ( 1

2 )dk/2e > 0 k ≥ 7
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so the hull for level k is P4a to P2b.
As a remark, (201) can be illustrated by

−1 = p(0)

−1−i = p(1)

p(2) = −2i−1−2i = p(3)

p(4) = 1

p(5) = 1+i

2i = p(6) p(7) = 1+2i

The direction of each arrow is a difference p(k)−p(k−1). At each point the
direction turns +45◦. For example p(4) to p(5) is vertical and turns +45◦ to go
to p(6). At p(6) the turn is again +45◦ to become horizontal but with a 180◦

negation so horizontal to the right rather than the left. Such 180◦ negations are
at p(2), p(3), p(6) and p(7).

These +45◦ turns correspond to +45◦ from each b in the denominator. The
numerator starts 0◦ at p(−1)− p(−2) (which is p(7)− p(6)) then +k×45◦. The
denominator is k×45◦, for net 0◦.

For the bottom side of figure 38 shown dashed, the points P1a, P10a, P8b
and P7b relative to the bk endpoint are

P10(k−1)/bk = 1
6 −

2
3 i + 1

3 p(k−1)/bk (202)

P1(k−1)/bk = − 2
3 i + 1

3 p(k−2)/bk

P8′(k−1)/bk = 1
2 −

2
3 i + 1

3 p(k−2)/bk

P7′(k−1)/bk = 2
3 −

2
3 i + 1

3 p(k−1)/bk

By (201) the imaginary parts are all equal. So these four points are on a
horizontal line and the hull for level k is the ends P1a and P7b.

So the level k hull points are given from the k−1 points by mutual recur-
rences.

P1(k) = P7′(k−1) = bk − iP7(k−1) (203)

P2(k) = P1(k−1)

P3(k) = P2(k−1)

P4(k) = P3(k−1)

P5(k) = P4(k−1)

P6(k) = P2′(k−1) = bk − iP2(k−1)

P7(k) = P3′(k−1) = bk − iP3(k−1)

P8(k) = P4′(k−1) = bk − iP4(k−1)

P9(k) = P5′(k−1) = bk − iP5(k−1)

P10(k) = P6′(k−1) = bk − iP6(k−1)

The power forms (196) of the theorem satisfy these recurrences and so com-
pletes the induction. The power forms can be found by writing these recurrences
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in generating functions and solving simultaneously with some linear algebra, or
directly from expanding. The chain of dependencies is

P3 P2

P1P7

P6 P10P4P5P9

P8

It's convenient to begin at P1(k) and expand to reach P1(k−4) again,

P1(k) = bk − iP7(k−1)

= bk − i
(
bk−1 − iP3(k−2)

)
= bk − i

(
bk−1 − iP2(k−3)

)
= bk − i

(
bk−1 − iP1(k−4)

)
P1(k) = bk−1 − P1(k−4) k ≥ 10 (204)

Apply (204) repeatedly until reaching k = 6, 7, 8 or 9. Let this be q ≥ 0
many times so that k−6 = 4q + r with 0 ≤ r ≤ 3 and ending at P1(6+r).

P1(k) = bk−1 − bk−5 + bk−9 − · · · br+9 + (−1)qP1(6+r)

= (−1)qP1(6+r) + br+9

q−1∑
j=0

(b4)q−1−j (−1)j (205)

= (−1)qP1(6+r) + br+9 (b4)q − (−1)q

b4 − (−1)

= − 1
3

(
bk+3 − br+9(−1)q − 3(−1)qP1(6+r)

)
(206)

since b4 − (−1) = −3 and r+9 + 4q = k+3

In (205), when q=0 the sum is taken as empty so 0. br+9 is the lowest power
of b in the sum since ending at P1(6+r) means the corresponding b power per
(204) is 6+r + 3.

In (206), the right hand part is periodic in r = 0, 1, 2, 3 and q odd or even.
It uses the initial P1(6) through P1(9). P1(6) is the base case in figure 37. The
others can be calculated from the recurrences (203) or by explicitly forming
those level hulls. The result is the 8 terms of p(k).

These terms could be numbered starting anywhere mod 8. The choice here
is to number matching the b power in each P1 etc. So the expression in (206)
is reckoned as p(k+3) to match its bk+3.

p(k+3) = −br+9(−1)q − 3 (−1)qP1(6+r)

Eight of the ten hull sides are always vertical, horizontal or 45◦ diagonal.
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P1P2

P3

P4

P5
P6 P7

P8

P9

P10

horizontal

horizontal

vertical

vertical

45◦

45◦

45◦

45◦

Convex hull sides

horizontal, vertical

and diagonal

This can be seen in k=6 and thereafter from the way each level hull is 45◦

rotations of the preceding level. Algebraically P6--P7 and P1--P2 are horizontal
since

Im
P6(k)− P7(k)

bk
= Im

−1

3
+ i

p(k + 1)− p(k)

3bk
= 0 (207)

Im
P1(k)− P2(k)

bk
= Im

2

3
− p(k + 3)− p(k + 2)

3bk
= 0

P3--P4 is vertical since it's a factor of i on P6--P7 per the cross forms of
(197),(198). P8--P9 is vertical since

Re
P8(k)− P9(k)

bk
= Re

i

6
+ i

p(k−1)− p(k−2)

3bk
= 0

P4--P5 is diagonal per (200). P7--P8 and P1--P10 are diagonal per (202).
P2--P3 similarly

Re
P2(k)− P3(k)

bk+1
= Re

−1

3
i− p(k + 2)− p(k + 1)

3bk+1
= 0 (208)

The cross formulas P6(k) = bk − i P3(k) etc in (197)(198)(199) show P6--
P7--P8 is a shift and 90◦ rotate of P3--P4--P5. Geometrically this is simply the
previous level unfolding of points P2--P3--P4 (figure 38).

P3

P4

P5

P6 P7

P8

rotate −90◦

Benedek and Panzone have further correspondences P6 = R(P2) through
P10 = R(P6) which are a shrink in addition to shift and rotate 45◦. The same
correspondences exist in finite iterations but are not exact, only approached as
k→∞. For example P7 and P3 are related by shift bk, rotate and shrink −b/2,
but an additional period-8 offset.

P7(k) = bk − 1
2b P3(k) + offset(k)

offset(k) = 1
6 b
(
bp(k)− p(k+1)

)
= 0, 0, b2 ,

b
2 , 0, 0,

−b
2 ,
−b
2 for k ≡ 0 to 7 mod 8
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The sides P4--P5 and P1--P10 are the same length and are at a rotation by
180◦ and offset.

P10(k) = −P4(k) + ( 1
2−

1
2 i) b

k (209)

P1(k) = −P5(k) + ( 1
2−

1
2 i) b

k

P5(k)− P4(k) = P10(k)− P1(k) lengths

P1

P10

P4

P5

rotate 180◦

o�set
( 1
2−

1
2 i) b

k

−P5

−P40

P1

P10

P4

P5

bk − P4

bk − P5

rotate 180◦

o�set
−( 1

2 + 1
2 i) b

k

0 bk

Theorem 38. Number the points of the dragon curve starting from n=0 at the
origin. The point numbers of the convex hull vertices are

P1N(k) = 8
15 2k + 1

15 [7,−1,−2,−4] (210)

= 1, 1, 2, 4, 9, 17, 34, 68, 137, 273, 546, 1092, . . . A115451

= binary 1000...1000 ending 1 or 10 or 100 or 1001

for k bits, k ≥ 1

P2N(k) = 4
15 2k + 1

15 [−4, 7,−1,−2] = P1N(k−1)

P3N(k) = 2
15 2k + 1

15 [−2,−4, 7,−1] = P1N(k−2)

P4N(k) = 1
15 2k + 1

15 [−1,−2,−4, 7] = P1N(k−3)

P5N(k) = 1
30 2k + 1

15 [7,−1,−2,−4] = P1N(k−4)

P6N(k) = 13
15 2k + 1

15 [2, 4,−7, 1] = 2k − P1N(k−2)

= 1, 2, 3, 7, 14, 28, 55, 111, 222, 444, 887, 1775, . . .

P7N(k) = 14
15 2k + 1

15 [1, 2, 4,−7] = 2k − P1N(k−3)

= 1, 2, 4, 7, 15, 30, 60, 119, 239, 478, 956, 1911, . . .

P8N(k) = 29
30 2k + 1

15 [−7, 1, 2, 4] = 2k − P1N(k−4)

P9N(k) = 59
60 2k + 1

15 [4,−7, 1, 2] = 2k − P1N(k−5)

P10N(k) = 17
30 2k + 1

15 [−1,−2,−4, 7] = 2k−1 + P1N(k−3)

gP1N (x) =
1

(1 + x)(1 + x2)(1− 2x)

Proof. The same sub-part breakdown of figure 38 is a set of mutual recurrences
for k ≥ 7 similar to (203). In the second sub-part, the point numbers count
back from the end 2k.

P1N(k) = 2k−P7N(k−1) P6N(k) = 2k−P2N(k−1)

P2N(k) = P1N(k−1) P7N(k) = 2k−P3N(k−1)

P3N(k) = P2N(k−1) P8N(k) = 2k−P4N(k−1)
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P4N(k) = P3N(k−1) P9N(k) = 2k−P5N(k−1)

P5N(k) = P4N(k−1) P10N(k) = 2k−P6N(k−1)

The power forms (210) etc satisfy these recurrences. They can be found by
expanding or some linear algebra on generating functions. It can be verified
explicitly that the power forms also give the point numbers for 2 ≤ k ≤ 6, and
the integer points of k=0 and k=1.

The point numbers for a given k go in sequence smallest to biggest as

P5N <P4N <P3N <P2N <P1N <P10N <P6N <P7N <P8N <P9N

This is the curve first reaching the hull boundary at P5 then curling around
anti-clockwise from P5 to P10 before switching across to the end part curling
clockwise P6 to P9.

start end

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

smallest n

biggest n

Points P5 to P10 are on the right boundary (so left turns). P6 to P9 are on
the left boundary (so right turns). For a few initial levels some points are on
both boundaries.

The area of the hull for k=0 is 0 for and k=1 is 1
2 (half a unit square). The

area for k ≥ 2 can be calculated by taking triangles from the origin to successive
vertices P1 through P10. Each triangle area is 1

2 Im
(
z1.z2

)
in the usual way for

z2 clockwise around from z1.

For k < 6, there are some duplications in the P point values giving empty
triangles, and some points on the boundary which split a triangle into two parts,
but this doesn't change the result.

HAk = 1
2 Im

(
P1(k).P2(k) + P2(k).P3(k) + · · ·+ P10(k).P1(k)

)
(211)

=

 0, 1
2 for k = 0, 1

7
6 2k − 1

12 [22, 29, 22, 31].2

⌊
k
2

⌋
+ 1

6 [1, 2, 3, 2] for k ≥ 2
(212)

= 0, 1
2 ,

3
2 ,

9
2 ,

23
2 , 28, 121

2 , 129, 539
2 , 559, 2273

2 , 2307, . . . 1
2 A341029
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Each point P is of the form bk + p(k+n) so the products are bk.bk = 2k and
8-period terms in bk, bk, and constant. Im bk and Im bk are 8-periodic in the half
power 2bk/2c. Adding the factors on those terms shows the 8-periodic factors
repeat themselves so just 4-periodic.

Scaling by 1/
√

2k so endpoints a unit length gives the area of the convex
hull around the dragon curve fractal. This is the area of the polygon given by
Benedek and Panzone.

HAk

|bk|2
=

HAk

2k
→ 7

6
= 0.1666 . . . A177057

This limit is approached from below since the half-power term in (212) is
negative and bigger than the constant. On expanding, some of the new points
in the curve push out beyond the existing hull, so the new hull is bigger than
just doubling due to factor b.

HAk+1 − 2HAk =

{
1
2 if k ≤ 1
1
12 [15, 14, 13, 18].2

⌊
k
2

⌋
− 1

6 [0, 1, 4, 3] if k ≥ 2

= 1
2 ,

1
2 ,

3
2 ,

5
2 , 5, 9

2 , 8, 23
2 , 20, 37

2 , . . .

Theorem 39. The two points of dragon curve k furthest apart are P3 and P8
of the convex hull, except for k=0 where P3 and P7. The distance apart in each
case is

Hdiamk =
2√
{

1 if k = 0
5
2 2k − [3, 4].2

⌊
k
2

⌋
+ 1 if k ≥ 1

(213)

=
2√

1, 2, 5, 13, 29, 65, 137, 289, 593, 1217, 2465, . . .

Distances Hdiam0 = 1 and Hdiam7 =
√

289 = 17 are integers and otherwise
Hdiamk is irrational.

Proof. The points furthest apart must be vertices of the convex hull. For k < 6,
the maximum distances can be verified explicitly and are per the formula.

For k ≥ 6, points P1 through P10 of the convex hull are at various factors
of bk, and offsets p(m) from those powers. The offsets are at most

pmax = max( 1
3 |p(m)|) = 1

3

√
5

Comparing factors of bk on the points, P3--P8 are the furthest apart. Their
distance is at least

|P3(k)− P8(k)| >
∣∣(− 3

2−
1
2 i)b

k
∣∣ − 2pmax =

√
5
2

√
2
k
− 2pmax

The second furthest by bk factors is P3--P9 and their distance, and the
distance of any with smaller bk factor, is at most

|P3(k)− P9(k)| <
∣∣(− 3

2−
1
3 i)b

k
∣∣ + 2pmax =

√
85
36

√
2
k

+ 2pmax
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For k < 13, it can be verified explicitly that P3--P8 is the maximum of all
vertices. For k ≥ 13, the difference between the two distance bounds is positive.(√

5
2 −

√
85
36

)√
2
k
> 4pmax for k ≥ 13

To show Hdiam irrational or not, it can be verified explicitly for k≤ 7 that
only Hdiam0 and Hdiam7 are rational. For k≥ 8, align the curve to its segments
and endpoint horizontal for k even, or endpoint −45◦ for k odd.

start

start

end

end

P3

P8 P3

P8

yk

xk

yk

xk

k even

−45◦

k odd

These alignments are rotation by factor i−dk/2e. x and y distances between
P3 and P8 are

xk = Re (P8(k)−P3(k)).i−dk/2e = [ 3
2 , 1].2dk/2e − 1 k≥1 A052955

yk =
∣∣∣Im (P8(k)−P3(k)).i−dk/2e

∣∣∣ = 1
2 2dk/2e

Hdiam2
k = x2

k + y2
k for k ≥ 1 (214)

Write (214) as sum and difference

(Hdiamk + xk)(Hdiamk − xk) = y2
k (215)

xk and yk are integers so if Hdiamk is an integer then sum and difference
must give the factors of y2

k. yk is a power of 2 so those factors must be powers
of 2.

Hdiamk + xk = 2α

Hdiamk − xk = 2β
2Hdiamk = 2α + 2β

So Hdiamk would contain at most 2 1-bits, and Hdiam2
k at most 3 1-bits.

But the expression in (213), with its subtraction of middle 3 or 4 term, is bit
pattern

100 111...1101 00...001 k even

100 111...1100 00...001 k odd
Hdiam 2

k =

2k 2bk/2c

middle run

So the bits are high and low 1-bits and when k≥ 8 have k − bk/2c ≥ 4 so
the middle run of 1s is at least 2 more for total at least 4.
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For k=7, Hdiam7 =17=10001 binary and Hdiam 2
7 =289=100100001 binary

have 2 and 3 1-bits respectively as is necessary. x7=15 and y7=8 are primitive
Pythagorean triple 15, 8, 17.

For the curve scaled to endpoints a unit length, the limit for Hdiam is

Hdiamk√
2k

→ Hdiamf =
√

5
2 = 1.581138 . . . A020797

The points of the curve furthest from the start and end are those hull vertices
where the angles each side are < 90◦, or by a pairwise calculation similar to the
proof above. P8 is furthest from the start for k ≥ 1. P3 is furthest from the
curve end bk for all k.

start end

P3

curve point
furthest
from end

P8 curve point
furthest
from start

Sdist

Edist

Sdistk =

{
1 if k = 0∣∣P8(k)

∣∣ if k ≥ 1
(216)

=
√

25
182k − 1

9 [13, 8, 8, 16]2bk/2c + 1
9 [5, 1, 2, 4] k ≥ 1

=
√

1, 2, 4, 8, 17, 41, 82, 164, 333, 697, . . .

Edistk =
∣∣bk − P3(k)

∣∣
=
√

17
9 2k − 2

9 [5, 10, 7, 5]2bk/2c + 1
9 [2, 4, 5, 1]

=
√

1, 2, 5, 13, 26, 52, 109, 233, 466, 932, . . .

Sdist0 = Edist0 = 1 are integers and Sdist2 = 2 is an integer. Otherwise
Sdist and Edist are both irrational. That can be seen explicitly for k < 9, and
for k ≥ 9 apply the same rotation as Hdiam above for x, y distances.

For k odd, y is a power of 2, the same value as from Hdiam since k odd has
P3 aligned to curve start and P8 to curve end. But then too many 1-bits in
Sdist2 and Edist2.

For k even, if Sdist or Edist is rational then it and its x, y are a Pythagorean
triple. Any Pythagorean triple has at least one x, y leg a multiple of 4, as from
2pq in the usual parameterization of a primitive triple from Euclid X.29.1,

legs p2−q2, 2pq hypotenuse p2+q2 with p, q not both odd (217)

But neither x, y for Sdist and Edist are multiples of 4.
Scaling the curve to endpoints a unit length gives limits for the distances,

being the coefficients of their
√

2k terms

Sdistk√
2k
→ 5

6

√
2 = 1.178511 . . . A020829

Edistk√
2k
→ 1

3

√
17 = 1.374368 . . .
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7.1 Convex Hull Boundary

Theorem 40. The boundary length of the convex hull around dragon curve k
is

HBk =



2, 2+
√

2 if k = 0 or 1(
1
6 [9, 10].2bk/2c + 2

3 [0,−1, 0, 1]
)

if k ≥ 2

+
(

1
6 [5, 9].2bk/2c − 1

3 [7, 6, 5, 6]
)√

2

+
√

P910norm(k) +
√

P910norm(k+1)

= 2, 2+
√

2, 4+
√

2, 5+
√

2+
√

5, 6+
√

2+
√

5+
√

17, . . .

P910norm(k) =
∣∣P9(k)−P10(k)

∣∣2
= 13

36 2k + 1
9 [−2, 11, 2,−11] 2bk/2c + 1

9 [1, 5]

= 2, 1, 5, 17, 25, 37, 89, 205, 377, 701, . . . k ≥ 2

P910norm is a square at P910norm(3) = 1 and P910norm(6) = 25, but
otherwise not a square and for k≥ 3 it is odd so is not combined with the

√
2

term.

Proof. For k ≤ 1, the hull boundary is calculated explicitly. For k ≥ 2, the
integer and

√
2 parts of HB are the straight and 45◦ diagonal sides of the hull.

Side P9--P10 is
√

P910norm(k). Side P5--P6 is
√

P910norm(k+1) since as
from figure 38 side P9--P10 is the previous level P5--P6. For 2 ≤ k < 6, some
sides are zero length but the formulas still hold.

P910norm(k) is odd since multiplying by 36 and taking terms mod 72 is(
36 P910norm(k)

)
≡ 36 mod 72 k ≥ 3

To show
√

P910norm(k) rational or not, it can be verified explicitly for
2 ≤ k < 10 that only k=3 and k=6 are rational. For k ≥ 10, align the curve to
its segments with endpoint horizontal for k even or −45◦ for k odd.

start

start

end

end

P9

P10

P9

P10

xk

yk

xk

yk

k even

−45◦

k odd

These alignments are rotation by factor i−dk/2e so x and y distances between
P9 and P10 are

xk = Re (P9(k)−P10(k)).i−dk/2e = 1
6 [2, 5].2bk/2c + 1

6 [−1, 2, 1,−2]

= 1, 1, 1, 4, 3, 6, 5, 14, 11, 26, 21, 54, . . . k ≥ 2
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yk = Im (P9(k)−P10(k)).i−dk/2e = 1
2 [1, 1

3 ].2bk/2c + 1
3 [0, 1, 0,−1]

= 1, 0, 2, 1, 4, 1, 8, 3, 16, 5, 32, 11, . . . k ≥ 2

P910norm(k) = x2
k + y2

k (218)

For k even, write (218) as sum and difference similar to (215)

(
√

P910normk + xk)(
√

P910normk − xk) = y2
k

xk and yk are integers so if
√

P910normk is rational then sum and difference
are the factors of y2

k. For k even, yk = 2k/2−1 so they must be powers of 2.√
P910normk + xk = 2α√
P910normk − xk = 2β

2
√

P910normk = 2α + 2β

So
√

P910normk would be most 2 bits and P910normk at most 3 bits. But
its factor 13

36 is bit pattern 111000... and the low end has 4 bits since

P910normk mod 64 ≡ 57 = binary 111001 k even ≥ 10

For k odd, if
√

P910normk is an integer then xk, yk are legs of a Pythagorean
triple. Any Pythagorean triple has at least one leg a multiple of 4 as from (217).
But yk is odd and xk is not a multiple of 4,

xk ≡ 2 mod 4 yk ≡ 1 mod 2 k odd ≥ 7

The two rational
√

P910normk are P910norm3 = 1 and P910norm6 = 25.
The latter has x6, y6 as primitive Pythagorean triple 3, 4, 5.

For the curve scaled to endpoints a unit length, the hull boundary length
limit is the high terms. This is the length around the fractal hull vertices from
Benedek and Panzone.

HBk√
2k
→ HBf = 3

2 + 5
6

√
2 + 1

6

√
13 + 1

6

√
26 (219)

= 4.129273 . . . A341030

Another boundary length measure can be made by counting all Gaussian
integer points on the hull boundary.

start

end

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

k=8 hull boundary

integer points

HBP8 = 37

Theorem 41. The number of integer points on the boundary of the convex hull
around dragon curve k is
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HBPk = 1
6

(
[14, 19].2

⌊
k
2

⌋
+ [−2,−4, 2, 4]

)
hull boundary integers

= 2, 3, 5, 7, 9, 12, 19, 26, 37, 50, 75, 102, 149, 202, . . . k even A062092

Proof. For k < 6 the points can be counted explicitly. For k ≥ 6, the number
of points on the straight and 45◦ sides are their respective x, y extents.

Side P5--P6 has no integer points other than its ends since the real and
imaginary parts of difference s = P5(k)− P6(k) have no common factor. This
is seen by writing multiples which give ±1.

Re s− 5 Im s = (−1)k/4 k ≡ 0 mod 4

3 Re s− 2 Im s = −(−1)(k−1)/4 k ≡ 1 mod 4

5 Re s+ Im s = −(−1)(k−2)/4 k ≡ 2 mod 4

2 Re s+ 3 Im s = (−1)(k−3)/4 k ≡ 3 mod 4

so gcd(Re s, Im s) = 1

Side P9--P10 side is the previous level P5--P6 (per figure 38 side) so it too
has no integer points.

Pick's theorem for a polygon on a square lattice is

Area = InsidePoints + 1
2 BoundaryPoints − 1 (220)

So with area HA and boundary points HBP the interior and total hull integer
points are

HIPk = HAk − 1
2HBPk + 1 hull interior points

=

{
0 if k = 0
7
6 2k − 1

6 [18, 24, 18, 25]2

⌊
k
2

⌋
+ 1

3 [4, 5, 4, 3] if k ≥ 1

= 0, 0, 0, 2, 8, 23, 52, 117, 252, 535, 1100, 2257, . . .

HPk = HIPk + HBPk hull total integer points

=

{
2, 3 if k = 0 or 1
7
6 2k − 1

6 [4, 5, 4, 6]2

⌊
k
2

⌋
+ 1

3 [3, 3, 5, 5] if k ≥ 2

= 2, 3, 5, 9, 17, 35, 71, 143, 289, 585, 1175, 2359, . . .

The dragon curve touches its convex hull only at some points.

start

end

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

k=8 curve
touching hull boundary

vertices HBV 8 = 24

gaps HBVgaps8 = 9
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Theorem 42. The number of dragon curve vertices on the convex hull is

HBV k =

{
2, 3 if k = 0 or 1
1
2 [15, 17, 22, 26].2

⌊
k
4

⌋
− 6 if k ≥ 1

= 2, 3, 5, 7, 9, 11, 16, 20, 24, 28, 38, 46, 54, 62, 82, 98, . . .

Proof. For k ≤ 6, the vertices on the hull can be counted explicitly.
For k ≥ 6, let P1v(k) be the number of curve vertices on side P1--P2. P1

is included and P2 is excluded. Similarly the other sides through to wrapping
around P10--P1.

From figure 38 the sides of hull k comprise sides of k−1 sub-hulls. Side
P5--P6 has no vertices except its endpoints since both sub-hull sides turn away
from it. Side P1--P2 is the two sub-hull sides P1--P10 and P8′--P7′, plus the
vertex at P8′ which is not included in P7v(k−1). So mutual recurrences

P1v(k) = P7v(k−1) + 1 + P10v(k−1) P6v(k) = P2v(k−1) (221)

P2v(k) = P1v(k−1) P7v(k) = P3v(k−1)

P3v(k) = P2v(k−1) P8v(k) = P4v(k−1)

P4v(k) = P3v(k−1) P9v(k) = P5v(k−1)

P5v(k) = 1 P10v(k) = P6v(k−1)

The chain of dependencies is similar to the vertex positions (203) but P1v
contributes to both P7v and P10v .

P3v P2v

P1vP7v

P6v

P10v

P4vP8v

P5v = 1P9v

With initial values calculated explicitly and expanding 4 times, or a little
linear algebra on generating functions,

P1v(k) = [2, 1, 2, 2] .2
bk/4c − 1

= 3, 3, 7, 3, 7, 7, 15, 7, 15, 15, . . . k ≥ 6

The other sides are the same with index delays and the total is HBV .

HBV k = P1v(k) + P2v(k) + · · ·+ P10v(k)

Hull boundary points HBP grow as a half power 2k/2 whereas curve vertices
HBV on that boundary grow only as a quarter power 2k/4, so the proportion
→ 0 as k→∞.

Curve segments are on the straight sides of the hull boundary (aligned to
bk) when k even, or the 45◦ diagonal sides when k odd. Every 2 vertices on a
side are a segment, and when an odd number of vertices the last vertex goes to
the side endpoint for a further segment, so 1

2 rounded up.

HBSk=


1, 2, 3, 4, 5, 5 k = 0 to 5⌈

1
2P1v(k)

⌉
+
⌈

1
2P3v(k)

⌉
+
⌈

1
2P6v(k)

⌉
+
⌈

1
2P8v(k)

⌉
k even ≥6⌈

1
2P2v(k)

⌉
+
⌈

1
2P4v(k)

⌉
+
⌈

1
2P7v(k)

⌉
+
⌈

1
2P10v(k)

⌉
k odd ≥6
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=

{
1, 2, 3 k = 0 to 2
1
2 [5, 5, 7, 8] 2

bk/4c
k ≥ 3

curve segments on hull

= 1, 2, 3, 4, 5, 5, 7, 8, 10, 10, 14, 16, 20, 20, 28, 32, . . .

The vertices on the hull boundary are in runs and gaps. For example in
the k=6 figure 37 left side P1--P2 has segments at each end and a gap in the
middle, whereas side P3--P4 is a continuous run.

Theorem 43. The number of gaps in the dragon curve vertices on its convex
hull boundary is

HBVgapsk =

{
0, 0, 0, 1, 2 if k = 0 to 4
1
4 [15, 18, 20, 24].2

⌊
k
4

⌋
− 6 if k ≥ 5

= 0, 0, 0, 1, 2, 3, 4, 6, 9, 12, 14, 18, 24, 30, . . . odd k≥3 A061776

Proof. Take hull k as sub-hulls of k−1 from figure 38 again. The sub-hull points
P10(k−1) and P8′(k−1) are separated by a distance bigger than a single vertex
point since

bk − iP8(k−1) − P10(k−1)

ωk8
= 1

3

√
2k + 1

3 [−1, 2
√

2, 1,
√

2]

≥ 3
√

2 for k ≥ 7

Let P1gaps(k) be the number of gaps in side P1--P2, and the other sides
similarly. The endpoints are always visited by the curve so gaps are within each
side. The mutual recurrences (221) for the curve vertices are the same for the
gaps, including side P1--P2 with +1 extra gap. The initial values at k=6 are
not the same, being instead P1gaps = P2gaps = P5gaps = P9gaps = 1. The
result is

P1gaps(k) = 2

⌊
k−1

4

⌋
− 1

The other sides are the same with index delays. The total is HBVgaps.

HBVgapsk = P1gaps(k) + P2gaps(k) + · · ·+ P10gaps(k)

7.2 Minimum Area Rectangle

k=7

area MR7 =
345

2

start

end

k=8 MR8 = 345

start
end

Figure 39: minimum area rectangle k=7 and k=8
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Theorem 44. The minimum-area rectangle around the dragon curve level k
has area

MRk =


0, 1, 2, 6, 15, 192

5 for k=0 to k=5(
3
2 .2
dk/2e − 1

) (
2dk/2e − 1

)
2k mod 2

for k ≥ 6

= 3
22k − 5

22bk/2c + 1
2k mod 2

(222)

= 0, 1, 2, 6, 15, 192
5 , 77, 345

2 , 345, 1457
2 , 1457, 5985

2 , 5985, . . .

For k=0 to k=4, the rectangle is aligned vertically/horizontally. For k=5, the
rectangle is aligned to a 3,4 slope. For k ≥ 6, the rectangle is aligned to the bk

endpoint.

2k mod 2 means 20 = 1 or 21 = 2 according to k even or odd. The first k ≥ 6
form (222) shows how the numerator is the same for pairs of k, as for example
345 of k=7 and k=8 in figure 39 above. The second k ≥ 6 form shows how the
area grows as 3

2 2k less a half power.

Proof. A minimum area rectangle has at least one side aligned to a side of the
convex hull, so it suffices to consider rectangles on the hull sides.

For k=0, the curve is a unit line segment with area MR0 = 0.
For k=1 the curve is an L shape. The two possible rectangle alignments

both have area MR1 = 1.

k = 1

MR1 = 1
area = 1 area =

√
2× 1

2

√
2 = 1

For k=2 to k=4, the possible alignments and areas are as follows. In each
case the first is the minimum.

k = 2

MR2 = 2
area = 2 area = 3

2

√
2×
√
2 = 3

k = 3

MR3 = 6

area = 6

Re
1− (−2+2i)

2−i

× Im
2i− 0

2−i
× 5 = 6+ 2

5

area
3
2

√
2× 5

2

√
2

= 7+ 1
2
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k = 4

MR4 = 15

3× 5

= 15
Re

1+i− (−4−i)
4+i

× Im
−3+2i− (−3−i)

4+i

× 10 = 15+ 9
17

Re
2i− (−4−i)

1+2i

× Im
−3+2i− 1

1+2i

× 5 = 20

3
√
2× 7

2

√
2

= 21

k = 5

MR5 = 192
5

= 38 + 2
5

Re
2i− (−4−5i)

3+4i

× Im
−5− 1

3+4i

× 25 = 38 + 2
5

11
2

√
2× 7

2

√
2

= 38 + 1
2

6× 7 = 42
Re

1+i− (−5−i)
4+i

× Im
−3+2i− (−3−5i)

4+i

× 17 = 42 + 14
17

As a remark, for k=4 the minimum area MR4 = 15 is per the general formula
(222). For k=5, the diagonal case 38+ 1

2 is also per the formula but it is not the
minimum. The 3,4 slope rectangle there is 1

10 smaller.

For k ≥ 6, the hull vertices P1(k) through P10(k) from the convex hull
(196) are used. A rectangle aligned to the endpoint bk is the claimed minimum,

0
bk

P1P2

P3

P4

P6 P7

P8

P9

The four sides P3--P4 etc are vertical as at (207) so area

MRk = 2k.Re
P9(k)− P4(k)

bk
. Im

P6(k)− P1(k)

bk

= 2k
(

3

2
− 1

2dk/2e

)(
1− 1

2dk/2e

)
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A rectangle aligned 45◦ diagonally to the bk endpoint is

P1P2

P3

P4
P5

P7

P8

P10

The four sides P4--P5 etc are diagonal as per (208). The area is

MRdiag(k) = 2k+1.Re
P8(k)− P2(k)

bk+1
. Im

P4(k)− P1(k)

bk+1

=

(
5
32dk/2e − 2

3 [1, 2, 2, 4]
) (

2dk/2e − 1
22k mod 2

)
2k mod 2

(223)

> MRk for k ≥ 6

Compared to the MR form (222) the right term of (223) has − 1
2 2k mod 2

≥ −1 always. The left term has 5
3 exceeding 3

2 by 1
6 and putting that to the

half-power has

1
62dk/2e − 2

3 [1, 2, 2, 4] > −1 for k ≥ 6

A rectangle aligned to the P5--P6 side is

P1

P3

P5

P6

P8

The area is the extents in the direction of the P5--P6 line. Dividing by that
to rotate,

MRtwo(k) =
∣∣P6(k)− P5(k)

∣∣2 . Re
P8(k)− P3(k)

P6(k)− P5(k)
. Im

P5(k)− P1(k)

P6(k)− P5(k)

=
Re(P8−P3)(P6−P5) . Im(P5−P1)(P6−P5)

|P6− P5|2

=
20

13
2k + a(k) 2bk/2c +

b(k) 2k + c(k) 2bk/2c + d(k)
13
182k + e(k) (−2)bk/2c + f(k)

a(k) = [− 427
169 ,−

498
169 ,−

418
169 ,−

516
169 ]

b(k) = [2231
3042 ,

358
507 ,

862
1521 ,

20
507 ]

c(k) = [1966
1521 ,

166
507 ,−

1459
1521 ,

172
507 ]

d(k) = [4
9 , 0] e(k) = [11

9 ,
4
9 ] f(k) = [ 5

9 ,
1
9 ]

> MRk
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Factor 20
13 >

3
2 . The difference

1
262k is enough to exceed a(k) > − 7

2 and the
fraction part > −1.

A rectangle aligned to the P9--P10 side is

P2

P4

P7

P9

P10

The area is the extents in the direction of the P9--P10 line.

MRthree(k) =
∣∣P9(k)− P10(k)

∣∣2 . Re
P7(k)− P2(k)

P9(k)− P10(k)
. Im

P4(k)− P10(k)

P9(k)− P10(k)

=
Re(P7−P2)(P9−P10) . Im(P4−P10)(P9−P10)

|P9− P10|2

=
45

26
2k + a(k)2bk/2c +

b(k) 2k + c(k) 2bk/2c + d(k)
13
362k + e(k) (−2)bk/2c + f(k)

a(k) = [− 615
338 ,−

1109
338 ,−

867
338 ,−

1361
338 ]

b(k) = [− 365
2028 ,

941
6084 ,

935
2028 ,

245
1521 ]

c(k) = [ 205
1014 ,

3179
3042 ,

289
1014 ,−

2321
3042 ]

d(k) = [0, 4
9 ] e(k) = [− 2

9 ,
11
9 ] f(k) = [ 1

9 ,
5
9 ]

> MRk

Factor 45
26 > 3

2 . The difference 3
132k is enough to exceed a(k) > − 9

2 and the
fraction part > −1.

The number of curve vertices on the minimum area rectangle can be calcu-
lated from the sides in theorem 42. For k=2, there are two rectangles of equal
minimum area touching 4 or 5 vertices respectively. Take that as 5 so that for
k ≤ 2 all curve vertices are touched.

MRV k = P1v(k) + P3v(k) + P6v(k) + P8v(k) + 4 k ≥ 6

=

{
2, 3, 5, 7, 9, 5 if k = 0 to 5
1
2 [10, 7, 14, 10].2

⌊
k
4

⌋
if k ≥ 6

= 2, 3, 5, 7, 9, 5, 14, 10, 20, 14, 28, 20, 40, 28, 56, 40, 80, . . .

Odd and even values of MRV repeat with offset 3,

MRV 2k = MRV 2k+3 for 2k ≥ 6

= 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, . . . A063920, A070875

Or similarly the number of gaps. The corners of the rectangle are 4 gaps in
addition to those within the hull sides.
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MRVgapsk = P1gaps(k) + P3gaps(k) k ≥ 6

+ P6gaps(k) + P8gaps(k) + 4

=

{
0, 1, 2, 3, 5 if k = 0 to 4

[5, 5, 7, 7]k−5 .2

⌊
k−5

4

⌋
if k ≥ 5

= 0,1,2,3,5, 5, 5, 7, 7, 10, 10, 14, 14, 20, 20, 28, 28, . . . undup A070875

7.3 XY Convex Hull

An XY convex hull is the smallest polygon surrounding a set of points which
is ``convex'' in the X and Y directions. Any line parallel to the X or Y axes
intersects the polygon in a single contiguous segment. (Whereas the full convex
hull requires this for a line at any angle.)

start

end

k=8

XY convex hull

XYhullA8 = 223

The boundary length is simply the width and height extents of the convex
hull in the direction of curve endpoint, since the XY hull goes up and down
each extent, in stair-steps. This is the alignment and hence boundary length of
the minimum area rectangle general case (but not some of the initial cases).

XYhullBk =

 2 if k=0

2

(
Re P8k−P3k

ωk8
+ Im P6k−P1k

ωk8

)
if k ≥ 1

=
√

2 .
(

XYhullBk−1 + [0, 2]
)

k ≥ 2

=

{
2 if k=0

5
√

2k − [4, 2
√

2] if k ≥ 1

= 2, 3
√

2, 6, 8
√

2, 16, 18
√

2, 36, 38
√

2, . . . k≥1 sans
√

2 A123208

The limit for the curve scaled to unit length is XYhullB/
√

2k → 5. This
can be compared to the limit for the full hull (219). The full hull boundary is
shorter since it cuts across corners for k≥ 1.

Theorem 45. The XY convex hull around the points of dragon curve k aligned
to curve endpoint has area

XYhullAk =


0, 0, 1 for k = 0, 1, 2

1027
1008 2k − 1

9 [23, 22, 22, 23]2bk/2c

+ 1
7 [16,−17, 22,−26]2bk/4c − 1

18 [14, 7]
for k ≥ 3

= 0, 0, 1, 5
2 , 8, 22, 48, 217

2 , 223, 961
2 , 969, . . .
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Proof. The XY hull is contained within the full hull. The vertical and horizontal
sides of the full hull are unchanged. The diagonal sides are reduced by stair-step
indentations. Initial segment expansions of a diagonal are

XYindentA0 = 0

=⇒

XYindentA1 = 1
4

=⇒

XYindentA2 = 1
2

=⇒

XYindentA3 = 3
4

The grey triangles are indentations where the XY hull is smaller than the
diagonal of the full hull. The XY hull is around just the points, not the curve seg-
ments between them, hence the dashed lines in XYindentA1 and XYindentA3.
Each segment is unit length so the triangles are 1

4 or 1
2 .

Curve k≥ 10 comprises sub-curves k−4 and for k−4 ≥ 6 each of those sub-
curves has a 10-vertex convex hull,

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

P2T

P3T

T

P2E

P3EE

P2A

P3B

start

end

Figure 40:

k−4 sub-curve

convex hulls

On diagonal side P2--P3 at lower left, the triangular region shown dashed is
not in the XY hull. The rest of that side is two further k−4 sides P2--P3. So
recurrence for XYindentA, starting k=6 side P2--P3 is XYindentA4,

XYindentAk = 2XYindentAk−4 for k ≥ 4

+ 1
4

(∣∣P2(k+2)−P3(k+2)
∣∣ − 2

∣∣P2(k−2)−P3(k−2)
∣∣)2

= 4
63 2k + 1

9 [4, 2, 2,−2]2bk/2c + 1
14 [−4,−1,−2, 10]2bk/4c− 1

36 [8, 1, 2, 1]

= 0, 1
4 ,

1
2 ,

3
4 , 2, 11

4 ,
11
2 ,

31
4 , 22, 143

4 , 143
2 , . . .

Sides P1-P10, P4--P5 and P7--P8 are all the same. They are 2 levels further
down from P2--P3, as can be seen from expanding twice so that P1-P10 etc are
sides P2--P3 of each sub-curve.
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P1P2

P3

P4

P5

P6 P7

P8

P9

P10

P2A

P3A
start

end

In figure 40, the top polygon region P5, P6, P3T, T is all absent from the XY
hull, and in addition indents in the side P2T--P3T which is a k−4 sub-curve.
Similarly the bottom polygon region P10, P9, P3E, E and its P2E--P3E side.

Total reduction over the full hull is then as follows, for k ≥ 10. Smaller k
hulls can be formed explicitly.

XYhullAk = HAk −XYindentAk−2 − 3XYindentAk−4 − 2XYindentAk−6

− PolygonArea
(
P5(k), T, P3T, P6(k)

)
− PolygonArea

(
P10(k), P9(k), P3E, E

)
A similar calculation can be made for an XY convex hull around the curve

with endpoints aligned diagonally. The boundary from diagonal hull extents is

DXhullBk = 2

(
Re

P7 k − P2 k

ω8
k+1

+ Im
P4 k − P1 k

ω8
k+1

)
=
√

2 .
(
DXhullBk−1 + [3, 0, 1, 0]

)
= 11

3

√
2 .
√

2k − [ 5
3

√
2, 10

3 ,
7
3

√
2, 14

3 ]

= 2
√

2, 4, 5
√

2, 10, 13
√

2, 26, 27
√

2, 54, . . .

For area, the vertical and horizontal hull sides become the diagonals with
indents. The P5--P6 and P9--P10 sides are polygon shapes, with different points.
It's convenient to take k−6 sub-curves to see which sub-curve sides those parts
follow.
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P1

P2

P3

P4 P5

P6

P7

P8

P9

P10

P7S

S

P1D

D

start

end

k−6 sub-curve

convex hulls

endpoint diagonally

In k=6, sides P3--P4 and P6--P7 are XYindentA3, so k−3. Side P1--P2 is
2 levels bigger. Sides P8--P9 and P5--P7S in region S is 2 levels smaller. Side
P10--P1D in region D is 2 levels yet smaller, being a P1--P2 at 6 levels down.
So

DXhullAk = HAk − XYindentAk−1 − 2XYindentAk−3 for k≥12

− 2XYindentAk−5 − XYindentAk−7

− PolygonArea
(
P5(k), P7S, S, P6(k)

)
− PolygonArea

(
P10(k), P9(k), D, P1D

)
Hulls k < 12 can be calculated explicitly, giving

DXhullAk =


0, 0, 1

2 , 3 for k ≤ 3

557
576 2k − 1

72 [143, 286, 121, 242]2bk/2c

+ 1
8 [−5, 6,−6, 8]2bk/4c − 1

18 [2, 4, 5, 10]
for k ≥ 4

= 0, 0, 1
2 , 3,

13
2 , 17, 95

2 , 100, 427
2 , 435, 934, . . .

Area limits for the curve scaled to endpoints a unit length are the coefficients
of the 2k terms, and boundary length limits are coefficients of their

√
2k terms

(as already noted for XYhullB).

start

end

start

end
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XYhullAk

2k
→ 1027

1008
= 1.018849...

DXhullAk

2k
→ 557

576
= 0.967013...

XYhullBk

2k
→ 5

DXhullBk

2k
→ 11

3

√
2 = 5.185449...

The limit for the indent area XYindentA on the diagonal of a square of unit
side is (with P2--P3 for scaling),

XYindentAk−2(
Re ω8

k(P2(k)− P3(k))
)

2
→ XYindentAf =

1

7

The self-similar ends of P2--P3 in figure 40 are 4 levels smaller so limits 1
4

the length, leaving middle triangle 1
2 . For a unit square, this is middle triangle

area 1
8 and 2 ends of 1

4 size so 2. 1
16 area, etc.

area 1
8

1
4

1
2

1
4

XYindentAf =
1

8
+

1

82
+

1

83
+ · · · = 1

7

In XYhullA, the regions T and E are different shapes but the limits for their
area are the same 17/288 (not including the further XYindentA on the diagonals
within them).

The above calculations are XY hulls around just the points, so XY hull sides
are all vertical and horizontal. If curve segments are included then XYhullA odd
k has segments on the diagonals which increase the area. Indent XYindentA1

reduces 0 and XYindentA3 reduces to 1
4 . Putting those smaller indents through

the calculation increases the general case hull area by

[0, 7
8 , 0,

5
4 ]2bk/4c = 0, 7

8 , 0, 5
4 , 0, 7

4 , 0, 5
2 , 0, 7

2 , . . .

8 Centroid

start

end

join
GS6 =

−26−51i
16

within boundary square

JEQk−1 at end of join

k=6 segments centroid

Theorem 46. Consider the dragon curve to have mass uniformly distributed
along its length. The centroid (centre of gravity) of level k is

GSk =
(

2
5−

1
5 i
)
bk +

(
1
10+ 1

5 i
) (

b
2

)
k segments centroid

where b = 1+i

= 1
2 ,

3+i
4 , 2+3i

4 , −3+9i
8 , −13+6i

8 , −39−13i
16 , −26−51i

16 , . . .
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Proof. For k=0, the curve is a single line segment and GS 0 = 1
2 per the formula

is its midpoint.
For k ≥ 1, the centroid is the midpoint of the centroids of level k−1 and the

unfolded copy of k−1.

0

bk

GSk−1

GS ′k−1 = bk + (−i).GSk−1

centroid
unfold

GSk = 1
2

(
GSk−1 + GS ′k−1

)
midpoint

= 1
2b
k + b

2GSk−1

=

k∑
j=0

1
2b
j
(
b
2

)k−j
repeated substitution and GS 0= 1

2 (224)

= 1
2

(
bk+1 −

(
b
2

)k+1
)
/
(
b− b

2

)
Second Proof of Theorem 46. The centroid can also be calculated from the num-
ber of segments in each direction S(k, d) of theorem 10 and how they expand.

The curve always turns ±90◦ so even numbered segments are horizontal and
odd numbered segments are vertical. Even numbered segments expand on the
right and odd numbered segments expand on the left of their direction along
the curve which is d in S(k, d).

d=0

− 1
4 i

+ 1
4 i

d=2

− 1
4 d=1

d=3 + 1
4

Relative to the midpoint of the existing segment the expanded segments
have centroid − 1

4 i, −
1
4 , + 1

4 i, + 1
4 for d = 0,1,2,3 respectively. Write that as

− 1
4 i(−i)

d. There are 2k−1 segments in total in the previous level so divide by
that for the mean, and multiply b to expand the curve.

GSk = b
(

GSk−1 + 1
2k−1

3∑
d=0

− 1
4 i(−i)

d S(k−1, d)
)

k ≥ 1 (225)

= bGSk−1 + b
(

1
2

)
k−1.−i4 b

k−1 (226)

= bGSk−1 + 1
2

(
b
2

)
k (227)

For k=1, the sum part of (225) is − 1
4 i since the only segment is S(0, d) = 1

at d=0. This is per the expression in (226).
For k ≥ 2, the sum part of (225) is conveniently handled by the S(k, d) form

(84) with b powers. Its 2k powers cancel out since the (−i)d factor has them
equally in all four directions. Its bk term cancels out too since (−i)d.(−i)d =

(−1)d and
∑3
d=0 (−1)d = 0. Its bk term remains since (−i)d.id = 1 always.
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Expanding (227) repeatedly gives a sum of the same terms as the previous
(224) for GS , but in reverse order. (224) has b/2 rising and b falling. (227) has
b/2 falling and b rising.

The centroid scaled relative to the endpoint bk is

GSF k = GSk/b
k

=
(

2
5 −

1
5 i
)

+
(

1
10 + 1

5 i
)

(−i2 )k (228)

= 1
2 ,

2−i
4 , 3−2i

8 , 6−3i
16 , 13−6i

32 , 26−13i
64 , 51−26i

128 , . . .

numerator Rek = − Imk+1 = A007910

→ Gf = 2
5 −

1
5 i as k→∞ (229)

start

end

Gf
2
5
− 1

5
i

centroid limit

The power (−i2 )k in GSF k spirals clockwise towards the limit.

0 1
2 = GSF0

2−i
4 = GSF1GSF2 = 3−2i

8

GSF3 = 6−3i
16

The numerators of GSF k are integers (Gaussian integers) over 2k+1. The
real and imaginary parts are the same sequence, with the real part one ahead,

GSF k =
GSFnumk+1 − iGSFnumk

2k+1

GSFnumk = 1
5

(
2k+1 + [−2, 1, 2,−1]

)
= 0, 1, 2, 3, 6, 13, 26, 51, 102, 205, 410, 819, 1638, 3277, . . . A007910

= binary k−1 bits 1100, 1100, ... and +1 when k ≡ 1 or 2 mod 4

= 0, 1, 10, 11, 110, 1101, 11010, 110011, 1100110, 11001101, . . .

GSFnumk is an integer since [−2, 1, 2,−1] ≡ −2k+1 mod 5.
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Theorem 47. The centroid of the dragon curve segments is within the boundary
unit square at the end of the join of unfolded component sub-curves.

Proof. The centre of the join end square is JEQk from theorem 31. The centroid
of the two copies of the curve joining is the next level GSk+1. Let δk be the
offset from JEQk to GSk+1.

JEQk + δk = GSk+1

δk =
(

2
5−

1
5 i
)
bk+1 +

(
1
10+ 1

5 i
) (
b/2
)k+1

−
((

3
5+ 1

5 i
)
bk −

(
1
10−

3
10 i
)

(−1)k
)

= ( 1
10−

3
10 i)(−1)k + ( 3

20 + 1
20 i)

(
b/2
)k

Since |b/2| = 1/
√

2 < 1 the real and imaginary parts of δk are at most the
bigger two fractions in the coefficients

|Re δk| , |Im δk| ≤ 3
10 + 3

20 = 9
20 < 1

2

So the centroid is always less than 1
2 away from the middle of the square.

δk term (b/2)k → 0 as k →∞ so δk tends to alternate ±
(

1
10−

3
10 i
)
from the

centre of the square.

−
(

1
10
− 3

10
i
)

k odd

+
(

1
10
− 3

10
i
)

k even

Centroid within boundary square
at join end

A variation on the centroid can be made by considering each of the 2k + 1
curve vertices as having a unit weight. Double-visited points have weight 2.
This can be calculated by considering the line segments as weight 1

2 at each of
their ends then adding an extra 1

2 at the origin and 1
2 at the endpoint bk. Those

extras give a vertex centroid differing from GSk by a small amount.

GV k =
(
GSk2k + 0 + bk/2

)
/(2k + 1) vertices centroid

= GS (k) + (bk/2−GS (k))/(2k + 1)

= GS (k) + ( 1
10 + 1

5 i)
bk + (b/2)k

2k + 1

The centroid of the convex hull around the segments can be calculated from
the triangles making up the hull, as per the area HA (211). The centroid of a
triangle is the mean of its three vertices and those centroids are weighted by
triangle area.

HGk =
HGtotalk

HAk
k ≥ 1 convex hull centroid (230)

= 2
3+ 1

3 i,
4
9+ 7

9 i, −
4
9+ 29

27 i, −
37
23+ 40

69 i, −
191
84 −

41
42 i, . . .

HGtotalk =
∑

(triangle centroid) .(triangle area)
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=



1
3 + 1

6 i k=1

bk


(

305
648−

59
324 i

)
2k

+
[−79

108 + 25
72 i,

−199
216 + 35

108 i,
−83
108 + 11

72 i,
−251
216 + 23

54 i
]
.2

⌊
k
2

⌋
+
[

1
108−

4
27 i,

−1
108 ,

7
27+ 11

108 i,
61
216−

1
8 i
]

 k≥2

+ 1
162

[
7+4i, 12−2i, 4−7i,−2−12i,
−7−4i,−12+2i,−4+7i, 2+12i

]

= 2+i
6 , 4+7i

6 , −12+29i
6 , −111+40i

6 , −382−164i
6 , . . .

The hull centroid scaled relative to the endpoint bk is the coefficients of the
high power terms in HGtotal and HA

1

bk
HGtotalk

HAk
→ HGf =

305
648−

59
324 i

7
6

=
305

756
− 59

378
i (231)

= 0.403439... − 0.156084...i

0 1

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

HGf
convex hull

centroid limit

Real part 305
756 = 0.403... is close to the segments centroid Re Gf = 2

5 = 0.4,
but the imaginary part − 59

378 = −0.156... is higher than Im Gf = − 1
5 = −0.2.

Roughly speaking, there is more empty space filled by the hull above (left of
the curve), moving the hull centroid up.

The centroid of the XY convex hull can be calculated too by removing the
indent parts of theorem 45 from the full hull. The resulting expression is a lot
of terms. The limits are

XYhullGf =
97401− 43463 i

254696
= 0.382420...− 0.170646...i (232)

DXhullGf =
391569− 173071 i

966952
= 0.404951...− 0.178986...i

8.1 Boundary Centroid

As per theorem 14, left boundary squares are symmetric in 180◦ rotation so
their centroid is their midpoint

GLQk = 1
2 b

max(1,k) (233)

The same is not true of the left boundary segments, in general. Their cen-
troid differs from the midpoint by a small amount.

Theorem 48. The centroid of the left boundary segments is
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GLk =
GLtotalk

Lk
centroid

GLtotalk =


1
2 k=0(
1

2
Lk −

3+i

5
k +

31−33i

50

)
bk − 2+i

10
bk +

2−6i

25
(−1)k k ≥ 1

= 1
2 ,

3
2+ 1

2 i, 2+3i, −3+9i, −16+6i, −36−24i, −14−122i, . . .

Generating function

gGLtotal(x) = − 1
2+i + 1

25

2−6i

1 + x
− 1

10

2+i

1− bx
+ 1

2gL(bx) (234)

+ 1
50

61−23i

1− bx
− 1

5

3+i

(1− bx)2

GLtotalk is the sum of the midpoints of the left boundary segments. GLk
divides by Lk for the mean which is the centroid. The term 1

2b
kLk in GLtotalk

is the midpoint between the curve ends which is the boundary squares centroid.
The other terms are displacements from there.

Proof. Take the left boundary in the breakdown of figure 14.

0

1

2

3

4

5

6

7

8

Lk+4 = Lk+3 + 2Lk+1

Lk+1

Lk+1Rk+1

The Lk+1 parts are rotated 180◦ so −GLtotalk+1. They are at positions
−1+i and −2 so that offset weighted by their segment count Lk+1.

7 to 8 is the end portion 3 to 4 of Lk+3, shifted down (−2−2i)bk to form
Lk+4. This section is a right boundary Rk+1 so the offset is weighted by that
length.

GLtotalk+4 = GLtotalk+3

−GLtotalk+1 + (−1+i) bk Lk+1

−GLtotalk+1 + (−2 ) bk Lk+1

+ (−2−2i) bk Rk+1 (235)

It's convenient to combine L and R with GLtotal using the generating func-
tions. The bk factor is incorporated as gL(bx) and gR(bx). The first term for
the recurrence is at x4 so the lower terms in each function are subtracted to
leave the initial values GLtotal0 to GLtotal3 unchanged.

gGLtotal(x) = x (gGLtotal(x) −GLtotal0 −GLtotal1x−GLtotal2x
2)

− 2x3 (gGLtotal(x) −GLtotal0)

+ (−3+i)x3 (gL(bx)− 1)

+ (−3−i)x3 (gR(bx)− 1)
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+ GLtotal0 + GLtotal1x + GLtotal2x
2 + GLtotal3x

3

=

(
1
2 −

1
2 i x + (− 1

2+ 1
2 i)x

2 + x3 + (7−7i)x4

+ (−8−4i)x5 + 8x6 + (16−16i)x7

)
(1 + x)(1− bx)(1− bx)2(1− bx− 2b3x3)

Splitting gGLtotal into partial fractions gives (234). From it the roots −1,
b, b are powers in GLtotalk. 1/(1−bx)2 gives power term kbk.

The partial fraction for 1− bx− 2b3x3 has numerator 1 + b2x2 which is per
numerator 1+x2 in gL(x) at (101), resulting in 1

2gL(bx) for gGLtotal and 1
2b
kLk

for GLtotal .

1 + b2x2

1− bx− 2b3x3
=

gL(bx) + 1

2

The GLtotalk+1 terms in (235) give 1− x+ 2x3 for the generating function
denominator. This is not the dragon cubic. Rather it factorizes

1− x+ 2x3 = (1− x)(1− bx)(1− bx)

There is already a 1−bx term from gR(bx) and this cubic divided in is a
second one, hence (1−bx)2.

Scaling by bk for a fractal of unit length gives limit 1
2 the same as the

boundary squares centroid.

GLk
bk

=
1

2
+

(
terms in

1

Lk
and

1

bk

)
→ 1

2
as k →∞

For k=0, the curve is a single line segment and its centre is the limit 1
2 . For

k ≥ 1 the limit is approached from below.

0 bk

GLk
bk

→ 1

2

GL1/b
1 = 1

2
− 1

4
i

3
8
− 1

4
i

3
8
− 3

16
i

1
3
− 1

8
i

3
8
− 3

40
i

1
2

Theorem 49. The centroid of the right boundary squares is

GRQk =
GRQtotalk

RQk

squares centroid

GRQtotalk =


1
2−

1
2 i if k=0

bk

82

 (70−15i) RQk

+ ( 3+14i) RQk+1

− (17+11i) RQk+2

+
57−21i

82
if k ≥ 1

= 1−i
2 , 2, 5+3i

2 , 1+11i
2 , −23+19i

2 , −71−5i
2 , . . .
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GRQtotalk is the sum of the midpoints of the right boundary squares. GRQk

divides by RQk for the mean which is the centroid.

Proof. Repeated unfolding of section 3.2 for right boundary gives GRQtotalk
as a sum of the left boundary centroid GLQk weighted by the number of left
boundary squares LQk. The sum is taken as empty when k=0.

GRQtotalk = 1
2−

1
2 i +

k−1∑
j=0

LQj

(
bj+1 − i.GLQj

)
GLQk = 1

2b
k for k≥ 1 from (233) gives (1+ 1

2 i)b
j for the sum. An offset is

applied for the fact GLQ0 6= 1
2b

0. Including that unconditionally restricts to
k ≥ 1.

GRQtotalk = ( 1
2−

1
2 i) − i(GLQ0 − 1

2b
0) + (1+ 1

2 i)

k−1∑
j=0

LQjb
j k ≥ 1

= (1− 1
2 i) + (1+ 1

2 i)
k−1∑
j=0

LQjb
j k ≥ 1(236)

It's convenient to go by the generating functions to express the sum in terms
of RQk. The constant term − 1

2 adjusts to include GRQtotal0.

gGRQtotal(x) = − 1
2 + (1− 1

2 i)
1

1−x
+ (1+ 1

2 i)x
1

1− x
gLQ(bx)

= − 1
2 + 57−21i

82

1

1−x
+ 1

82

(25−20i) + (62+16i)x+ (62+16i)x2

1− bx− 2b3x3
(237)

The cubic part is expressed in terms of gRQ(x) and generating functions of
RQk+1 and RQk+2

gRQ(x) = = (1 + x+ x2)/(1−x−2x3)

gRQk+1(x) = 1
x (gRQ(x)− RQ0) = (2 + x+ 2x2)/(1−x−2x3)

gRQk+2(x) = 1
x2 (gRQ(x)− RQ0 − RQ1x) = (3 + 2x+ 4x2)/(1−x−2x3)

Some linear algebra for the coefficients in the numerators gives

gGRQtotal(x) = −1

2
+

57−21i

82
.

1

1− x
+

1

82

 ( 70−15i) gRQ(bx)

+( 3+14i) gRQk+1(bx)

+(−17−11i) gRQk+2(bx)


gGRQtotal form (237) has denominator 1−bx−2b3x3 which is a cubic re-

currence for GRQtotal ,

GRQtotalk = bGRQtotalk−1 + 2b3GRQtotalk−3 + 3
2−

9
2 i k ≥ 4

The centroid of the right boundary segments is similarly

GRk =
GRtotalk

Rk
segments centroid
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GRtotalk =



1
2 if k=0

bk

82

 (70−15i)Rk
+ ( 3+14i)Rk+1

− (17+11i)Rk+2


+

(
3+i

5
k +
−111+1573i

2050

)
bk − 2+i

10
bk

+
3+i

25
(−1)k +

57−21i

41


if k ≥ 1

= 1
2 ,

3+i
2 , 2+3i, −3+9i, −26+12i, −68−20i, . . .

GRtotalk is the sum of the midpoints of the right boundary segments. GRk

divides by Rk for the mean which is the centroid.
gR(x) has the same cubic part as gRQ(x) and gives the same coefficients on

R as for RQ .

Scaled by bk to a unit length for the dragon curve fractal, the right boundary
squares centroid GRQk/b

k has ratios RQk+1/RQk and RQk+2/RQk. Since RQ
grows as a power of the cubic root r these approach r and r2. Similarly GR the
right boundary segments centroid.

GRQk

bk
→ 1

82

( 70−15i)

( 3+14i) RQk+1/RQk

(−17−11i) RQk+2/RQk

 squares limit

→ GRf =
70 + 3r − 17r2

82
+
−15 + 14r − 11r2

82
i (238)

= 0.319629 . . .− i 0.279118 . . .

GRk

bk
→ GRf segments limit the same

0 1

GRf
0.319...− i 0.279...

Right boundary
centroid limit

The centroid of all boundary squares is the sum of the left and right cen-
troids, then weighted by the total squares.

GBQk =
GBQtotalk

BQk

boundary squares centroid

GBQtotalk = GLQtotalk + GRQtotalk
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GBQtotalk =


1 if k ≥ 1

bk

164

 (88+28i)BQk

−(63 + 7i)BQk+1

+(29−15i)BQk+2

+
57−21i

82
if k ≥ 1

= 1, 5
2+ 1

2 i,
5
2+ 7

2 i, −
7
2+ 19

2 i, −
47
2 + 19

2 i, −
111
2 −

45
2 i, . . .

And similarly all boundary segments B

GBk =
GBtotalk

Bk
boundary segments centroid

GBtotalk = GLtotalk + GRtotalk

GBtotalk =



1 if k=0

bk

164

 (88+28i)Bk
−(63 + 7i)Bk+1

+(29−15i)Bk+2

+
−29+97i

205
bk

− 2+i

5
bk +

1−i
5

(−1)k +
57−21i

41

if k ≥ 1

= 1, 3+i, 4+6i, −6+18i, −42+18i, −104−44i, . . .

Terms ± 3+i
5 kbk from GLtotal and GRtotal cancel out in GBtotal .

Scaled by bk to a unit length for the dragon curve fractal, the whole boundary
centroid GBQk/b

k limit is the bkBQ terms. The limit is the same for the
boundary segments.

GBQk

bk
→ GBf =

88− 63r + 29r2

164
+

28− 7r − 15r2

164
i (239)

= 0.393625 . . .− i 0.164611 . . .

GBk

bk
→ GBf segments limit the same

0

1

middle 1
2

GBf whole
0.393...− i 0.164...

GRf right
0.319...− i 0.279...

Boundary centroid limits

The left boundary centroid is the curve middle 1
2 . The whole boundary limit

is between the left and right limits in proportion to the right and left boundary
lengths as from page 59.

GBf =
1

r
GRf +

2

r3
.
1

2
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8.2 Join Area Centroid

Theorem 50. The centroid of the join area squares when curve k ≥ 3 unfolds
is

GJAk =
GJAtotalk

JAk
join centroid, k ≥ 3

= −5+3i
2 , −4−i, −21−29i

6 , 4−23i
3 , 195−133i

22 , 136+25i
9 , . . . k≥3

GJAtotalk =
bk

82

 (57+20i) JAk

− ( 4+ 5i) JAk+1

+ ( 9+ i) JAk+2

+
32−i
410

bk +
1−3i

20
(−1)k +

−21−57i

164

= −5+3i
2 , −8−2i, −21−29i

2 , 8−46i, 195−133i
2 , 272+50i, . . . k≥3

GJAtotalk is the sum of the midpoints of the join area squares. GJAk divides
by JAk for the mean which is the centroid.

Proof. From theorem 29 the left boundary squares are two join areas and a
square in between. The left boundary squares centroid GLQk (233) weighted
by the number of squares LQk is the total of those midpoints.

GLQtotalk = LQk.GLQk (240)

Join area JAk+1 at the start of LQ is a 180◦ rotation of the normal join
direction. This is clearest in the diagram of theorem 30, with the first JAk

growing to JAk+1 by the two middle parts. The offset bk+1 here to move to the
origin is weighted by the number of squares JAk+1.

GLQtotalk =
(
bk+1JAk+1 −GJAtotalk+1

)
+ JEQk + GJAtotalk (241)

It's convenient to use the generating functions to combine the bkJA powers.

gGJAtotal(x) =
1

1−x

(
−xgGLQtotal(x) + xgJEQ(x) + gJA(bx)

)
where

gGLQtotal(x) = 1
2 i + 1

2 gLQ(bx) per (233) and (240)

gJEQ(x) =
(3+i)/5

1− bx
− (1−3i)/10

1 + x
per (167)

Expanding gGJAtotal(x) and some linear algebra to express its cubic in
terms of gJA(x) gives the theorem.

Breakdown (241) also gives GJAtotal as a cumulative sum.

GJAtotalk+1 = GJAtotalk + JEQk + bk+1JAk+1 −GLQtotalk (242)

GJAtotalk =

k−1∑
j=2

JEQj + bj+1JAj+1 − 1
2b
jLQj k ≥ 3 (243)
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Repeated expansion of (242) goes down to GJAtotal3 with sum starting j=3.
Noting that GJAtotal3 = JEQ2 + b3JA3 − GLQtotal2 is the j=2 term means
the sum can start at j=2.

The LQ part of (243) is similar to that in the right boundary squares
GRQtotal at (236). The JA term can become LQ by an identity from the recur-
rences JAk+1 = 1

4

(
LQk+1 + 2LQk − 2LQk−1 − 2

)
. This then gives GJAtotal

as three GRQtotal terms if desired.

GJAtotalk =
2−i
10

(
GRQtotalk+1 + 2iGRQtotalk − 4iGRQtotalk−1

− bk+1 + 1
2 b (−1)k

)
k≥3

The join area centroid can be scaled by bk for the curve a unit length. This
has ratios JAk+1/JAk and JAk+2/JAk and since JA grows as a power of the
cubic root r those ratios approach r and r2.

GJAk

bk
→ 1

82

 (57+20i)

−( 4+ 5i) JAk+1/JAk

+( 9+11i) JAk+2/JAk


→ GJAf =

57−4r+9r2

82
+

20−5r+r2

82
i =

59

84+10r−13r2
+

1

1+4r
i

= 0.92797... + 0.17557... i

1

GJAf
= 0.927...+ i0.175...

Join area
centroid limit

The equivalent to breakdown (241) for the limit is start join expanded by
factor b and weight factor r. The weighted mean is the left centroid limit 1

2 .

r.b
(
1−GJAf

)
+ GJAf

r + 1
=

1

2
giving GJAf =

1
2 (1 + r)− r.b
−r.b + 1

9 Moment of Inertia

The mass moment of inertia I =
∑
mr2 of a rigid body rotating around a given

axis is the ratio of torque to angular acceleration, similar to the way ordinary
mass is the ratio of force to linear acceleration.
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start

end

Ix

Iy

Iz Figure 41:

moment of inertia,

axes through centroid,

x axis parallel to curve

start to end

Theorem 51. Consider the dragon curve to have a unit mass in the middle of
each line segment. With the x axis parallel to the endpoints and all axes through
the centroid, the moment of inertia tensor is Ix −Ixy 0

−Ixy Iy 0

0 0 Iz

 Ix =
∑
y2 Ixy =

∑
xy

Iy =
∑
x2 Iz =

∑
x2+y2

where

Ix(k) =

{
0 if k = 0
3
50 4k − 1

200 [29, 23, 21, 27].2k − [ 1
25 ,

1
100 ] if k ≥ 1

= 0, 0, 1
2 ,

11
4 , 13, 231

4 , 239, 3863
4 , 3895, 62679

4 , . . .

Iy(k) =

{
0 if k = 0
7
50 4k − 1

200 [1, 27, 49, 23].2k − [ 1
100 ,

1
25 ] if k ≥ 1

= 0, 1
4 ,

5
4 , 8, 143

4 , 139, 2231
4 , 2279, 36695

4 , 36631, . . .

Ixy(k) = 3
100 4k + 1

100 [−1,−7, 1, 7].2k − 1
50 (−1)k

= 0, 0, 1
2 ,

5
2 ,

15
2 ,

57
2 ,

247
2 , 1001

2 , . . .

Iz(k) = 1
5 4k − 1

20 [3, 5, 7, 5].2k − 1
20

= 0, 1
4 ,

7
4 ,

43
4 ,

195
4 , 787

4 , 3187
4 , 12979

4 , . . .

Ix and Iy are the moments of inertia rotating about the x or y axes as in
figure 41. They can be combined with Ixy in the usual way for inertia about an
axis in the x,y plane at angle α from the x axis.

I(k, α) = Ix(k). cos2 α − 2Ixy(k). cosα sinα + Iy(k). sin2 α

start

end

x

I(k, α)

α

Proof. For k = 0, there is a single point mass which has inertia 0.
For k ≥ 1, the inertia is calculated by rotations and the parallel axis theorem

from the 2 copies of level k−1.
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start end

Gk−1

Gk

Gk−1

dGk

dG is the increment from the k−1 centroid to the k centroid, with the
endpoints of k aligned to the x axis. The centroid of the midpoints is the same
as the centroid of the segments GS from section 8.

dGk = (GSk −GSk−1) .ωk8 centroid increment, k ≥ 1

= ( 3
10+ 1

10 i)(
√

2)k + ( 1
5−

1
10 i)(

−i√
2
)k

The first sub-curve has the x axis at +45◦ relative to that copy.

start end

x
GSk

GSk−1

GSk−1

+45◦
+135◦

The axes are turned by a matrix of rotation in the usual way

R =


1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 rotate axes by +45◦ (244)

The second sub-curve is axes at +135◦. The centroids of those sub-curves
are shifted by the parallel axis theorem as a point masses ±sG . Inertia of a
point mass is

Ipoint(z) =

 y2 −xy 0

−xy x2 0
0 0 x2+y2

 for z = x+iy

So total

I(k) = R−1 . I(k−1) . R first, +45◦ (245)

+R−3 . I(k−1) . R3 second, +135◦

+ 2k Ipoint(dGk) centroid offsets

It's convenient to scale dG by factor
√

2
k
to incorporate the mass part 2k,

and further factor 2 for integer real and imaginary parts.

sGk = 2
√

2k dGk scaled centroid increment, k ≥ 1 (246)

= ( 3
5+ 1

5 i)2k + ( 2
5−

1
5 i)(−i)k

Re sGk = 3
52k + 1

5 [2,−1,−2, 1]

= binary 1001 . . .1001 (zero or more repeat 1001)

then 1, 10, 101, or 1010 for k bits
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= 1, 1, 2, 5, 10, 19, 38, 77, 154, 307, 614, . . . A016029

Im sGk = 1
52k + 1

5 [−1,−2, 1, 2]

= 2k−3 + Re sGk−3 for k ≥ 3

= −2k−1 Im GSF k−1 for k ≥ 1, GSF from (228)

= binary 1100 ...1100 (zero or more repeat 1100)

then 11, 110, 1101, or 11010 for k−2 bits, k ≥ 4

= 0, 0, 1, 2, 3, 6, 13, 26, 51, 102, 205, . . . k≥2 A007910

Multiplying through in (245) is mutual recurrences

Ix(k) = Ix(k−1) + Iy(k−1) + 1
4 Im2 sGk (247)

Iy(k) = Ix(k−1) + Iy(k−1) + 1
4 Re2 sGk (248)

Ixy(k) = 1
4 (Re sGk)(Im sGk)

Iz(k) = 2Iz(k−1) + 1
4 |sGk|2

Repeatedly expanding Iz is a descending powers-of-2 sum down to sG1.

Iz(k) =

k∑
j=1

2k−j 1
4 |sGk|2 since Iz(0) = 0

Iz = Ix+Iy is true of any plane figure so (247),(248) are then previous
Iz(k−1) with squares of the sG parts.

Ix(k) = Iz(k−1) + 1
4 Im2 sGk (249)

Iy(k) = Iz(k−1) + 1
4 Re2 sGk

An inertia matrix is real and symmetric so can be diagonalized with a suit-
able matrix of rotation turning to its eigenvectors which are the principal axes.
The physical significance of this is that rotation about those axes is perfectly
balanced with no torque exerted on the mounting points.

In the usual way for a 2×2 matrix, the eigenvectors are in direction d where

d2 =
(
Ix(k)− Iy(k)

)
− 2Ixy(k) i (250)

α = 1
2 arctan

−2Ixy(k)

Ix(k)− Iy(k)
+ (0 or 90◦)

= 1
2 arctan

2(Re sGk).(Im sGk)

(Re sGk)2 − (Im sGk)2
(251)

= arctan
Im sGk

Re sGk
half-angle, or complex square root

→ αmin = arctan 1
3 (252)

αmin = 18.434948◦ . . . radians A105531

αmax = αmax + 90◦ = 108.434948◦ . . .

Draft 23 page 147 of 391

http://oeis.org/A016029
http://oeis.org/A007910
http://oeis.org/A105531


I minimum

αmin = 18.43...◦

slope 1:3

I maximum

αmax = 108.43...◦
principal axes limit

start
end

G
limit through
curve end

x

y

Roughly speaking, the minimum inertia is where the curve is closest to the
axis and the maximum is where the curve is furthest from the axis, as measured
by mr2.

In the diagram it can be seen the αmin limit passes through the curve end-
point. The centroid scaled to a unit length is at Gf = 2

5−
1
5 i from (229), so the

αmin slope 3+i goes up to the curve end.
The endpoint is not touched for finite k, except for k=0 where inertia is 0

in all directions. For k=1, 2, have Ix(k) = 0 so the minimum inertia is parallel
to the x axis through the centroid, but the centroid is below the curve start to
end. For k ≥ 2, the sG slope up from centroid GSF gives an intersection on
the horizontal at

GSF k −
Im GSF k

Im sGk
sGk = 1 + 1

10

[1, 3,−1,−3]− 1
2k

Im sGk
6= 1 k ≥ 2

Im sGk → 2k so this intersection approaches 1 but is never equal to 1.
Term [1, 3,−1,−3] is bigger than 1/2k for k ≥ 2 and shows the intersection is
alternately just after and just before the endpoint in a period-4 pattern.

In Ix − Iy for the principal axes at (250), the Iz(k−1) terms of (249) cancel
to leave just sG parts. (251) is the usual tan double-angle formula and complex
squaring sG 2

k = −4d2 (for k ≥ 1). The real and imaginary parts of sG are inte-
gers so they are also the usual ``p, q '' parameterization of a Pythagorean triple
(217). Re sG and Im sG have no common factor, as seen by one Euclidean GCD
step to write multiples of them giving ±1, so they are a primitive Pythagorean
triple for −4d2.

Re sGk − 3 Im sGk = [1, 1,−1,−1] so gcd
(
Re sGk, Im sGk

)
= 1

The first non-zero Im sG is sG2 = 2+i giving −4d = 3+4i which is triple
3, 4, 5.

For the curve scaled to unit length and unit mass, the inertia limit is the
coefficients of 4k in Ix(k) etc. The axes can be rotated by the αmin limit to
principal axes.

I(k)

4k
→ If =


3
50 − 3

100 0

− 3
100

7
50 0

0 0 1
5

 ,
principal
axes


1
20 0 0

0 3
20 0

0 0 1
5

 (253)
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The area of the curve scaled this way is 1
2 (section 4), so density mass =

2.area. A rectangle w×h of density 1 has inertia IRx = 1
12wh

3, IRy = 1
12w

3h.
So a rectangle of density 2 with same inertia as the curve limit has width and
height along the principal axes

Rh =
8
√

3
100 = 0.645119 . . . height

Rw =
√

3.Rh = 1.117379 . . . width

Or an ellipse of radii a, b is inertia π
4 ab

3, π4 a
3b so likewise with density 2 and

same inertia as the curve limit,

Eb =
1

4
√

10π
√

3
= 0.368190 . . . smaller radius

Ea =
√

3.Eb = 0.637724 . . . larger radius

The ratio of width to height in both cases is
√

3 per ratio 3 in the Ix, Iy
principal axes inertia (253).

G

curve start curve end

Ea

Eb

Rw

Rh

The area of the curve is 1
2 . The area of the rectangle and ellipse are both

bigger than this. Roughly speaking, their area and hence mass are nearer the
axes so more is needed to give the same inertia as the spread-out dragon curve.

Rarea = Rh.Rw =
4
√

27
100 = 0.720843 . . . > 1

2

Earea = π.Ea.Eb =
4
√

3π2

100 = 0.737658 . . .

Both rectangle and ellipse pass close to the curve start, and the ellipse is
close to the curve end, but not exactly. In coordinates with G as the origin
and rotated −αmin to minimum axis horizontal, curve start is at (−1+i)/

√
10

but rectangle 1
2Rh > 1/

√
10 so the start is inside the rectangle. Or for the

ellipse, curve start location has ((1/
√

10)/Ea)2 + ((1/
√

10)/Eb)2 < 1 so inside
the ellipse. Curve end is on the principal axis at 2/

√
10 < Ea so it too is just

inside the ellipse.

The inertia of the convex hull (section 7) can be compared to the inertia of
the curve it surrounds. The hull inertia is calculated from its polygon. For the
limit with curve unit length, density mass = 2.area the same as the curve, and
axes through the hull centroid HGf ,
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HI x = 9497
61236 HI y = 40963

122472 HI xy = 12743
244944 hull inertia

HIαmin = 1
2 arctan 12743

21969 = 15.057822◦ . . .

start

end

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

segments αmin = 18.43◦...

segs

segs

hull HIαmin = 15.05◦...

hull

hull

The hull principal axis angle HIαmin is a little smaller, ie. nearer the x axis,
than the curve principal axis, but the hull centroid HGf is a little higher.

The hull axis passes close to the curve endpoint but not through it (the
way the curve axis does). The hull limit arctan fraction 12743/21969 is not
a Pythagorean triple (ie. 127432+219692 not a perfect square) so the resulting
slope is irrational and from rational HGf it cannot pass through 1. At 1, the
imaginary part is

(Im HGf ) + (1− Re HGf ) tan HIαmin = 0.004408 . . .

The hull axis is also close to the P3 hull vertex at − 1
3−

1
3 i, but again passes

the vertical there not at − 1
3 i but a little below,

(Im HGf ) − ( 1
3 + Re HGf ) tan HIαmin − (− 1

3 i) = −0.0209660 . . .

10 Midpoint Curve

A midpoint curve can be made by connecting the midpoints of each dragon
curve line segment.

midpoint(n) = 1
2 (point(n) + point(n+1)) (254)

Midpoint curve
with dragon curve
shown dashed
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k=0 k=1

start

end

k=2

start

end

k=3

start

end

k=4

start

end

k=5

start

end

k=6

start N=0
at 1

2 , 0

end

N = 26 − 1 = 63

at 0,−8 1
2

The dragon segments can be thought of as having a diamond shape around
each midpoint per Knuth [32].

b

a

The dragon curve always turns ±90◦ so the next diamond touches either side
a or b shown. The dragon curve does not repeat any segment so the diamonds
are disjoint. When 4 dragon curves fill the plane (theorem 2) the diamonds are
a tiling of the plane.

The midpoint curve passes through the touching side of the diamonds and
therefore does not cross or overlap itself.

k=6
4-arm plane �lling

Riddle [46] uses squares adjacent to pairs of segments to show to show the
area of the fractal is 1

2 . Such a square is equivalent to the midpoint diamonds
here since at the next expansion the segment becomes an L shape which is two
sides of the diamond. In level k, each diamond is area 1

2 . There are 2k segments
with midpoints and the curve length start to end is 1/

√
2k. Scaled down to

length 1 this is total area exactly 1
2 for every k and such areas tile the plane

without overlap.

The boundary length of the diamonds can be calculated from how they
extend from a dragon boundary segment into the adjacent square.
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1-side boundary square
2 diamond boundary sides

2-side boundary square
2 diamond boundary sides

3-side boundary square
2 diamond boundary sides

Each 1-side, 2-side or 3-side boundary square becomes 2 diamond sides, so

MBk = 2BQk midpoint diamonds boundary

= 4, 6, 10, 18, 30, 50, 86, 146, 246, 418, . . . A203175

The non-boundary sides of the diamonds touch in pairs. The total dragon
segments are 2k so total 4.2k diamond sides. The inside sides are the difference
from the boundary sides. Counting each inside pair as 1,

MI k = 1
2

(
4.2k −MBk

)
midpoint inside touches

= ALk+3

= 0, 1, 3, 7, 17, 39, 85, 183, 389, 815, . . . k≥1 A003478

The total segments to make the blocks of the diamonds is the boundary
plus the insides. This is equivalent to the 4.2k total less one for each inside to
unduplicate those.

MSk = MBk + MI k block segments (255)

= 4.2k −MI k

= dPk+2 from (179)

start

end

k=2

MB2 = 10 segments boundary
MI 2 = 3 segments inside
MS2 = 13 segments total

Knuth [31] notes that the diamonds can be treated as walls of a labyrinth
which the dragon curve bounces off like a light beam or a ball.

start

end

k=6

MW 6 = 108 wall length

MWI 6 = 22 inside wall length
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The total wall length to make level k is the block segments MSk less 1
for each diamond side the dragon curve passes through. There are 2k dragon
segments so 2k − 1 sides passed through.

MW k = MSk − (2k−1) wall length

= 4, 6, 10, 18, 32, 58, 108, 202, 380, 722, . . .

The wall includes the boundary MBk. The inside wall is

MWI k = MW k −MBk inner wall length

= 2Ak area

= 0, 0, 0, 0, 2, 8, 22, 56, 134, 304, . . . k≥4 2×A003230

MWI k = 2Ak area can be seen from expanding the various recurrences.
Or geometrically 2 segments of inner wall occur at a double visited point, and
doubles Dk = area Ak.

Or alternatively, inner walls occur in unit squares enclosed by the dragon
curve. The dragon curve doesn't cross itself so those squares are a tree structure
starting from a boundary square. The number of inner wall segments in a square
is the number of squares connected to it, so the degree of the node. Total degree
is 2×(nodes− 1). The −1 is the boundary square, giving 2Ak.

See section 15 for more on area as trees.

10.1 Midpoint Turn Sequence

The dragon curve always turns ±90◦ so the midpoint curve goes by diagonals.
At each midpoint the midpoint curve can turn +90◦, 0◦ or−90◦ according to
the dragon curve turn(n) (section 1.2) before and after that midpoint.

dragon −1, +1

dragon +1, −1

Mturn = 0
straight

dragon +1, +1

Mturn = +1
left

dragon −1, −1
Mturn = −1

right

Counting the first midpoint as n=0, the first midpoint curve turn is at
n=1. The dragon curve vertices before and after midpoint n are turn(n) and
turn(n+1). The midpoint turn sequence is then

Mturn(n) =

{
turn(n) if turn(n) = turn(n+1)

0 if turn(n) = −turn(n+1)
n ≥ 1

= 1
2 sturn(n) from (17)
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= 1− sBitAboveLowest(n) from (19)

= 1, 0, 0, 1, 0,−1, 0, 1, 1, 0,−1, 0, 0,−1, 0, 1, 1, . . . abs =A090678

A generating function for Mturn follows from gsBitAboveLowest(x) from
(20), or in terms of the paperfolding gTurnLpred .

gMturn(x) =
x

1−x
− gsBitAboveLowest(x)

=

(
1 +

1

x

)
gTurnLpred(x) − 1

1− x

A midpoint turn constant can be formed in the style of the paperfolding
constant (8), although Mturn has terms −1, 0, 1 rather than bits 0,1.

gMturn
(

1
2

)
=

∞∑
n=1

Mturn(n)

2n
= 3 PaperConst − 2

= 0.552208564 . . .

11 Twindragon

L

R

L

R

start

end

k=8

When a dragon curve and its 180◦ rotation are placed with their left sides
touching, start to end and end to start, they mesh perfectly. The result is the
twindragon. In the following diagram, corners are chamfered off to show where
the two component dragons meet.

k=0 k=1 k=2

k=3

k=4

start

end

start

end

start

end

start

end

start

end

The curves mesh perfectly because the two left sides are a square per fig-
ure 26.

k

k

k

k

start

end

Twindragon
as four k sides
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The twindragon levels are numbered here starting from k=0 for the unit
square, so twindragon k is four sides of k. The two dragon curves placed start
to end are level k+1 each.

Another possibility is to start k=0 as two line segments which are dragon
curves k=0. Mandelbrot [34] does this. But that would be two line segments
overlapping which doesn't otherwise occur, and k=0 as square has the attraction
of corresponding to complex base i±1 and generalizing to other self-similar
curves on a square grid (the θ-loop of Dekking [14]) where an initial pair of
curves may not expand to a square.

Two twindragons at 180◦ angles at the origin fill the plane. This is since they
have 4 dragon curves at the origin and those curves fill the plane (theorem 2). In
the following diagram, corners where the two twindragons touch are chamfered
off to show how they curl around each other.

end

end

�rst
twindragon

k=4

second twindragon,
rotate 180◦

k=4

two twindragons
�ll the plane

O

Theorem 52. The boundary length and the area enclosed by the twindragon
are

TBk = 2Rk+1 = 2Bk boundary length

= 4, 8, 16, 32, 56, 96, 168, 288, 488, 832, 1416, . . . 2×A227036

TBQk = 2RQk+1 = 2BQk boundary squares

= 4, 6, 10, 18, 30, 50, 86, 146, 246, 418, 710, . . . n≥3 A203175

TAk = 2Ak+1 + LQk+1 area

= ALk+3 + 1

= 1, 2, 4, 8, 18, 40, 86, 184, 390, 816, 1694, . . .

gTA(x) =
1− 2x+ x2 − 2x3 + 4x4

(1−x)(1−2x)(1−x− 2x3)

Proof. The boundary is simply the two right sides which are the outside of the
square of dragons.

The area is the two curves plus LQk+1 squares on the boundary where they
meet. From the recurrences the total is also ALk+3 + 1.

Or the area within the square is 2k and then further 2ARk+1 which is the
right-side enclosed area outside the square.

TAk = 2k + 2 ARk+1

As a square of four sides there are two outside lefts and two outside rights,
giving 2Ak.
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TAk = 2k + 2ALk + 2ARk (256)

= 2k + 2Ak

The boundary and area are related as per lemma 1

4TAk + TBk = 2.2k+2

Riddle [46] calculates the boundary (and area) of the twindragon fractal by
taking it as two dragon right sides which are made from two joins RQk =
JAk+2 + 1 + JAk (theorem 29). They then expand into three joins by JAk =
JAk−1 + 1 + 2JAk−3 (theorem 28). Each +1 is negligible for the fractal.

Theorem 53. The number of single-visited and double-visited points in the
twindragon are

TDk = TAk − 1 double-visited

= ALk+3

TSk = 2k+2 − 2TDk single-visited (257)

= 2Sk+1 − 2LQk (258)

= LQk+3 = 2BQk

k=4

single-visited
points

TS4 = 30

k=4

double-visited
points

TD4 = 17

Proof. The double-visited points can be calculated from the area as per lemma 2.
In the twindragon, the starting point is revisited and lemma 2 would count that
as a double-visit. Here it counts as single-visited, so for example twindragon
k=0 has TD0 = 0 no double-visited and k=1 has TD1 = 1 double-visited.
Hence TDk = TAk − 1.

The single points can be calculated by difference from TD as (257) or by
lemma 2 from TBk. Or they can be calculated from the singles in the two
dragon curves, less the points where the curves touch and so become doubles.
There are LQk+1 many squares in common and between squares two singles
touch to becomes a double. At the two endpoints the start and end singles
become one single each, so (258).

TSk = 2Sk+1 − 2
(
LQk − 1

)
− 2

Total distinct points visited by the twindragon is the sum

TPk = TSk + TDk

= 2Pk+1 − LQk+1 − 1

= 2k+1 + BQk

= MSk = dPk+2 from (255),(179)
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11.1 Complex Base i+1

Some Gaussian integers can be written in base b = i+1 using digits 0 and 1.
Those digits can be taken as bits of an n in binary.

PlusPoint(n) = bk−1dk−1 + · · ·+ b2d2 + bd1 + d0

where n = binary dk−1...d2d1d0, low bit d0

= 0, 1, 1+i, 2+i, 2i, 1+2i, 1+3i, 2+3i, . . .
−Re A290885, Im A290884

Each such point can be taken as a unit square centred on the point. The
layout of those squares corresponds to the layout of the unit squares inside
the twindragon. The twindragon is rotated −135◦ for this so it is diamonds
rather than squares. In the following diagram, the vertices of the twindragon
are chamfered off to better see the inside and outside of the curve.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

start

end

twindragon

rotate −135◦

k=4

Figure 42

complex
base i+1

This correspondence works since the segments of a twindragon diamond
expand

+45◦

=⇒

The area inside the diamond becomes two squares and then rotate +45◦ to
keep the twindragon first segment in a fixed direction. This is the same as the
complex base expansion where its bz+ d rotates by factor b = i+1 and expands
horizontally with new bit d = 0 or 1.

A complex base point at z is twindragon unit square with lower left corner

PlusToDragon(z) = z.(−1+i) (259)

For the twindragon as a fractal, this correspondence means the points as
dragon curves are the same set as the points of complex base, down to the factor
−1+i. The complex base form is often used for the fractal, with descending
fractional powers b−k.

The twindragon vertices correspond to the sides of the complex base unit
squares. The outer sides of the twindragon segments correspond to the corners
of those unit squares.
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Figure 43: twindragon segments

in complex base unit square

Single-visited twindragon vertices are sides of the complex base which are
on the boundary of its shape. Double-visited twindragon vertices are sides of
the complex base which are inside, ie. not on the boundary. (TSk and TDk

above.)
The twindragon has some diamonds enclosed by the outside of the curve.

These are right-side area 2ARk+1 as from theorem 52. The segments of such
an outside enclosure are 4 corners of the complex base, so is a corner which is
fully enclosed. In the k=4 sample above, there are two such outside enclosed
diamonds and two enclosed complex base corners (the middle two dots).

The square of figure 43 enclosing a twindragon diamond can also be thought
of as four squares, one on each twindragon segment giving 2×2 blocks. These
small squares correspond to the diamonds on the segments for the midpoint
curve section 10.

The midpoint curve walls per Knuth, from section 10 here, can be applied to
the twindragon. The result is two midpoint labyrinths back-to-back and with
the endpoints opened to have a twindragon cycle all the way around.

start

end

Figure 44:

Twindragon k=4 walls

TW 4 = 94 wall length

As per the midpoint curve, the boundary wall is 2 for each boundary square
and the non-boundary wall is 2 for each double-visited point.

TW k = 2
(
TBQk + TDk

)
twindragon wall

= 4.2k + 2BQk

= 8, 14, 26, 50, 94, 178, 342, 658, 1270, . . .

The inside walls connected to the boundary correspond to the enclosed area
2ARk+1 on the outside of the curve. The inside walls not connected to the
boundary are a tree structure (see twindragon area tree section 15.3). This is
the 2k squares on the inside of the twindragon and they have 2k−1 connections
between them.
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TW k = 2
(
TBQk + 2ARk+1 + 2k − 1

)
Gilbert[22] draws the twindragon within the complex base shape by putting

even numbered twindragon segments through the middle of complex base unit
squares,

start

end Figure 45:

k=5 base i+1,

and twindragon k−1
turned −90◦

This is the same as the diamonds, but one twindragon level smaller. On
expansion, its segments spread out and up or down to make the diamonds of
figure 42.

Going to 2 expansion levels smaller is also possible. In this case, each twin-
dragon segment corresponds to an i+1 unit square. The centre of the i+1 square
is on the right of even number segments and on the left of odd number segments.
That is the side of expansion, giving figure 45.

start

end

k=5 base i+1

and twindragon k−2
turned −45◦

Theorem 54. The base i+1 unit square number corresponding to dragon curve
segment n is

NdragonToPlus(n) = FlipAt10 (2n) (260)

= 0, 1, 3, 5, 7, 6, 11, 13, 15, 14, 12, 10, 23, 22, 27, 29, . . .

FlipAt10 (n) = at each 10 pair in n, output �ip it and bits below

= 0, 1, 1, 3, 3, 2, 5, 7, 7, 6, 6, 4, 11, 10, 13, 15, 15, . . .

binary = 0, 1, 1, 11, 11, 10, 101, 111, 111, 110, . . .

FlipAt10 is cumulative, so at an even number of 10 pairs there is no change.

· · · 1 0 · · · 1 0 · · · 1 0 · · · n in binary

�ip unchanged �ip FlipAt10 (n)

Proof. A set of 4 dragon segments correspond to i+1 unit squares and expand
as follows
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start

a b

d c

0 1

2 3 =⇒

start

a0 a1

d1 b0

d0 b1

c1 c0

0 1

2 3

4 5

6 7

Number the segments a to d as 0 to 3 which is the curve going anti-clockwise
around. So 2 bits of segment number is 2 bits of i+1 unit square number.

Expansion brings in a new low bit, giving segments and squares numbered
0 to 7. The result is two copies of the 0 to 3 arrangement. The segments in
squares 0 to 3 are a 0-bit output for the square number. The segments in squares
4 to 7 are a 1-bit output for the square number. The expanded segments become
new segment types,

a

b

c

d start

output 0

output
same

output 1

output
�ip

0

10

1

0

1 0

1

The state machine begins in a, representing a dragon curve of certain level
and two halves of base i+1. Each bit of segment number n is a transition and
output. The output is at bit position 2 places higher. After all bits of n, the
state gives the low 2 bits of the output, being the i−1 square numbers 0,1,3,2
for states a, b, c, d.

The output from a is always 0 so the high 1-bit of n gives a 0-bit at 2 places
above. The output is therefore at most one bit more than n. The final 0,1,3,2
can be handled by putting a further two 0-bits through the state machine if
preferred.

Working through the possible bits of n shows the output is to bit flip at and
below each 10 pair of 2n.

NdragonToPlus is for a single dragon (first half of twindragon), so its first
2k segments cover half of the 2k+1 squares of base i+1. The other half, by
symmetry, are a reversal back from the end 2k+1− 1, which is bit flip k+1 bits.

In the 2-segment correspondence of figure 45, the segment direction corre-
sponds to base i+1 odd or even. In an odd square, the curve goes up. In an even
square, the curve goes down. (That is with −90◦ rotation of the twindragon,
so these are left and right segments respectively.)

2NdragonToPlus(n) ≡ dir(2n) mod 4

In terms of the bit flips (260), this is since each 10 is the low end of a run
of 1-bits, so that the net flip for the low bit of NdragonToPlus is the number of
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such runs, which is per dir at (43). The state machine has the same structure
as dir from figure 9.

The geometric interpretation is simply that the twindragon starts with an
odd square above and even square below, then since it always turns ±90◦ two
segments go to the same type of location.

odd square

even square

NdragonToPlus can be reversed by undoing the flips low to high. Given q =
NdragonToPlus(n), the unflips are to give 2n. The unflip at the low of q must
turn its least significant bit into a 0-bit for 2n. Then continuing upwards each
10 output bit pair means flip the bits above there (and not further acting on
that 10).

11.1.1 Complex Base i+1 Jumps

The point numbers n of base i+1 do not go in the twindragon curve sequence
but take jumps across replication levels.

base i+1

level k=5

The end of level k is n=2k−1 and the first of the next level is n=2k. Writing
those in bits as b powers gives jump

PlusJumpk = PlusPoint(2k)− PlusPoint(2k−1)

= bk −
k−1∑
j=0

bj = bk+1 − i

= 1, i, −2+i, −4−i, −4−5i, . . . Re = A146559

|PlusJumpk| =
∣∣bk+1 − i

∣∣
=
√

2k+1 + [−2,−2,−2, 0, 2, 2, 2, 0].2dk/2e + 1

= 1, 1,
√

5,
√

17,
√

41, 9,
√

145,
√

257,
√

481, 31, . . .

When k ≡ 1 mod 4, the power bk+1 is vertical the same as offset i giving
integer |PlusJumpk|, and otherwise it is irrational. When k ≡ 3 mod 4, |Im|
= 1 and the next square is further than that. When k ≡ 0, 2 mod 4, using a
difference of squares with power of 2 product like (215) is

x = |Re| = 2d, y = |Im| = 2d±1, c = |PlusJumpk|
x2 = (c+ y)(c− y) = 2e+f with e+f = 2d
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c+ y = 2e 2c = 2e + 2f

c− y = 2f 2y = 2e − 2f

When y=2d + 1 the only solution is y=3 to have a single bit run for 2e−2f ,
but y=3 does not occur. When y=2d − 1 would need e=d+1, f=1 for that bit
run, which is then e+f = d+2 and for e+f = 2d must have d=2, which is
k=3, 4 which are not y=2d − 1.

The total distance of all jumps within level k is, with the sums taken as
empty and so 0 when k=0,

PlusDistk =

2k−1∑
n=1

∣∣PlusPoint(n)− PlusPoint(n−1)
∣∣

= 2PlusDistk−1 + |PlusJumpk−1|

=

k−1∑
j=0

2j |PlusJumpk−1−j |

= 0, 1, 3, 6+
√

5, 12+2
√

5+
√

17, . . .

There are a total 2k−1 jumps in level k. Many are small and some are big.
The small ones are greater in number by enough for a mean jump to converge

PlusMeank =
PlusDistk

2k − 1
=

2k

2k−1

k∑
j=1

∣∣∣∣ 1

bj
+

i

2j

∣∣∣∣
=

2k

2k−1

k∑
j=1

∣∣∣∣ 1√
2j
− i

(2ω8)j

∣∣∣∣ (261)

=
2k

2k−1

k∑
j=1

1√
2j

√
1+

[0,−2,−2,−2, 0,2,2,2]

2dj/2e
+

1

2j
(262)

→ 1.932993 . . . as k→∞

(261) puts an ωj8 though to reach a real 1/
√

2
j
and a rotating offset from it.

That offset is a factor at (262) making terms a little bigger or smaller according
to j mod 8. The maximum factor is

√
41/32 at j=5 where the periodic part

2dj/2e is first positive, so the sum is monotonic and bounded above.
Negatives in the periodic part 2dj/2e are before the positives so are bigger.

Roughly speaking, this is why the sum is smaller than if the factors were omitted∑∞
j=1 1/

√
2j = 1+

√
2 = 2.414213... (A014176).

The mean is simpler if jumps are measured instead by

Manhattan(z) = |Re z|+ |Im z|

This is ≥ the geometric length (by triangle inequality) so the total distance
and mean are bigger.

Manhattan(PlusJumpk) = 2.2bk/2c + [−1,−1,−1, 1, 1, 1, 1, 1]

= 1, 1, 3, 5, 9, 9, 17, 17, 31, 31, . . .
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PlusDistManhattank =

k−1∑
j=0

2j Manhattan
(
PlusJumpk−1−j

)
= 572

2552k − [3, 4].2bk/2c + 1
255 [193, 131, 7,−241,−227,−199,−143,−31]

= 0, 1, 3, 9, 23, 55, 119, 255, 527, 1085, . . .

PlusDistManhattank
2k − 1

→ 572

255
= 2.243137 . . . mean Manhattan jump

11.2 Complex Base i−1
Complex base i−1 of Khmelnik [29] and Penney [40] is similar to base i+1.

MinusPoint(n) = (i−1)k−1dk−1 + · · ·+ (i−1)2d2 + (i−1)d1 + d0 (263)

where n = binary dk−1...d2d1d0, low bit d0

= 0, 1, −1+i, i, −2i, 1−2i, −1−i, −i, . . .
Re A318438, Im A318439

The inverse is the point number for a location z,

MinusUnpoint(z) = n

This can be found by bits low to high. The powers and digits in (263) mean low
bit d0 is determined by z ≡ 0 or 1 mod i−1, which means z even or odd (x+yi
with x+y even or odd). Then subtract d0 from z, divide by i−1, and repeat.
There are no rotations or sign changes to apply at successive bits.

The layout of points 0 to 2k−1 has the same shape as base i+1 but in mirror
image and offset.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

origin at 0
Figure 46:

complex base i−1

This can be seen from bases i+1 and i−1 starting as the same 2×1 brick
and thereafter each 2×1 brick expands to a mirror image.

0 10 1

2 3
i+1

0 1

2 3
i−1

Or algebraically going termwise

d0 + (i+1)d1 + (i+1)2d2 + (i+1)3d3 + · · ·
− (i+1) − (i+1)3 − · · · (264)

= conj
(
d0 + (i−1)(1−d1) + (i−1)2d2 + (i−1)3(1−d3) + · · ·

)
PlusPoint(n)− PlusOffsetV k = MinusPoint(FlipOddBitsk(n))
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conj is complex conjugate. The even powers of i+1 and i−1 are unchanged
by this. At the odd powers it's necessary to negate to −d for −(i−1) = i+1.
This negation is accomplished by a bit flip 0↔1 to 1−d and then subtract an
offset for the 1.(i+1). That offset is the terms shown at (264).

The conj doesn't change the origin of the i−1 part and the bit flips only
change the order of the points. So the terms subtracted are the location of the
i−1 origin in the i+1 shape, ready to mirror vertically there.

PlusOffsetV (k) = b + b3 + b5 + · · · + bodd<k b = i+1

= −1+3i
5

(
1− (2i)bk/2c

)
= 0, 0, 1+i, 1+i, −1+3i, −1+3i, −5−i, −5−i, 3−9i, 3−9i, . . .

It's also possible to mirror horizontally by − conj. This is equivalent to a
180◦ rotation of the vertical mirror. The shape is symmetric in 180◦ rotation
but the i+1 origin is not the middle so the offset is different.

1.d0 + (i+1)d1 + (i+1)2d2 + (i+1)3d3 + · · ·
−1 − (i+1)2 − · · ·

= − conj
(

1.(1−d0) + (i−1)d1 + (i−1)2(1−d2) + (i−1)3d3 + · · ·
)

PlusPoint(n)− PlusOffsetH k = −MinusPoint(FlipEvenBitsk(n))

This time the digits at odd terms are unchanged by − conj and even terms
are bit flipped and the offset subtracted. The offset is the location of the i−1
origin within the i+1 shape, ready to mirror horizontally there.

PlusOffsetH (k) = 1 + b2 + b4 + · · · + beven<k

= 1+2i
5

(
1− (2i)dk/2e

)
= 0, 1, 1, 1+2i, 1+2i, −3+2i, −3+2i, −3−6i, −3−6i, . . .

4-repeats Re = A014985 Im = 2×A014985

In k=4 sample figure 46, these ends are points n=10 at the top and n=5 at
the bottom which are respectively PlusOffsetV (4) = −1+3i and PlusOffsetH (4)
= 1+2i.

In both, offsets the effect of power (2i)h is to spiral around anti-clockwise.

0

1+i

−1+3i

−5−i

3−9i

19+7i

PlusOffsetV

0 1

1+2i−3+2i

−3−6i 13−6i
PlusOffsetH

The two offsets are alternating powers of b. The one with the smaller high
term is nearest the origin (smaller in magnitude). This corresponds to the join
end square from theorem 31. This is on the left boundary of the two component
dragons and is the 3-overlap square of figure 28.

PlusOffsetJ k = bk−2 + bk−4 + bk−6 + · · · b0 or 1
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= (− 1
5−

2
5 )bk + [ 1

5+ 2
5 i, −

1
5+ 3

5 i]

= min
(
PlusOffsetH k,PlusOffsetV k

)
by magnitude

=

{
PlusOffsetH k if k even

PlusOffsetV k if k odd

= 0, 0, 1, 1+i, 1+2i, −1+3i, −3+2i, −5−i, −3−6i, . . .
Re=A077950 Im=A077870

PlusToDragon(PlusOffsetJ k) = JEC k

The bigger of the two offsets is the next PlusOffsetJ , being one higher b power.

PlusOffsetJ k+1 = max high power
(
PlusOffsetH k,PlusOffsetV k

)
Penney[40] characterizes n on the real axis of base i−1 by considering what

combinations of the powers (i−1)k can sum to Im=0, and gives the following x
to n conversion rule. Base −4 is since (i−1)4 = −4 has Im=0.

MinusUnpoint(x) = write x in base −4 with digits 0 to 3,

change digits to bits 0000, 0001, 1100, 1101 respectively (265)

= 0, 1, 12, 13, 464, 465, 476, 477, 448, 449, . . . x≥ 0 A066321

= 29, 28, 17, 16, 205, 204, 193, 192, 221, 220, . . . x< 0 A256441

At (265), digits 0 to 3 are replaced by bit strings whose number of 1-bits are
also 0 to 3 respectively, hence

CountOneBits
(
MinusUnpoint(x)

)
= sum base −4 digits of x

= 0, 1, 2, 3, 4, 5, 6, 7, 3, 4, . . . x≥ 0 A066323

= 4, 3, 2, 1, 5, 4, 3, 2, 6, . . . x< 0

Penney gives a more complicated rule for the imaginary axis. Write yi
in base 8i with digits −6i to i at even positions and −4 to 3 at odd positions
(least significant digit as position 0) then substitute those digits for certain 6-bit
replacements to form n.

Another approach (as for instance in demo code by Jörg Arndt) is to re-use
the x axis form, since (i−1)2 = −2i so that

MinusPoint(4n) = −2iMinusPoint(n)

MinusUnpoint(yi) = 1
4 MinusUnpoint(2y)

Within a level k, on both axes, these representations have the high digit
restricted but are a contiguous part of the respective axis. In iterations of the
twindragon, these are contiguous diagonals of unit squares inside the curve.
Reckoned from the start of the twindragon, these diagonals are through the
two PlusOffset locations.

The following diagram shows complex base i−1 and twindragon. The twin-
dragon is rotated −135◦ to correspond to base i+1 which in turn corresponds
to base i−1 in horizontal mirror image.
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origin
n=0

end

n=255

k=8
base i−1 axes
and symmetry

start

end

PlusOffsetJ8

PlusOffsetJ9

twindragon
corresponding
diamonds
(mirror)

When each complex base point expands to two points by multiply i−1 and
add 0 or 1, the x, y axes become the diagonals of the next higher level. So in
each level the diagonals are contiguous lines too.

In iterations of the twindragon, these diagonals are contiguous verticals and
horizontals of unit squares inside the curve, which is every second square.

origin

start

end

PlusOffsetJ8

PlusOffsetJ9

The twindragon endpoint bk+1 is straight or diagonal according as k is odd
or even. The respective contiguous lines straight or diagonal can be taken
aligned to the endpoint. Akiyama and Scheicher [1] show that axes aligned to
the endpoint are contiguous in the complex base shape fractal.

The straight lines intersect to make a rectangle. The diagonal lines intersect
to make a rectangle at 45◦.

The twindragon has all the inside unit square within these rectangles, since
if there were any holes the adjacent dragon curves could not get in and out
again between the contiguous squares for plane filling.

It's convenient to take the straight and diagonal rectangles alternately so
that the side is aligned to the twindragon ends. In this form, the area of the
aligned rectangle in the complex base shape is

AlignedRectk = |Re× Im| of ωk8 .(PlusOffsetJ k+1 − PlusOffsetJ k)

= 2
25 2k + 1

25 [−4, 7,−3,−1, 4,−7, 3, 1].2bk/2c + 1
50 [4, 3,−4,−3]

= 0, 1
2 , 0,

1
2 , 2,

3
2 , 6,

21
2 , 18, 91

2 , 78, 325
2 , . . .
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Or rectangle which is at 45◦ to the twindragon endpoints, so the opposite
diagonal/straight,

OppositeRectk = |Re× Im| of ωk+1
8 .(PlusOffsetJ k+1 − PlusOffsetJ k)

= 3
50 2k + 1

25 [−3,−1, 4,−7, 3, 1,−4, 7].2bk/2c + 1
50 [3,−4,−3, 4]

= 0, 0, 1
2 , 0,

3
2 , 2,

5
2 , 10, 27

2 , 30, 133
2 , 114, . . .

Limits for the area of the rectangles as a fraction of the 2k complex base
area are the high coefficients

AlignedRectk
2k

→ 2

25

OppositeRectk
2k

→ 3

50

start

end

start

end

11.2.1 Complex Base i−1 Jumps

The point numbers of base i−1 do not go in the twindragon curve sequence but
take jumps between replication levels.

origin

n=31 end
base i−1
level k=5

A similar calculation to PlusMean from section 11.1.1 can be made. The
limit for the mean in base i−1 is bigger than in i+1.

MinusJumpk = MinusPoint(2k)−MinusPoint(2k−1)

= (i−1)k −
k−1∑
j=0

(i−1)j = − 1
5

(
(3+4i)(i−1)k+1 + 2+i

)
= 1, −2+i, −3i, 2+3i, −6−i, . . . 1

2 Re k≥2, and Im k≥0 A137426

|MinusJumpk| =
√

2k+1 + 1
5 [−6, 2, 2,−4, 6,−2,−2, 4].2dk/2e + 1

5

=
√

1, 5, 9, 13, 37, 61, 125, 269, 493, 1037, . . .

MinusDistk =

2k−1∑
n=1

∣∣MinusPoint(n)−MinusPoint(n−1)
∣∣

=

k−1∑
j=0

2j
∣∣MinusJumpk−1−j

∣∣
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= 0, 1, 2+
√

5, 7+2
√

5, 14+4
√

5+
√

13, . . .

MinusDistk
2k−1

=
2k

2k − 1

k∑
j=1

∣∣∣∣ 1

(i−1)j
+

2
5+ 1

5 i

2j

∣∣∣∣
=

2k

2k − 1

k∑
j=1

1√
2j

√
1 + 1

5

[4,−6,2,2, −4,6,−2,−2]

2dj/2e
+ 1

5

1

2j

→ 2.273168 . . . as k→∞

MinusJump is an integer length at |MinusJump0| = 1 unit step right, and
|MinusJump2| = 3 down. But otherwise |MinusJumpk| is irrational since work-
ing through the powers shows k≥ 3 has Re ≡ 2 mod 4 and Im ≡ 3 mod 4, but
a Pythagorean triple must have one leg a multiple of 4, as from (217).

Jumps by Manhattan distance are

Manhattan(MinusJumpk) = 1
5 [8, 7]2dk/2e + 1

5 [−3,1,− 1,− 3, 3,− 1,1,3]

= 1, 3, 3, 5, 7, 11, 13, 23, 25, 45, . . .

MinusDistManhattank =

k−1∑
j=0

2j Manhattan
(
MinusJumpk−1−j

)
= 46

17 2k − 1
5 [15, 22].2bk/2c + 1

85 [25,−1, 15, 13,−25, 1,−15,−13]

= 0, 1, 5, 13, 31, 69, 149, 311, 645, 1315, . . .

MinusDistManhattank
2k − 1

→ 46

17
= 2.705882 . . .

11.2.2 Complex Base i−1 Boundary

Gilbert[21] calculates the boundary length of the i−1 shape (and any base i−n)
by taking the boundary in 3 sections a,b,c which are the lengths of touching
with the 6 adjacent shapes when tiling the plane. The shape is symmetric in
180◦ rotation so there are 3 join types for the 6 neighbours.

a b

c

ab

c =⇒

b
a

c, a, cFigure 47: complex base i−1 brick expansion

For the initial 2×1 brick at k=1, c is an end and a and b are the long side.
On further expansion, these parts become jagged and spiralling but remain as
the boundary sections which touch the respective expanded neighbour.

In figure 47, the expanded c join becomes a b join, so length ck is previous
level bk−1. Similarly b becomes an a. The a join becomes two c and one a. So
mutual recurrences

ak = ak−1 + 2ck−1 starting (266)

bk = ak−1 a0 = b0 = 1
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ck = bk−1 c0 = 0

ComplexBoundaryk= TSk = 2(ak + bk + ck) (267)

The start for a k=1 single 2×1 brick is a1 = b1 = c1 = 1. This can be
reversed one step if desired to begin a0 = b0 = 1 and c0 = 0.

As described above, the complex base boundary segments correspond to
twindragon single-visited points. So ComplexBoundaryk by a,b,c (267) is TSk.
The individual a,b,c are how many of those single points touch the respective
adjacent twindragon when twindragons tile the plane.

Theorem 55. The lengths of complex base touching from Gilbert correspond to
dragon curve joins

ak = 2JAk+1 + 1 = dJAk+3

bk = 2JAk + 1 = dJAk+2

ck = 2JAk−1 + 1 = dJAk+1

Proof. a, b, c are the dragon curve recurrence and from a starting 1,1,3 is seen
to be dJA. This is not just a numerical correspondence, the shapes correspond
to the joins too.

The following diagram shows twindragons level k with one expansion so each
line is a dragon curve of level k−1. (When they are unit segments the bricks
are twindragons of level k=1.)

ab

c

a b

c

Notice a and b are the opposite way around here than in base i−1 because
the twindragon is base i+1 so mirror image.

Side c boundary between horizontal adjacent twindragons is

ck

Above the midpoint is two dragons k−1 pointing towards the centre. They
enclose the join area JAk−1. Likewise below the midpoint. The number of
vertices touching is the middle point plus 1 more for each unit square of join
area. So ck = 2JAk−1 + 1 and which is dJAk+1 per theorem 28.
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Side b boundary between its adjacent twindragons is

left
left

bk

Going left from the middle is two dragons level k−1 pointing away from the
centre point. There are three sides but the one marked ``left'' is a left side and
so does not touch the opposite side. Likewise going right from the middle.

Per figure 27 these away-pointing sides are a one higher join enclosure, so
bk = 2JAk−1+1 + 1 = ck+1.

Side a boundary between its adjacent twindragons is

ak

Going left or right from the middle is two dragons level k−1 pointing away
and an additional side. This is a join one level higher again than configuration
b, per the expansion in figure 27. So ak = 2JAk−1+2 + 1 = bk+1.

For the twindragon fractal, these three boundary parts differ only by suc-
cessive scale factor 1/

√
2. Mandelbrot [34] gives them as a ``twindragon skin''

which can be generated by a line replaced by a right-angle zig-zag.

dJA

1

1
2

1√
2 1√

2

1
2

1√
2

=⇒

Each new line is replaced by further zig-zag, infinitely. These replacements
are by rotation and scaling. There are no alternating sides the way there are
for the dragon curve segments.

This replacement corresponds to theorem 28 where dJAk is two outward
pointing JAk−2. Those joins each grow by a new dJAk−2 at each end, which is
a new pair of JAk−4.

JAk−2 JAk−2

dJAk

=⇒

dJAk+1

JAk−2
JAk−2

JAk−4

JAk−4

JAk−4

JAk−4
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dJA has a unit square at its start and no square at its end. For the fractal,
this extra square goes to zero and so can be ignored. In finite iterations, the
expansion maintains an extra square at the start and not at the end.

The initial lines are positioned around the twindragon square according to
the join end limit 3

5+ 1
5 i (the left of the component dragon verticals), as in the

following diagram. The shape is a 6-sided polygon, with long side l = 2
√

2
5 =

1.264911 . . . .

7
5

1

3
5

0

− 3
5

8
5

1

2
5

0

− 2
5

1
5

0− 1
5

4
5

1 6
5

start

end

l

1√
2
l

1
2
l

135◦

135◦

=⇒

start

end

Figure 48

For the next expansion level, the longest lines are replaced by the zig-zag.
Notice this maintains the 3

5+ 1
5 i positioning relative to the new squares. The

dashed line across the middle is where the shape would be divided to make two
hexagons around the two squares if taken separately.

The line lengths begin in the ratio l : 1√
2
l : 1

2 l. The replacement rolls l down
to a 1√

2
l and two of a new smallest 1

2
√

2
l.

start

end

3
expansions

start

end

10
expansions

See section 18.7 on computer graphics using these expansions.
In a tiling of the plane, the squares in between the twindragons are divided

in the manner of the 3-overlap case from figure 28, but here turned 90◦ since
on odd squares. The actual connecting lines curl and spiral but these are the
points where they meet.
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The area of the initial polygon in figure 48 is l. 32 l − ( 1
2 l)

2 = 2. The zig-zag
replacement in that figure leaves area unchanged each time since it extends out-
wards the same as it takes away inwards. In the tiling, this is each twindragon
identified with a net 2 unit squares (by a little shift upwards for example).

The tile is an irregular hexagon. It and its tiling is ``type 1'' in Reinhardt's
classification[45] of the hexagonal tilings. That type requires one pair of opposite
sides be parallel and equal length. Here all three pairs of sides are equal and
parallel, for a skew of the regular hexagon.

11.3 Complex Base Unit Sides

A ``bottom up'' variation on Gilbert's boundary length calculation can be made
by labelling the unit sides of each 2×1 brick as a′, b′, c′ then counting how many
sides are on the boundary of the complex base shape.

The same expansion as figure 47 applies, but interpreted as c sides give that
many b sides in the next higher level. The b sides give that many a in the next
level. And the a sides each give two c and one a in the next level. The total of
these on the boundary of the next level is then

a′k = a′k−1 + b′k−1 starting a′1 = b′1 = c′1 = 1 (268)

b′k = c′k−1

c′k = 2 a′k−1

a′k = RQk−1 b′k = LQk−1 c′k = LQk k ≥ 1

These mutual recurrences are a matrix transpose of the previous (266). The
total is the twindragon single-visited points (267) again.

ComplexBoundaryk = TSk = 2(a′k + b′k + c′k)

2c′k is the number of vertical boundary sides. 2(a′k + b′k) is the number of
horizontal boundary sides. In the initial few levels, these are also the height
and width of the shape respectively. But soon the shape curls around so the
boundary in each direction is greater than the extents. Horizontally this happens
first at k=3. Vertically this happens first at k=5.

The recurrences can be reversed one step to start from a′0 = b′0 = 1
2 and

c′0 = 1. The total 2(a′0 + b′0) = 2 is the two horizontal sides of the unit square
which is complex base shape k=0. But the separate fractions a′0 = b′0 = 1

2 don't
make sense as counts of unit sides.
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The three types of unit sides correspond to twindragon single-visited points
x+iy with x and y parity in the following combinations,

a′k = 1
2 twindragon single points x even and y even

b′k = 1
2 twindragon single points x odd and y odd

c′k = 1
2 twindragon single points x odd and y even

a
even,even

odd,odd b

c odd,even

even,even
a

b odd,odd

odd,even c

start
0 + 0i

middle even,odd 0+1i

Notice a and b are the opposite way around than in base i−1 because the
twindragon is base i+1 so mirror image.

These bricks repeat at locations x+ 2p, y + 2q, an even offset in both coor-
dinates, so the parity is maintained as the twindragon expands.

The middle point is x even and y odd. Those even,odd points are always
double-visited. (Double-visited points of other parity occur too.)

The a,b diagonals which are x+y even are the complex base horizontals. The
twindragon horizontals are points a,c for even rows or points b alone for odd
rows.

The n point numbers of complex base shape i+1 which have a given side on
the boundary can be determined from the way each point expands. Label the
sides and diagonals around a square as a---h. When such an n expands to 2n
and 2n+1 the squares around those are

a

b

cdh

e

f g

=⇒ 0 1

a a b b

c c

d de e

f f

i+1
expansion,

new low bit

Notice diagonal squares g and h are not around either of the new 0 or 1 so
just the six a---f determine the neighbours of the new squares.

Take bits of n low to high by considering where each side of an expanded
square came from. For example the top side is a. In the expansion, the 1-bit
square has b on its top side. This means that the top side of the 1-bit square is
determined by what was at the b position of the n from the level above. The
top side of the 0-bit square comes from a, unchanged. Applying this to each of
a---h around the 0 and 1 gives a state machine

a

b non

cd

enon

f g

h

0

1

0
1

0,1
0

1

0
1

0,1
0,1

0,1

Figure 49:

i+1 boundary

squares,

bits of n

low to high
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Write n using k many bits, padded at the high end with 0s if necessary.
To test a given side of n, start at that state and follow the bits of n low to
high. If they reach ``non'' then the start side is not on the boundary (it has a
neighbouring square on that side).

Those n with top side a boundary have the following bit pattern. Each x
bit can be either 0 or 1.

· · · x00 11 · · · 11 x11 00 · · · 00

high

n

≥ 0 bits ≥ 0 bits
Figure 50:

base i+1

a side boundary
repeat

The low end is a run of ≥ 0 many 0-bits which stay in a. Then x11 goes to
d where a run of 0-bits and x00 back to a (each going low to high).

The number of sides of each type can be counted from the bit patterns.
This is more complicated than taking a recurrence but gives a combinatorial
interpretation to the side counts (similar to the boundary segment combinations
in section 3.4).

Suppose there are t many of the x00 and x11 triplets and all fall entirely
within the k bits of n (so final state either a or d). The possible locations for
them is a binomial coefficient. Each triplet is 3 bits so wherever one is located
there are 2 bits unavailable to others, so k−2t choose t.

If the high end of n is one or two bits of a further x00 or x11 then all the
other such triplets are within k−1 or k−2 bits respectively. Those one or two
bits of high triplet don't include the x so there are no extra choices in them. So
total a sides

ask =

2∑
h=0

k−h−2t≥t∑
t=0

2t
(
k − h− 2t

t

)
The count a′k from (268) is sides on 2×1 bricks so is one k later than these

unit square sides.

ask = 1
2 a
′
k+1 = RQk

In the state transitions, it can be noted a run of high 0-bits from anywhere
except e never reaches ``non''. Unit sides of level k ending in those states are
not enclosed by any higher k.

Another boundary measure can be made on the complex base shape by
considering unit squares with at least one boundary side. Enclosed squares are
those with neighbours in all 4 directions NSEW.

A square which is enclosed or not can be determined by testing each side
a, b, d, e. Those tests can be combined into a simultaneous state machine by
some usual DFA manipulations.
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start

f2 f1

f3f4f5f6f7f8

abcd

e f

non

01

010 1

0

10

1

0

1

0

10

1

0

1

0

1

0

10,1

0
1

0

1 0,1

i+1 NSEW

bits of n

low to high

The loop a---f is the same as the single side above, but now ``non'' means all
4 sides NSEW non-boundary, so a 4-side enclosed square.

Loop f3--f8 skips a low run ...111000 111000. The start and f1,f2 transitions
enter that run at one of 4 positions. The boundary squares can be counted from
this by supposing a low run of l ≥ 3 bits. The lowest two bits of l are arbitrary
so 4 combinations. The high bit of l goes to a or d and in both cases is count
ask−l in the remainder. When l = k the high bit need not go to a or d but can
stay in the f3--f8 loop which is 1 further combination. (For k=3 the formula
and 2k cases are equal.)

FourBk =


2k if k ≤ 3

4

(
1 +

k∑
l=3

ask−l

)
if k ≥ 3

NSEW

boundary

squares

= Rk (269)

The same result is found by some linear algebra on the state machine tran-
sitions. All except ``non'' are on the boundary. The non-boundary are enclosed
squares

FourAk = 2k − FourBk = 4ARk

A similar state machine applies for base i−1, again being a bit flip 0↔1 of
every second bit.

The state machine can be simplified a little by considering the Gray code of
n, taken low to high still. As from (45), the Gray code is a shift and XOR which
means the bit difference to the next higher bit. For base i−1, the equivalent
Gray code state machine is identical except all bit transitions shown are 0↔1
opposite.
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start

g1

g2

g3g4

g5

g6

g7

g8non

0

1
0

1

0

1

0

1

0
1 0

10
1

0

1

0,1

Base i+1

Gray(n) bits

low to high

four sides NSEW

The correspondence between complex base unit squares and twindragon di-
amonds (section 11.1) means these NSEW enclosed squares are diamonds with
double-visited points at all four corners. In the following diagram, there are 4
such for k=5. (There are other squares in the twindragon with four double-vis-
ited corners, but they are at odd positions so outside the curve.)

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

start

Base i+1 NSEW enclosed squares

k=5 FourA5 = 4

n = 8, 10, 21, 23

start

end

Twindragon k=5

interior (even) squares
where all 4 corners are
double-visited points

Another boundary measure can be made by considering squares with any
side or corner on the boundary, so any of eight a---h boundary. A simultaneous
DFA for these 8 tests is

start t1t2

t4 t3

t5t6

t7t8
f2 f1

f3f4f5f6f7f8

abcd

e f

non

01

0101

0
10

1

0101

0

10
1

010 1

0

10

1

0

1

0

10

1

0

1

0

1

0

10,1

0
1

0

1 0,1

i+1 Eight,

bits of n

low to high
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States a---f and f1--f8 are the same as four sides but additional ``t'' states
start in different ways.

Some linear algebra on this state machine gives a count of boundary squares
or of 8-enclosed squares (those reaching ``non''). The boundary count can be
written using R similar to FourB at (269). This shows an additional 1

2Rk−1−4
squares with a corner on the boundary for k ≥ 4.

EightBk =

{
2k if k ≤ 3

Rk + 1
2Rk−1 − 4 if k ≥ 4

boundary (270)

= same recurrence as Rk for k≥ 8, different initial values

= 1, 2, 4, 8, 16, 32, 58, 104, 182, 312, 534, . . .

gEightB(x) = 11
2 + 4x+ 3x2 + 2x3 − 7

1

1−x
+ 1

2

5 + 5x+ 6x2

1−x−2x3
(271)

EightAk = 2k − EightBk enclosed

= same recurrence as Ak for k≥ 9, different initial values

= 0, 0, 0, 0, 0, 0, 6, 24, 74, 200, 490, . . .

gEightA(x) = x6 6 + 8x2

(1−x)(1−2x)(1−x−2x3)

The recurrence for EightB is the same as right boundary R (108), but start-
ing 16, 32, 58, 104 then terms k=8 onwards by the recurrence. In the generating
function (271), the low constant terms adjust for k=0 through k=3 not following
the recurrence.

The recurrence for EightA is the same as area A (140), but starting 0, 0, 6,
24, 74 then terms k=9 onwards by the recurrence.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

30 31

32 33

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

60 61

62 63

start

base i+1 level k=6

8-side enclosed

EightA6 = 6

n = 16, 20, 21, 42, 43, 47

In the twindragon, these 8-enclosed squares are diamonds where all 4 sides
of the diamond are enclosed (not on the boundary). In the following diagram,
the centre diamond has all four sides enclosed. s is one of those sides.

st

u v

Twindragon 8-enclosed

s is non-boundary because enclosed by t, u, v. All segments of the twin-
dragon occur as diamonds so the only way for those t, u, v to be present is their
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respective diamonds which are the complex base neighbours NSEW plus diago-
nals. The NSEW neighbours give double-visited points and the sides t, v. The
diagonal neighbours give also side u.

See theorem 83 in section 13.1.1 for EightB as twindragon double-visited
boundary points.

A yet further boundary variation can be made by considering which squares
have any of six a---f boundary. After one further expansion (one greater k),
each square with such a boundary or not becomes a 2×1 block with a side on
the boundary or fully enclosed. The state machine for six a---f is contained
within the 8-side above but start into states t3,t4 (with t1,t2 then not reached).

start
six

t3t4

01

Some linear algebra on this variation gives a count of 6-side boundary or
enclosed. The boundary can again be written using R.

SixBk =

{
2k if k ≤ 1
1
2Rk + 2Rk−2 if k ≥ 2

boundary (272)

= same recurrence as Rk for k≥ 7, different initial values

= 1, 2, 4, 8, 16, 30, 56, 98, 168, 290, 496, 842, . . .

gSixB(x) = 3+3x+2x2 − 5
1

1−x
+

3 + x+ 3x2

1−x−2x3

SixAk = 2k − SixBk enclosed

= same recurrence as Ak for k ≥ 8, different initial values

= 0, 0, 0, 0, 0, 2, 8, 30, 88, 222, 528, 1206, . . .

gSixA(x) = x5 2 + 8x2

(1−x)(1−2x)(1−x−2x3)

SixB and EightB are greater than FourB . Limits for the ratios follow from
their R formulas.

SixBk

FourBk
=

1
2Rk + 2Rk−2

Rk
→ 1

2
+

2

r2
= 1 +

5

2r5
+

2

r9
= 1.195620 . . .

EightB

FourB
=
Rk + 1

2Rk−1 − 4

Rk
for k≥4 → 1 +

1

2r
= 1.294877 . . .

EightBk

SixBk
→ 1 + 1/(2r)

1
2 + 2/r2

= 1 +
8

4r5 + r7
= 1.083016 . . .

11.4 Complex Base i−1 Arithmetic
An attraction of base i−1 is that all Gaussian integers are represented uniquely.
Khmelnik[29] considers complex number arithmetic in base i−1 (and other i−n),
including addition. A special case of this is to add an increment dz = 1, i,−1,−i.
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1

−1−i i −i

−1

1+i

0−1+i 1−i
�ip

�ip �ip

�ip

Figure 51:

MinusInc states,

bits of n

low to high
0

1

0,1

0
1

0

1 0

1

0,1

0,10,1 0,1

MinusInc(n, dz ) = MinusUnpoint(MinusPoint(n) + dz )

dz=1 1, 12, 3, 14, 5, 56, 7, 58, . . .

dz=i 3, 14, 25, 116, 7, 58, 29, 0, . . .

dz=−1 29, 0, 31, 2, 233, 4, 235, 6, . . .

dz=−i 7, 58, 29, 0, 51, 62, 233, 4, . . .

The state names are carry dz to apply above. The starting state is the
desired increment.

z′ = z + dz (273)

The n′ for location z′ is sought from the bits of the n which is z. The low
bit of n and the dz carry determine the low bit of n′,

bit ′ ≡ bit + dz mod i−1 (274)

Mod i−1 is the same as mod i+1. For z = x+iy, it is 0 or 1 according as
x+y is even or odd respectively. When dz is odd, output bit ′ is an 0↔1 flip of
the input bit of n. Those dz states are marked ``flip''.

New carry next dz follows by requiring (273) on the higher bits of n. The
division has its numerator always a multiple of i−1 due to (274).

next dz = (dz + bit − bit ′)/(i−1)

MinusInc gives a boundary side test. If an n reaches state 0 within k many
bits then this means its neighbouring square is also in level k and hence n is
non-boundary in that direction. So figure 51 is the i−1 equivalent of figure 49
for i+1, with 0 here corresponding to ``non'' there.

As from section 11.2, bases i+1 and i−1 differ by flipping every second bit.
The equivalent to i−1 bit patterns figure 50 for ``a'' boundary is side dz=i here
with every second bit flipped 0↔1 (starting from the lowest). This means 0-bit
and 1-bit runs become alternating bits. An odd length run changes between
starting 0 or 1, so between the two lines in the following,

· · · x10
x01

01 · · · 01
10 · · · 10

x10
x01

01 · · · 01
1 · · · 01

high

n
base i−1

a side boundary

≥ 0 bits
alternating

≥ 0 bits
alternating

repeat

In figure 51, high 0-bits above n eventually reach state 0 from anywhere else.
The longest run starts from 1−i where 6 zeros go to state 0. But that state is
not the destination of any transition, so its 6-longer occurs only for n=0 of no
bits in k=0, incrementing to n= 58 = binary 111010 at z= 1−i.
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n=2
10

n=3
11

n=12
1100

n=29
11101

n=0
0

n=1
1

n=6
110

n=7
111

n=58
111010

6 bits

base i−1
around n=0

State −1 is reached by various bit combinations of non-zero n and requires
5 high zeros to go to state 0. The geometric interpretation of 5 bits that any
level k shape is entirely enclosed within a shape 5 levels higher. The following
diagram illustrates each additional area in k+1, k+2, etc.

k+1

k+2

k+3

k+4

k+5

k=5 base i−1
surrounding higher

levels enclosing

Khmelnik[29] also considers negation −z and gives a table (table 4) of carries
which are states. This is a pattern of bit flips for n.

0

1+i−i

i 1

−1

start

�ip

�ip �ip

�ip

Figure 52:

MinusNeg states,

bits of n low to high

0
1

0

10,1

0,1 0,1

0,1

The state names are again carry dz . The initial state is dz=0. The transi-
tions have factor −1 for the negation.

z′ = (−1).z + dz

bit ′ ≡ (−1).bit + dz mod i−1 (275)

next dz = (dz + (−1).bit − bit ′)/(i−1) (276)

The bit flip rule is the same, since −1 ≡ 1 mod i−1 for (275). State −1
shown in figure 52 does not arise for negating n, but is used below for the
MinusNeg boundary. The result is bit flips in a pattern,

MinusNeg(n) = MinusUnpoint(−MinusPoint(n))

= low to high, flip 3 bits above 01, flip 1 bit above 11

= 0, 29, 58, 7, 116, 25, 14, 3, 232, 21, 50, 239, . . . A340669

binary = 0, 11101, 111010, 111, 1110100, 11001, 1110, . . .
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· · · FFF 01
F 11

0...0 FFF 01
F 11

0...0 n binary, �ip bits F

From the low end, the lowest 1 is the lowest of either FFF 01 or F 11. The
F bits are arbitrary and are flipped 0↔ 1. Then above these flipped bits, the
next 1-bit is located and treated likewise, etc. 0-bits are considered at the high
end of n where match or to flip. When they flip, the bit length of MinusNeg(n)
is greater than the bit length of n.

The possible flips occurring are runs of 1-bits of length 1 or 3 with 2 unflipped
bits below each,

MinusNegXpred(c) =

{
1 if c= BITXOR(n,MinusNeg(n)) for some n

0 otherwise

= all 1-bits are in runs 100 or 11100

= 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .

=1 at c = 0, 4, 8, 16, 28, 32, 36, 56, 64, 68, 72, 112, . . .

= binary 0, 100, 1000, 10000, 11100, 100000, 100100, . . .

The number of distinct MinusNegXpred within k bits is the ways to take
bit runs length 3 or 5, and 0-bit of length 1. So a composition (partition with
order) of integer k into terms 1, 3, 5. This count grows as power of 1.570147...
(A293506) which is the largest root of x5−x4−x2−1.

MinusNegXdistinctk =

2k−1∑
c=0

MinusNegXpred(c)

= number of compositions of k into parts 1,3,5

= MinusNegXdistinctk−1 + MinusNegXdistinctk−3 k≥5

+ MinusNegXdistinctk−5

= 1, 1, 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, . . . A060961

gMinusNegXdistinct(x) =
1

1− x− x3 − x5

Total number of bits flipped for all n in level k (including when they flip to
exceed k) is

MinusNegXbitsk =

2k−1∑
n=0

count bits flipped n to MinusNeg(n)

= MinusNegXbitsk−1 + 2
(

2k−3 + MinusNegXbitsk−3

)
k≥5 (277)

+ 8
(
3.2k−5 + MinusNegXbitsk−5

)
= ( 2

5k + 18
25 )2k + 1

75 [−29, 32,−3,−26, 29,−32, 3, 26] 2bk/2c (278)

− 2
3 Im ( 1

2 + 1
2

√
7i)k+2 (279)

= 0, 3, 7, 15, 37, 83, 201, 459, 1001, 2211, 4817, . . .

gMinusNegXbits(x) =
3x− 2x2

(1− 2x)2 (1 + 2x+ 2x2) (1− x+ 2x2)
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= 8
25

1

1− 2x
+ 2

5

1

(1− 2x)2
− 1

3

1− 2x

1− x+ 2x2
− 1

75

29 + 26x

1 + 2x+ 2x2

Recurrence (277) follows from the bit patterns. Term k−1 is a low 0-bit.
Term k−3 is a low F11 with 2 choices for bit F each of which is 1 bit flipped
added to each of the 2k−3 many n above. Term k−5 is low FFF 01 with 8
choices for FFF each of which is 3 bits flipped added to each of the 2k−5 many
n above.

Powers (278) are by some recurrence or generating function manipulations.
Term (279) grows as

∣∣ 1
2+ 1

2

√
7i
∣∣=√2. This is the same growth as the half power

2bk/2c, but not periodic (because 2/
√

7 . Im( 1
2+ 1

2

√
7i)k ≡ 1 mod 2 for k≥1, so

never returns to the direction of k=0).
MinusNegXbitsk is over 2k many n of k bits each. After flipping they are

up to k+3 bits. In either case, the limit for mean proportion of bits flipped for
MinusNeg(n) is the coefficient of the k.2k term,

MinusNegXbitsk
k.2k

→ 2

5
proportion of bits flipped

For n within k bits, some MinusNeg(n) remain within k bits. If base i−1
is used for complex integer arithmetic on a binary computer then these n are
negatable without overflowing a k-bit word.

MinusNegPredk(n) =

{
1 if n < 2k and MinusNeg(n) < 2k

0 otherwise

= MinusNeg state machine k bits, start 0, end 0

In the MinusNeg state machine figure 52, high 0-bits above k in n lead to
one or more bit-flips from any state except 0. So to be negatable within k bits
means must be in state 0 after k bits.

The number of these negatables within k bits is

MinusNegAk =

2k−1∑
n=0

MinusNegPredk(n) negatables

= MinusNegAk−1 + 2MinusNegAk−3 + 8MinusNegAk−5 k≥5 (280)

= 2
5 2k + 2

15 [2,−1,−1, 3, −2, 1, 1,−3] 2bk/2c (281)

+ 2
3 Im ( 1

2 + 1
2

√
7i)k+1 (282)

= 1, 1, 1, 3, 5, 15, 29, 47, 101, 199, 413, 847, . . . A340670

gMinusNegA(x) =
1

1− x− 2x3 − 8x5

= 2
5

1

1− 2x
+ 1

3

1

1− x+ 2x2
+ 2

15

2 + 3x

1 + 2x+ 2x2

Recurrence (280) is how the bit flip patterns may sum to k. For a 0 bit,
there are the k−1 bits of further combinations above. For F 11 the F bit is
arbitrary, so 2× the further k−3 combinations above it. For FFF 01 the 3 F
bits are arbitrary, so 8× the k−5 further combinations. These are compositions
of k into parts 1,3,5 with each part 3 having 2 types and each part 5 having 8
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types. Powers (281) follow by recurrence or generating function manipulations.
The

√
7 part at (282) is like (279).

The geometric interpretation of MinusNeg in k bits is the area of intersection
of base i−1 shape and a copy of it rotated 180◦ about the origin.

k=8 base i−1
intersection with
180◦ rotation

MinusNegA8 = 101

MinusNegB8 = 136

The boundary of this shape can be characterized by combining MinusNeg
and MinusInc bit patterns. A neighbour MinusPoint(n)+dz is negatable when

MinusNegNeighbourPredk(n, dz ) = MinusNegPredk(MinusInc(n, dz ))

= MinusInc state machine, start dz , end 0 (283)

and MinusNeg state machine, start −dz , end 0 (284)

Here Inc (283) asks for a neighbour within k bits, and Neg (284) asks that
it is negatable, ie. that −(z+dz ) is within k bits, hence starting −dz in the
MinusNeg state machine.

A boundary square side in the MinusNeg shape is a negatable n with its
neighbour not negatable. Boundary length is then

MinusNegBk =

2k−1∑
n=0

∑
dz=1, i,−1,−i

MinusNegPredk(n)
and not

MinusNegNeighbourPredk(n, dz )

(285)

= 4, 4, 4, 8, 12, 36, 56, 80, 136, 228, 460, 784, . . .

gMinusNegB(x) =
1

1− x+ 2x2
+ 4

3

2 + x+ 2x2

1− x− 2x3
(286)

− 1 + x

1− x2 − 2x3
+ 2

3

2 + 2x+ x2 + 4x3

1 + x+ x2 + x3 + 2x4
(287)

Some state machine manipulations combine the conditions in (285). There
are 34 states for dz=±1 and 53 states for dz=±i. Mutual recurrences on those
states give a 12 term recurrence and generating function (286) for MinusNegB
count.

The negated shape is symmetric in 180◦ rotation, so side counts for dz = 1
are the same as for dz =−1. Likewise dz = i the same count as dz =−i.

The quadratic term at (286) is the 1
2+ 1

2

√
7i power like MinusNegA and

grows as
√

2. The cubic at (286) is 2
3ComplexBoundaryk. The cubic at (287)

is different and grows as a power of 1.521.... The quartic at (287) grows as a
power of 1.251.... Of these, ComplexBoundary grows fastest and limit ratio of
negatable boundary to whole boundary
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MinusNegBk

ComplexBoundaryk
→ 2

3

The negatable shape comprises various separate pieces. With more state
machine conditions they can be counted.

Some pieces are single unit squares. They are either completely isolated
or are hanging squares touching another piece at a corner. Both grow as the
1.521... cubic. The only corner touches between pieces are hanging squares, and
each hanging square touches only one other piece.

The total number of pieces also grows as the 1.521 cubic (with or without
hanging squares counted separately).

Multiplication by i is similar to negation. In the dz transition (276), factor
−1 becomes i.

MinusRot(n) = MinusUnpoint (i.MinusPoint(n))

= 0, 3, 6, 29, 12, 15, 58, 1, 24, 27, 30, 933, . . .

0

−1

−i

1

i

1−i

1+i
start

�ip

�ip

�ip

�ip

Figure 53: MinusRot states,

bits of n low to high

0

1

0 1

0

1

0

1

0
1

0

1

0

1

Some MinusRot(n) require more bits than n. High 0 bits above the top of
n eventually reach state 0 from any other state. They do so along a chain

0−1 −i 1i1−i 1+i start

�ip �ip �ip�ip 0
0 0 000 0

State 1 is a flip of its 0-bit, so is always a 1-bit above n, and then state 0 is
0s unchanged.

The most is from state 1−i where 6 zeros become various bits before the
1-bit from state 1 and reaching state 0. This first occurs for n = 11 = binary
1011 which is MinusRot(11) = 933 = binary 1110100101.

Those n ending in state 0 have no higher bits and are ``rotatable'' by i in
complex base i−1. The count of these follows from the transitions as mutual
recurrences on counts in each state,

MinusRotPredk(n) =

{
1 if n < 2k and MinusRot(n) < 2k

0 otherwise
(288)

= MinusRot state machine k bits, start 0, end 0

MinusRotAk =

2k−1∑
n=0

MinusRotPred(n)
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=


1 if k=0
9
20 2k + 1

10 [1,−1, 0, 1,−1, 1, 0,−1]2bk/2c + 1
5

= 9
20

∣∣(i−1)k + 1
9

∣∣2 + 7
36

if k ≥ 1

= 1, 1, 2, 4, 7, 15, 29, 57, 117, 229, 461, 925, . . .

The geometric interpretation of MinusRotA is the area of intersection of base
i−1 shape and a copy of it rotated +90◦ about the origin. Its limit 9/20 is a
little bigger than MinusNegA at 2/5.

k = 8 base i−1
intersection with
+90◦ rotation

MinusRotA8 = 117

MinusRotB8 = 168

The boundary length is

MinusRotNeighbourPredk(n, dz ) = MinusRotPredk(MinusInc(n, dz ))

MinusRotBk =

2k−1∑
n=0

∑
dz=1, i,−1,−i

MinusRotPredk(n)
and not

MinusRotNeighbourPredk(n, dz )

= 4, 4, 6, 12, 18, 32, 58, 94, 168, 294, 484, 852, . . .

gMinusRotB(x) = 1 +
1

1−x
+ 1

17

7−5x+6x2+3x3

1− x4
(289)

+ 1
7

4 + 3x− 2x2

1 + x+ x2 − x3
− 2 + x+ 2x2

1− 2x3 − x4
(290)

+ 1
119

359 + 169x+ 348x2

1− x− 2x3
(291)

At (289), term 1−x4 is periodic constants. At (290), the cubic grows as
a power of 1.356... and the quartic grows as a power of 1.395.... (291) is
the dragon cubic and its r is greater than those other powers so it dominates
eventually.

With some linear algebra to write the dragon cubic part in terms of the
whole ComplexBoundary , limit fraction of whole complex base boundary is

MinusRotBk

ComplexBoundaryk
→ 201− 6r − 5r2

238
= 0.741389 . . .

Some pieces are single unit squares. Similar to MinusNeg , they are either
completely isolated or are hanging squares touching another piece at a corner.
Both grow as the 1.395... quartic. The only corner touches between pieces are
hanging squares, and each hanging square touches only one other piece. The
total number of pieces grows as the 1.395 quartic (with or without hanging
squares counted separately).
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Multiplication by −i is the same state machine structure as figure 53, except
that at odd states 1, i,−1,−i the destinations for bits 0,1 are swapped. The
intersection shape is the same as MinusRot but turned −90◦.

MinusUnrot(n) = MinusUnpoint
(
−i.MinusPoint(n)

)
= MinusNeg

(
MinusRot(n)

)
= 0, 7, 14, 1, 28, 235, 2, 29, 56, 63, 470, 57, . . .

Doubling (multiplication by 2) is another special case of Khmelnik's addition,
and is related to rotation.

MinusDouble(n) = MinusUnpoint
(

2MinusPoint(n)
)

= 4 MinusRot(n) (292)

= 0, 12, 24, 116, 48, 60, 232, 4, 96, 108, 120, 3732, . . .

(292) follows from two low 0-bits in n are two expansion factors of i−1,
which is (i−1)2 = −2i,

(i−1)2 MinusPoint(n) = MinusPoint(4n)

2 MinusPoint(n) = iMinusPoint(4n)

and MinusUnpoint of both sides

MinusDouble(n) = MinusRot(4n) = 4 MinusRot(n) (293)

At (293), factor 4 moves out of MinusRot since rotation can commence above
any low 0s. In its state machine figure 53, low 0 bits are unflipped and stay in
state 0.

A direct state machine for MinusDouble can be written out (figure 54). In
dz transition (276), factor −1 becomes 2. Since 2 ≡ 0 mod b, the output bit
in each state is determined just by dz ≡ 0 or 1 mod b, without reference to the
input bit.

The final result is the same as MinusRot figure 53 with two low 0-bits output
first. Start state 0, and the next state either 0 again or −1−i, are both are even
so two low 0-bits output.
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0

1

i−1 −i

1+i

−1+i

−1−i

1−i

2i −2

−2i

1+2i

−1−2i

−2−i

start

Figure 54:

MinusDouble states,

bits of n low to high

output 0, 1

according to

state

x+y

≡ 0, 1

mod 20 1

0

1
0

1

0
1

0

1

0

1
01

0

1

0

1

0

1

0 1

0

1

0

1

0

1

0

1

Doubling pushes some points outside the level k boundary. When that
happens, MinusDouble(n) requires more bits than n. High 0-bits above the top
of n eventually reach state 0 (which is then all 0 output) from any other state.
The only 0-bit transition to state 0 is from state 1, and its output is a 1-bit. So
only those n in state 0 after k bits have MinusDouble(n) within k many bits.
The count of these follows from the states as mutual recurrences on counts of
each state,

MinusDoublePredk(n) =

{
1 if n < 2k and MinusDouble(n) < 2k

0 otherwise

= MinusDouble state machine k bits, start 0, end 0

MinusDoubleAk =

2k−1∑
n=0

MinusDoublePred(n)

=


1 if k ≤ 2
87
400 2k + 1

100 [−1, 3,−2, 1, 1,−3, 2,−1]2bk/2c

+ 1
25 [12, 4,−2, 6]

if k ≥ 3

= 1, 1, 1, 2, 4, 7, 14, 28, 56, 112, 222, 446, . . .
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Figure 55: k=8 base i−1
doubles within k bits

MinusDoubleA8 = 56

MinusDoubleB8 = 80

Doubled points are x, y both even. 1/4 of points in a level k are multiples of
4, but the MinusDoubleA limit (coefficient of 2k) is smaller than that at 87/400.
In figure 55 at left, there are incomplete regions near the top and bottom of the
k boundary, a total 28/4− 56 = 8 absent both-even points.

In terms of MinusRot at (292), doubling within k is MinusRot within k−2
which is a tighter restriction than MinusRotPred etc at (288).

Gilbert[19] notes that addition in base i−1 may need up to 8 more bits than
the addends, and gives an example n=11 at z = 2+3i with MinusDouble(11) =
3732 being 8 bits longer. This is the MinusRot first 6 bits longer and additional
2 low 0s.

The shape of the doublable points is shown at the right in figure 55. From
the state machine and additional states for dz=2, the boundary length is

MinusDoubleBk = 4, 4, 4, 6, 10, 16, 26, 46, 80, 136, 230, 394, . . .

gMinusDoubleB(x) = 5
2 + x+ x2 +

1

1−x
+

1

1+x2
+ 1

17

2+x+9x2−4x3

1− x4
(294)

+
−2− x2 + 3x3

1− 2x3 − x4
+ 1

34

47+19x+52x2

1− x− 2x3
(295)

The terms at (294) are periodic constants. At (295), the quartic is like
gMinusRotB at (290) and the cubic is the dragon cubic which dominates even-
tually. Writing that in terms of ComplexBoundary gives limit

MinusDoubleBk

ComplexBoundaryk
→ 23 + 12r − 7r2

68
= 0.341493 . . .

Some doublable pieces are single unit squares. Similar to MinusRot , they
are either completely isolated or are hanging squares touching another piece at
a corner and both grow as the 1.395... quartic like MinusRot . The only corner
touches between pieces are hanging squares, and each touches only one other
piece. The total number of pieces grows as the 1.395 quartic (with or without
hanging squares counted separately).
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11.5 Twindragon Convex Hull

Benedek and Panzone[7] show the convex hull around the twindragon fractal is
an 8-sided polygon. This shape is the convex hull around finite iterations k=3
onwards.

end bk+1

start 0

P1(k+1)P2(k+1)

P3(k+1)

P4(k+1)

P1′(k+1) P2′(k+1)

P3′(k+1)

P4′(k+1)

twindragon convex hull

k=7, area THA7 = 395

Theorem 56. The convex hull around twindragon level k has vertices P1 to
P4 from the dragon curve (theorem 37).

P1(k+1), P2(k+1), P3(k+1), P4(k+1)

P1′(k+1) = bk+1 − P1(k+1),

P2′(k+1) = bk+1 − P2(k+1),

P3′(k+1) = bk+1 − P3(k+1),

P4′(k+1) = bk+1 − P4(k+1)

Proof. For k=0, P1(k+1) = P2(k+1) and P3(k+1) = P4(k+1) so there are
just 4 distinct vertices making the unit square which is k=0.

P1(1) = P2(1)
1

P3(1) = P4(1)
0

P1′(1) = P2′(1)
i

P3′(1) = P4′(1)
1+i

For k=1, P2(k+1) = P3(k+1) so there are just 6 distinct vertices.

P1(2)

P2(2) = P3(2)P4(2)

P1′(2)

P2′(2) = P3′(2) P4′(2)

0 1

2i

For k=2, P3(k+1) = P4(k+1) so there are just 6 distinct vertices.
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0

b3

−2+2i
P1(3)

P2(3)

P3(3) = P4(3)P1′(3)

P2′(3)

P3′(3) = P4′(3)

For k ≥ 3 the 8 vertices are distinct.
For k=0 through k=4, the twindragon hull is formed explicitly and is per

the formulas.
For twindragon k ≥ 5, the convex hull is formed from the convex hulls

of the two component dragon curves level k+1. The second copy is points
P1′(k+1) = bk+1 − P1(k+1) etc.

0 bk+1

P1P2

P3

P4

P5

P10

P1′ P2′

P3′

P4′

P5′

P10′

Figure 56: twindragon hull

from two dragon k+1 hulls

Relative to the bk+1 endpoint, sides P4--P5 and P1--P10 are 45◦ diagonal
per (200),(202). They are on the same diagonal by adapting (209) to see that
P10 is 45◦ down from P4′,

P10(k+1) = P4′(k+1) − ( 1
2+ 1

2 i) b
k+1

In figure 56, vertex P4 is close to the line from twindragon start to end. It
is on the line when k ≡ 0, 1, 3 mod 4, but a half unit square below when k ≡ 2.

Im P4 (k+1).ωk+1
8 =

{
0 if k ≡ 0, 1, 3 mod 4

− 1
2

√
2 if k ≡ 2 mod 4

start

end

P1P2

P3

P4

P1′ P2′

P3′

P4′

P4 half
square
below

k=6 ≡ 2 mod 4
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Theorem 57. The two points of twindragon level k furthest apart are P3(k+1)
and P3′(k+1) from the convex hull. They are at a distance

THdiamk =
2√ 1

9

(
58.2k − [56, 64, 28, 56].2

⌊
k
2

⌋
+ [16, 20, 4, 8]

)
(296)

=
2√

2, 8, 20, 40, 80, 180, 388, 776, 1552, 3188, 6500, . . .

THdiamk is always irrational.

Proof. For the maximum distance, proceed as in theorem 39. Comparing factors
of bk, points P3--P3′ are furthest apart. Their distance is at least∣∣P3(k+1)− P3′(k+1)

∣∣ ≥ ∣∣(−1− 7
3 i)b

k
∣∣ − 2pmax =

√
58
9

√
2
k
− 2pmax

The second furthest by bk factors is P3--P4′ and their distance (and the
distance of any with smaller bk factor too) is at most∣∣P3(k+1)− P4′(k+1)

∣∣ ≤ ∣∣(− 4
3−2i)bk

∣∣ + 2pmax =
√

52
9

√
2
k

+ 2pmax

For k < 9, it can be verified explicitly that P3--P3′ is the maximum among
all vertices. For k ≥ 9, the difference between the bounds is positive.(√

58
9 −

√
52
9

)√
2
k
> 4pmax for k ≥ 9

As a remark, P3′--P4′ is vertical and with P3′ higher it is clear P3--P3′

is longer than P3--P4′. But this is not so clear for the third biggest P3--P2′

(distance
√

50/9.
√

2k) and the general approach allowing pmax in any direction
saves determining precisely which direction the offsets apply in each vertex pair.

To show THdiamk is irrational, firstly for k even take the curve aligned
to the segments with endpoint at −45◦. P3 and P3′ are opposites across the
middle. xk and yk are coordinate distances to the middle.

start

end

P3(k+1)

P3′(k+1)

xk

xk

yk

yk

k=6, even
P3 distances to middle

x6 = 9, y6 = 4

This alignment is rotation by factor i−(k/2+1) so

yk =
∣∣Im ( 1

2b
k+1 − P3(k+1)

)
.i−(k/2+1)

∣∣ = 1
2 2k/2 k ≥ 2 even

( 1
2THdiamk)2 = x2

k + y2
k

Similar to Hdiam from theorem 39, xk and yk are integers and yk is a power-
of-2 so if the hypotenuse 1

2THdiamk is an integer then it must have at most 2
bits and THdiam 2

k at most 3 bits.
The effect of 1

9 in THdiam 2
k formula (296) is a repeating bit pattern 111000.

For k < 16, it can be verified explicitly that THdiamk is irrational and for k≥ 16
going mod 256 shows too many 1s in the low 8 bits
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( 1
2THdiamk)2 mod 256≡

{
228 = 11100100 binary if k ≡ 0 mod 4

57 = 111001 binary if k ≡ 2 mod 4
k≥ 16

For k odd, take the endpoints aligned horizontally

xk

xkyk

yk

start

end

P3(k+1)

P3′(k+1)

k=7, odd
P3 distances to middle

x7 = 13, y7 = 5

This alignment is rotation by factor i−(k+1)/2 so

xk = Re
(

1
2b
k+1 − P3(k+1)

)
.i−(k+1)/2 = 1

3

(
5.2(k−1)/2 − [2, 1](k−1)/2

)
yk = Im

(
1
2b
k+1 − P3(k+1)

)
.i−(k+1)/2 = 1

3

(
2(k+1)/2 − (−1)(k+1)/2

)
yk even and odd k≥1 A135318

( 1
2THdiamk)2 = x2

k + y2
k

xk and yk are integers. If THdiamk is an integer then 1
2THdiamk forms a

Pythagorean triple with xk and yk. Any Pythagorean triple has at least one leg
a multiple of 4 as from (217). But from the power forms neither x nor y are,

xk ≡ 2 mod 4

yk ≡ 3 mod 4

}
when k ≡ 1 mod 4 and k ≥ 5

xk ≡ 1 mod 4

yk ≡ 1 mod 4

}
when k ≡ 3 mod 4 and k ≥ 7

The area of the twindragon hull is calculated by triangles as for HA from
section 7. The area is an integer because the hull is symmetric in 180◦ rotation.

THAk = 10
3 2k − [ 8

3 , 4,
10
3 , 4].2bk/2c + 1

3 area

= 1, 3, 7, 19, 43, 91, 187, 395, 811, 1643, . . .

For the curve scaled to bk+1 endpoint a unit length, the limits for THdiam
and THA are given by the coefficients of their 2k terms. Both limits are ap-
proached from below since the half-power terms in each are negative and exceed
the constants.

THdiamk√
2k+1

→ 1

3

√
29 = 1.795054 . . .

THAk

2k+1
→ 5

3
(297)
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start end

P3

P3′

outside

outside

Figure 57

Much of line P3--P3′ is within the twindragon. But some of it goes outside.
This can be seen by expanding once to k=1.

start end

P3

− 1
3−

1
3 i

P3′

4
3 + 1

3 i

P4a
1
6−

1
6 i

Figure 58

The dashed square is the first half of the absent other twindragon at curve
start. The dashed convex hull around it has a vertex P4a=−P4/b= 1

6−
1
6 i. At

its ReP4a= 1
6 , the line P3--P3′ is (using its slope) above and therefore some

of the line goes outside. (The twindragon having no cut-points or holes which
might allow the line might stay within and yet have some outside at P4a.)

at x= 1
6 line P3--P3′ Im = − 2

15 > − 1
6 = ImP4a

In figure 57 the second ``outside'' shown closer to P3 is the same, but ex-
panded a further 4 times to k=5 sub-curves.

start

end

P3

P3′

P3--P3′ is slope 5:2 and this takes it from the twindragon middle down to
pass through the grid point above and to the right of P3. That point is then
the same as the middle in figure 58. Repeating the expansion a further 4 times
on the square beside P3 gives another yet smaller outside, and so on infinitely.

The convex hull around the points of complex base i+1 shape is the same
as the twindragon with its unit squares (diamonds), which correspond to the
complex base, reduced to points at their lower left, and division by i−1 to rotate
−135◦ and scale (that being the inverse of PlusToDragon from (259)).

The twindragon vertices are P1(k+1) etc which go as powers bk. It's con-
venient to apply the i−1 division by decreasing the index k. That divides
by b = i+1 and is adjusted to i−1 by factor b/(i−1) = −i. Offset coff is a
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combination of move to lower left corner and change of offset in the P index
reduction.

CP1 (k) = −iP1(k) + coff (k) CP1 ′(k) = −i(bk−1)− CP1 (k)

CP2 (k) = −iP2(k) + coff (k−1) CP2 ′(k) = −i(bk−1)− CP2 (k)

CP3 (k) = −iP3(k) + coff (k−2) CP3 ′(k) = −i(bk−1)− CP3 (k)

CP4 (k) = −iP4(k) + coff (k−3) CP4 ′(k) = −i(bk−1)− CP4 (k)

coff (m) =

{
i if k ≡ 0 to 3 mod 8

0 if k ≡ 4 to 7 mod 8
i×A131078

Lai [33] shows in general that the hull around a fractal complex base p.e
2πi
n

has n vertices when n even, or 2n vertices when n odd. Here base b = 1+i =√
2.e

2πi
8 is n=8.

The area enclosed by the complex base hull is

CHAk = 5
3 2k − [ 10

3 , 5,
11
3 , 5].2bk/2c + 5

3 area

= 0, 0, 1, 5, 15, 35, 79, 175, 375, 775, 1591, . . .

CHA0 = 0 is the single point at the origin of k=0. CHA1 = 0 is two points
0, 1 so no width. CHA1 = 1 is sheared 0, 1, 1+i, 2+i.

The limit is the same as the twindragon when scaled to a unit length.

CHAk

2k
→ 5

3
same as THA at (297)

Twindragon hull sides can also be measured by how many Gaussian integers
are on the sides, like theorem 41 of the dragon hull.

twindragon hull k=4

points

boundary THBP4 = 22

inside THIP4 = 33

total THP4 = 55

S

E

The twindragon hull sides are all straight or 45◦ so the integer points goes
as the side lengths. The total is

THBPk = [6, 8].2bk/2c − 2

= 4, 6, 10, 14, 22, 30, 46, 62, 94, . . . A027383

Then with Pick's theorem (220), the hull interior and total points are

THIPk = THAk − 1
2THBPk + 1 hull interior points

= 10
3 2k − 1

3 [17, 24, 19, 24]2bk/2c + 7
3

= 0, 1, 3, 13, 33, 77, 165, 365, 765, . . .
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THPk = THIPk + THBPk hull total integer points

= 10
3 2k + 1

3 [1, 0,−1, 0]2bk/2c + 1
3

= 4, 7, 13, 27, 55, 107, 211, 427, 859, . . . A136408

11.6 Twindragon Minimum Area Rectangle

k=6

area TMR6 = 216

start

end

k=7

area TMR7 = 468

start

end

Theorem 58. The minimum area rectangle around the twindragon curve is
aligned to a bk side of the square of 4 dragons making up the twindragon. Its
area is

TMRk = 1
9

(
35.2k − [34, 38, 38, 34].2bk/2c + [8, 4]

)
= 1, 4, 8, 24, 48, 108, 216, 468, 936, 1924, 3848, 7844, . . .

[34, 38, 38, 34] means the respective value as k ≡ 0 to 3 mod 4. Similarly [8, 4] as
k ≡ 0 or 1 mod 2.

L

R R

L

0 bk

bk+1ibk

end

start

Minimum area rectangle
aligned to bk direction

Proof. A minimum area rectangle has at least one side aligned to a side of the
convex hull. The sides of the twindragon hull have two directions, straight and
45◦. It suffices to consider rectangles in those two directions, relative to bk.

The rectangle area in the straight bk direction is the claimed minimum

TMRk =
∣∣bk∣∣2 . Im P2′(k+1)− P2(k+1)

bk
.Re

P4′(k+1)− P4(k+1)

bk

The rectangle area in the diagonal bk+1 direction is

TMRdiagk =
∣∣bk+1

∣∣2 . Im P2′(k+1)− P2(k+1)

bk+1
.Re

P4′(k+1)− P4(k+1)

bk+1

= 1
9

(
40.2k − [26, 26, 28, 28].2dk/2e + [4, 8]

)
= 2, 4, 12, 24, 60, 120, 260, 520, 1092, 2184, . . .
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For k < 4, the sample values shown above have TMRdiagk ≥ TMRk. They
are equal at k=1 and k=3. For k ≥ 4, the difference 5.2k overcomes the
negatives in the other terms. TMRdiagk is written with 2dk/2e whereas TMRk

is with 2bk/2c to make the coefficients more attractive. Adapt them to both
2dk/2e for the difference

TMRdiagk − TMRk = 1
9

(
5.2k + [8,−7, 10,−11].2dk/2e + [−4, 4]

)
≥ 1

9

(
5.2k − 11.2dk/2e − 4

)
≥ 1

9

(
4.4.2dk/2e + 4− 11.2dk/2e − 4

)
for k ≥ 4

= 5
92dk/2e > 0

11.7 Twindragon XY Convex Hull

The XY convex hull around the twindragon follows by subtracting the side
indentations as from section 7.3.

Taking the twindragon as two dragons k+1 back-to-back, the sides P2--P3
and P2′--P3′ are XYindentAk−1. The sides P1--P4′ and P1′--P4 are 2 levels
bigger.

TXYhullAk = THAk − 2XYindentAk+1 − 2XYindentAk−1

= 190
63 2k − 2

9 [13, 26, 14, 28]2bk/2c + 1
7 [−4, 6,−9, 10]2bk/4c + 4

9 [1, 2]

= 0, 2, 5, 14, 36, 76, 166, 340, 724, 1456, . . .

Similarly a diagonally aligned hull, with the indents 1 level smaller,

TDXhullAk = THAk − 2XYindentAk − 2XYindentAk−2

= 200
63 2k − 2

9 [17, 19, 19, 17]2bk/2c + 1
7 [5,−4, 6,−9]2bk/4c + 4

9 [2, 1]

= 1, 2, 6, 17, 38, 84, 172, 374, 756, 1556, . . .

Limits for the twindragon scaled to endpoints a unit length are

TXYhullAk

2k+1
→ 95

63
= 1.507...

TDXhullAk

2k+1
→ 100

63
= 1.587... A021067

start

end

start

end
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11.8 Twindragon Inertia

Theorem 59. Consider the twindragon curve to have a unit mass in the middle
of each line segment. With the x axis aligned to the endpoints, the moment of in-
ertia tensor for rotation at the centroid (which is midway between the endpoints)
is,

TI (k) =

 TI x −TI xy 0

−TI xy TI y 0

0 0 TI z


where

TI x(k) = 4
5 4k − 1

10 [3, 1, 7, 9].2k

= 1
2 , 3, 10, 44, 200, 816, 3232, 12992, . . .

TI y(k) = 6
5 4k − 1

10 [7, 9, 3, 1].2k

= 1
2 , 3, 18, 76, 296, 1200, 4896, 19648, . . .

TI xy(k) = 2
5 4k + 1

5 [−2, 1, 2,−1].2k

= 2k Im sGk+1 from (246)

= 0, 2, 8, 24, 96, 416, 1664, 6528, . . . 2k×A007910

TI z(k) = TI x(k) + TI y(k)

= 2.4k − 2k

= 1, 6, 28, 120, 496, 2016, 8128, 32640, . . . A171476

Proof. Twindragon k is two back-to-back copies of dragon curve k+1. The
inertia I of the dragon curve from theorem 51 is at its centroid GSk+1. The
centroid of the twindragon is instead the middle 1

2b
k+1. Apply the difference as

an offset, and rotated using eighth root of unity ω8 so as to be directed relative
to the twindragon endpoint bk+1.

∆k =
(

1
2b
k+1 −GSk+1

)
.ω8

k+1

TI x(k) = 2
(
Ix(k+1) + 2k+1 (Im ∆k)2

)
TI y(k) = 2

(
Iy(k+1) + 2k+1 (Re ∆k)2

)
TI xy(k) = 2

(
Ixy(k+1) + 2k+1 (Im ∆k)(Re ∆k)

)
Second Proof of Theorem 59. A direct calculation from twindragon k as two
copies of twindragon k−1 can be made too. Both copies have the x axis at
+45◦ relative to the start to end line in the sub-part.
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start

0

end

bk+1

bk

x

y

1
2
bk+1

1
2
bk

+45◦ +45◦

−45◦

The x axis is at angle +45 relative to the two halves, and the offset at −45◦

to their centroid can be applied with the parallel axis theorem. So with matrix
of rotation R from (244).

TI (k) = 2R−1.TI (k−1).R + 2.4.2k−1
(

1
2

√
2k
)

2 .R
( 0 0 0

0 1 0
0 0 1

)
R−1 k ≥ 1

Multiplying is mutual recurrences

TI x(k) = TI x(k−1) + TI y(k−1) − 2TI xy(k−1) + 1
24k (298)

TI y(k) = TI x(k−1) + TI y(k−1) + 2TI xy(k−1) + 1
24k (299)

TI xy(k) = TI x(k−1) − TI y(k−1) + 1
24k (300)

Ix+Iy = Iz is true of any plane figure so (298)+ (299) is

TI z(k) = 2TI z(k−1) + 4k k ≥ 2

starting TI z(0) = 4.( 1
2 )2 = 1

Difference (298)− (299) TI x(k) − TI y(k) = −4TI xy(k−1) into (300) is a
second order recurrence for TI xy , starting from values calculated explicitly at
k=0, 1

TI xy(k) = −4TI xy(k−2) + 1
24k k ≥ 2

starting TI xy(0) = 0, TI xy(1) = 2

And then

TI x(k) = TI z(k−1)− 2TI xy(k−1) + 1
24k

TI y(k) = TI z(k−1) + 2TI xy(k−1) + 1
24k

with initial TI x(0) = TI y(0) = 4.( 1
2

√
2)2 = 1

2

There is a factor 2k in each TI component. It is kept so the components
have the same mass basis as the dragon curve calculation in section 9. It could
be eliminated by taking the whole twindragon to have a unit mass in total and
distributed uniformly at the midpoint of each segment, or alternatively keeping
the mass but scaling to the endpoint a unit length.

Similar to (250), the principal axes of inertia are
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Tαmin(k) = 1
2 arctan

−2TI xy(k)

TI x(k)− TI y(k)
k ≥ 2

= 1
2 arctan

(
2 +

[0,−2, 0, 2] 2k

TI x(k)− TI y(k)

)
→ 1

2 arctan 2 = 31.717474◦ . . . radians A195693

slope 1/φ = 0.618033 . . . A094214

where golden ratio φ = 1+
√

5
2 = 1.618033 . . . A001622

Tαmax = αmin + π
2

The minimum principal axis is exactly 1
2 arctan 2 when k is even since the

periodic terms in the TI parts coincide.

−2TI xy(k)

TI x(k)− TI y(k)
= 2 when k even ≥ 2

For k odd, the remaining term is powers 2k/4k → 0.

For the curve scaled to unit length and mass 2, the inertia limit is the
coefficients of 4k in TI x(k) etc.

TI (k)

4k+1
→ TIf =


1
5 −

1
10 0

− 1
10

3
10 0

0 0 1
2

 inertia limit (301)

Mass 2 for this limit is the same density as the dragon inertia limit (253).
Both are unit length. The dragon limit is mass 1 area 1

2 . The twindragon is
mass 2 area 1. The twindragon inertia limit is two dragon limits the same as in
the first proof above, with centroids Gf shifted up to the midpoint 1

2 .

TIf = 2
(

If + Ipoint(Gf − 1
2 )
)

The inertia limit rotated by Tαmin limit to principal axes is
1
4−

1
20

√
5 0 0

0 1
4+ 1

20

√
5 0

0 0 1
5

 = 1
10

3−φ 0 0

0 2+φ 0

0 0 5

 principal
axes

TI min = 1
10 (3−φ) = 0.138196 . . . A094874

TI max = 1
10 (2+φ) = 0.361803 . . .

The inertia of the convex hull around the twindragon (section 11.5) can be
calculated from its polygon vertices and compared to the curve it surrounds.
For the unit length limit and density mass= 2×area the same as the dragon
and twindragon, the hull inertia limit is

THI x = 95
243 THI y = 271

486 THI xy = 23
162 hull inertia

THIαmin = 1
2 arctan 46

27 = 29.794459◦ . . .
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start

end

P1P2

P3

P4

P1′ P2′

P3′

P4′

slope 1/φ

twindragon Tαmin = 31.717◦ . . .

hull THIαmin = 29.794◦ . . .

twindragon curve and hull
principal axes of inertia

The principal axis THIαmin of the hull is slightly smaller, ie. slightly nearer
the x axis, than the curve axis. Roughly speaking, there is a little more blank
space filled by the hull on that side than the other (weighted by squared dis-
tance).

12 Blobs

The dragon curve comprises blobs of enclosed area with bridges in between. A
blob is a run of consecutive segments all of which are sides of some enclosed
unit square. Those squares touch at a corner or on a side. A bridge is segments
in between which are not sides of an enclosed unit square.

start

end

4

5
6

7

8

10

9

8
7

6

5

4

bridge

bridge

bridge

Figure 59: blobs in dragon k=10

blob 4 is a unit square,

blob 10 is the middle biggest,

bridges of 3 segments between

Blobs are numbered by increasing size. It's convenient to follow Daykin and
Tucker [13] and number so that blob k is the biggest blob in curve k. This
aligns indices for various sums and powers. The first blob (a single unit square)
is then k=4.
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There is a single sequence of blob sizes, each expanding to the next. The
curve comprises a certain set of those sizes (BlobListk). Blobs at the end of the
curve are the same shape as the start but rotated −90◦ since they are unfolds
of the start.

Theorem 60 (Ngai and Nguyen[38]). The blobs in the dragon curve are sepa-
rated by bridges of 3 segments and those bridges are maintained on each curve
expansion.

Proof. The bridges in curves k=5 and k=6 are each 3 segments.

start

end

OR

ER

OL

bridge

k=5

start

end

OR

ER

OL

EL

k=6

In curve k=6, the bridges bend either right or left and the two ends are each
either an odd or even point (coordinate sum x+y odd or even). The two forms
expand as

OR

ER

=⇒

EL

OL

enc

EL

OL

=⇒

OR

ER

enc

Figure 60: bridge expansions

The 3 bridge segments expand to 6 new segments but 3 of them become
an enclosed unit square leaving 3 as a new bridge. The right bending ER,OR
bridge expands to left bending EL,OL. In turn, EL,OL expands back to ER,OR.

This expansion means the initial bridge in k=5 is maintained in subsequent
expansions. In k ≥ 6, the 7 segments at the start of the curve expand to a
new unit square blob 4 and a bridge after it. This is an OR,ER the same as
in k=5 so that new bridge is maintained in subsequent expansions too. The 7
segments at the end of the curve are the same as the start of the curve, but
rotated −90◦.

In the bridge expansions, it can be noted that it doesn't matter if there is a
further segment beside the bridge (away from its direction of bending). In the
following diagram, those prospective segments are shown dotted.

Draft 23 page 201 of 391



OR

ER

=⇒
EL

OL

EL

OL

=⇒

OR

ER

OL expands to ER with a segment beside, and ER expands to EL with a
segment beside.

EL expands to OR without a segment beside. The segment beside would
have come from completing the 3-side of the EL left bend, making it not a
bridge. Similarly OR expands to OL without a segment beside. The segment
beside would have come from 3-side of the OR right bend, making it not a
bridge.

So there is never a segment beside OR or OL and there is always a segment
beside ER and EL.

Theorem 61. The blob sizes in dragon curve k are, in sequence from the start
of the curve,

BlobListk =


4 if k = 4

4, 5 if k = 5

4, 5, ..., k−2, k−1, k, k−2, ..., 5, 4 if k ≥ 6

The k ≥ 6 case applies for k=4 and k=5 too if terms which would be <4
are omitted.

Proof. The development of a given blob is determined by its shape and the
bridge end before and after which will add new enclosed squares in the cycle
above.

In curve k=4, the unit square blob has OL before and OR after. It expands
successively to make a sequence of blob sizes.

In curve k=5, the new unit square blob at the start of the curve is the same
as in k=4. In subsequent expansions this is the k−1 of BlobList . The segments
at the start of k=5 are the same as in k=4 and so give a new unit square blob
on each expansion. This means a sequence of blobs 4, ..., k−1, k at the start of
the curve.

In curve k=6, there is a new unit square blob at the end of the curve with
OL before (towards the end of the curve) and OR after (towards the middle of
the curve). This and the non-blob segments at the very end of the curve are
the same as the start of k=5 and so give a sequence of blobs 4, ..., k−2 from the
end of the curve towards the middle.

From BlobList the number of blobs and bridges in curve level k is

BlobCountk =


0 k < 4

1 k = 4

2k−8 k > 4

= 0, 0, 0, 0, 1, 2, 4, 6, 8, 10, 12, . . . A004277
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BridgeCountk =

{
0 k < 4

BlobCountk−1 = 2k−9 k ≥ 4

= 0, 0, 0, 0, 0, 1, 3, 5, 7, 9, 11, . . .

Theorem 62. Blob k starts at point number (starting n=0 at the origin),

BlobN k = 2
5 2k + 1

5 [3, 6, 12, 9] k ≥ 4 (302)

= 7, 14, 28, 53, 103, 206, 412, 821, 1639, 3278, . . . k ≥ 4

= binary 1100... repeated zero or more (303)

and �nal 111, 1110, 11100, or 110101 for k−1 bits (304)

= binary 111, 1110, 11100, 110101, 1100111, 11001110, . . .

Proof. In the bridge expansions of figure 60, the 3 segments which make the
new enclosed unit square are at one end of the bridge. When they're at the
start of blob k the expanded blob k+1 starts 3 vertices earlier than doubling
segments to 2BlobN k. The bridge type at the start of a blob goes in a cycle,

ER EL

OROL

−3

−3
k ≡ 0 mod 4

k ≡ 1 mod 4 k ≡ 2 mod 4

k ≡ 3 mod 4

The start of blob k=4 is an OL. It expands to ER with no extra segments.
Then ER expands to EL with no extra segments. But EL to OR and OR to OL
both have the new square at their ends. So

BlobN k+1 = 2BlobN k − [0, 0, 3, 3]k k ≥ 4

starting BlobN 4 = 7

Repeatedly expanding this recurrence gives the power form (302) and the
generating function.

Second Proof of Theorem 62. The non-blob segments can be characterized by
the boundary predicates from section 3.4 and section 3.5. Non-blob segments
of the curve continued infinitely are both left and right boundary,

Rpred(n) = 1 and Lpred∞(n) = 1 non-blob segments n

The state transitions for Lpred∞ are the same as Rpred but 0↔1 bit-flipped
and different start. Rpred and Lpred∞ states can be followed simultaneously
by the bits of n. If either reaches ``non-boundary'' then that segment is part
of a blob. With some usual DFA state machine manipulations the result of
simultaneous traversal is
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b1 b2 b3 b4 b5

b6 b7

b8 b9b10

blob blob

blob blobblob

0

1

0

1 0

1

0

1 0

1

0
1 0

1

0

1 0

10,1

start

n bits
high to low,

blob

NonRpred or

NonLpred∞

b5 loops back to b2. b5 and b1 can be treated together as both going to b2,
with b5 preceded by one or more repeats of 1100. Starting at b1 or b5 the bit
patterns which do not go to ``blob'' and not taking the b5 loop are

empty 1 10 100 1101 11010 110101
11 101 1011 11011

110

Applying an initial 1100 to the four of length < 3 bits gives triplets n, n+1,
n+2 which are the bridges, the triplet 4,5,6 preceding the first blob k=4.

100 1011 11001 110010
+1 101 1100 11010 110011
+2 110 1101 11011 110100

The last segment of each triplet is the segment preceding vertex BlobN . So
BlobN is that bit pattern +1, which is the binary form (303).

BlobN is double-visited by its construction. Its other n is an offset

other(BlobN k) = BlobN k + [4, 8, 16, 4]

= 11, 22, 44, 57, 107, 214, 428, 825, . . . k≥4

This follows from applying other to the BlobN bit pattern. The low bits
(304) suffice for the flips other makes.

Or geometrically, the expansions in figure 60 show when BlobN moves or
when it merely doubles. OR is a left turn because the preceding odd in the
bridge is a right turn and odd turns alternate. OR expands as a 3e type square
enclosing ``enc'' and giving OL its other visit at +4. OL to ER and ER to EL
merely double. EL to OR is again an enclose going to other at +4. That EL
has a left turn, to make the enclosure consecutive, follows from OL making ER
with left turn, and ER to EL remaining left turn.

The last point in a blob is 3 bridge segments back from the start of the next,

BlobNendk = BlobN k+1 − 3 k ≥ 4

= 4
5 2k − 1

5 [9, 3, 6, 12]

= 11, 25, 50, 100, 203, 409, 818, 1636, 3275, 6553, . . . k ≥ 4

= binary 1100... repeated zero or more

and final 1, 10, 100, or 1011 for k bits
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= binary 1011, 11001, 110010, 1100100, 11001011, . . .

The number of segments in blob k is difference BlobN to BlobNend .

BlobSegmentsk =


0 if k < 4

BlobNendk − BlobN k if k ≥ 4

= 2
5 2k − 1

5 [12, 9, 18, 21]

= binary 1100... repeated zero or more

and final 100, 1011, 10110, or 101111 for k−1 bits

= 0, 0, 0, 0, 4, 11, 22, 47, 100, 203, 406, . . .

BlobSegments0,1,2,3 are taken as 0 for no such blob size. This will match the
area and boundary of those sizes also taken as 0.

The total 2k segments of curve k are the blob segments plus non-blob seg-
ments. The total non-blob segments are the 3 bridge segments between blobs
and the segments at the start and end of the curve.

2k =

( ∑
j=BlobListk

BlobSegmentsj

)
+ NonBlobSegmentsk

NonBlobSegmentsk =

{
1, 2, 4, 8, 12 if k = 0 to 4

6k − 13 if k ≥ 5

= 1, 2, 4, 8, 12, 17, 23, 29, 35, 41, . . .

For k < 4, all segments are non-blob so NonBlobSegmentsk = 2k. For k=4,
there are only 5 segments at the end so NonBlobSegments4 = 7+5. For k≥ 5,
there are 7 non-blob segments at both start and end so

NonBlobSegmentsk = 3BridgeCountk + 14 = 6k − 13 k ≥ 5

Bridge points are on the boundary so are visited a second time by curve
arms on the left and right at +90◦ and −90◦. Those start directions are 180◦

apart but the curve meandering takes them to just a single unit segment apart
at each bridge.

The bridge before the middle biggest blob is touched on the left side by
a curve of the same level. On the right side it is touched by the second half
of a −90◦ curve of one higher level. This is an opposing right side sub-curve.
Figure 61 illustrates the touches on the bridge before blob k=8 in curve k=8.

For the purpose of these bridges, the two points preceding the first blob k=4
(the single unit square) can be considered as a bridge. There is no further blob
before it but the locations of the points follow the bridge pattern.
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BridgeLother8=34

BridgeRother8=375

start

end

... L arm

...

. . . R arm

k=8 curve

middle biggest

blob k=8

L

R

M

M

Figure 61

Theorem 63. The n point numbers of the points of the bridge before blob k on
the left and right side are

BridgeLN k = BlobN k − [1, 2]

= 6, 12, 27, 51, 102, 204, 411, 819, . . . k≥4

BridgeRN k = BlobN k − [2, 1]

= 5, 13, 26, 52, 101, 205, 410, 820, . . . k≥4

The other n in the adjacent curve arms which are the other visits to those points
are

BridgeLotherk = other(BridgeLN k) = 2
15 2k + 1

15 [−2,−4, 7,−1]

= P3N (k) convex hull vertex from theorem 38

BridgeRotherk = other(BridgeRN k) = 22
15 2k + 1

15 [−7, 1, 2, 4]

= 2.2k − P1N (k) convex hull vertex

= 23, 47, 94, 188, 375, 751, 1502, . . . k≥4

Proof. As from theorem 60, the bend alternates left and right in successive
bridges, so BridgeLN k and BridgeRN k alternately BlobN k−1 and BlobN k−2.

For k=4 to k=7, the n of the other visits can be calculated explicitly and
are per the formulas. Level k left and right side curve arms expanded 4 times
down to k−4 sub-curves is then
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. . .

R

L

M

2

6

16

23

=⇒
L

M

R

The bridge is within sub-curve 6 of the middle since

BlobN k = 6.2k−4 + BlobN k−4 for k ≥ 8

The left arm sub-curve at 2 is +90◦ to that middle sub-curve so the same
arm arrangement in k−4

BridgeLotherk = 2.2k−4 + BridgeLotherk−4 k ≥ 8

For the right side, the right arm sub-curve 23 to 24 corresponds to a second
k−4 sub-curve of a −90◦ arm. The direction shown is the side of expansion. So
reducing BridgeRotherk−4 to its offset into the second sub-curve is

BridgeRotherk = 23.2k−4 +
(
BridgeRotherk−4 − 2k−4

)
k≥8

= 22.2k−4 + BridgeRotherk−4 k≥8

These others recurrences are per the convex hull P3N and P1N shown.

BridgeLother and BridgeRother can also be calculated by applying other(n)
of section 1.5 to the bit patterns of BridgeLN and BridgeRN .

The relation to convex hull vertices is since the blob crossings (below) in the
main curve are straight lines at successive 45◦ angles and are all double-visited
points. The bridges are directed inward as the curve curls around, so the bridge
points are the furthest an adjacent curve can extend on the relevant side.

12.1 Blob Crossings

Theorem 64. Blob k ≥ 4 starts and ends at locations

BlobStartk = 1
3

(
b bk + boff (k)

)
(305)

= −2+i, −3−i, −2−4i, 1−6i, 6−5i, 11+i, 10+12i, . . . k ≥ 4

BlobEndk = 1
3

(
2bk − i boff (k−1)

)
(306)

= −2+i, −3−2i, −1−5i, 4−6i, 10−i, 11+10i, 1+21i, . . . k ≥ 4

boff (m) =

{
2+i, 1+3i, −2+4i, −3+2i, m ≡ 0 to 3 mod 8

−2−i, −1−3i, 2−4i, 3−2i m ≡ 4 to 7 mod 8
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Proof. In the bridge expansions of figure 60, when a the new unit square is
enclosed that end moves by 1 in the direction of the new bridge.

The expanded shapes are rotated +45◦ each time to maintain the curve
initial segment direction. The result is that ER to EL and OR to OL keep the
same direction and EL to OR and OL to ER rotate +90◦.

ER EL

OROL
move
+90◦

move

+90◦

The two moves are in the same direction, then there is two rotates +90◦

before the next two. For the first blob k=4, the start is OL directed East and
the end is OR directed South, so the following pattern of moves in direction
and they give the power forms above.

BlobStartk+1 = bBlobStartk + [0, 0, 1, 1, 0, 0,−1,−1]

BlobEndk+1 = bBlobEndk + [i, 0, 0,−i, −i, 0, 0, i]

The cycle of boff (m) offsets can be illustrated

2+i = boff (0)

1+3i = boff (1)

boff (2) = −2+4i

boff (3) = −3+2i

boff (4) = −2−i

boff (5) = −1−3i

2−4i = boff (6)

3−2i = boff (7)

The step from end of blob k to start of blob k+1 is the bridge type and its
direction is a period-8 pattern,

BridgeDeltak = BlobStartk+1 − BlobEndk

=

{
1+2i, −1+2i, −2+i, −2−i k ≡ 0 to 3 mod 8

−1−2i, 1−2i, 2−i, 2+i k ≡ 4 to 7 mod 8

1+2i = BridgeDelta(0)BridgeDelta(1) = −1+2i

BridgeDelta(2) = −2+i

BridgeDelta(3) = −2−i

BridgeDelta(4) = −1−2i 1−2i = BridgeDelta(5)

2−i = BridgeDelta(6)

2+i = BridgeDelta(7)

The step across a blob from start to end is

BlobDeltak = BlobEndk − BlobStartk
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= BlobDeltaLenk . oct(k+1)

= 0, −i, 1−i, 3, 4+4i, 9i, −9+9i, −19, −20−20i, . . . k ≥ 4

oct(m) = [1, b, i,−b, −1,−b,−i, b] as m ≡ 0 to 7 mod 8

BlobDeltaLenk = 1
3

(
2dk/2e − [4, 5, 5, 7]

)
= 0, 1, 1, 3, 4, 9, 9, 19, 20, 41, 41, 83, 84, 169, 169, . . . k ≥ 4

oct(m) is a 8-way direction starting East and going +45◦ each time, as a
way to express the cycle.

1 = oct(0)

bi−b

−1

−b −i b

The half-power in BlobDeltaLen makes pairs k = 2m−1, 2m either equal for
m odd which is the 5, 5 periodic terms, or differ by +1 for m even which is the
7, 4 periodic terms (wrapping around) for extra − 1

3 (4− 7) = +1.

Total deltas for all blobs and bridges are the curve endpoint bk. The deltas
at the end of the curve are an unfold and reversal so factor i. The non-blob
segments at the start of the curve are −2+i, and for k ≥ 5 the same at the end
of the curve (unfolded).

The sum here has a bridge delta included after each blob so the middle
bridge between middle biggest blob k and end blob k−2 is counted twice, so
subtract one copy of that.

bk = (−2+i) +

( k∑
j=4

BlobDeltaj + BridgeDeltaj

)
k ≥ 5

+ i (−2+i) + i

( k−2∑
j=4

BlobDeltaj + BridgeDeltaj

)
− BridgeDeltak

Ngai and Nguyen[38] calculate blob connection points in the dragon fractal.
Their C0 is the start of the middle biggest blob, Cn is towards the end of the
curve, and C−n is towards the start of the curve.

C−n = 1
3 2−(n−1)/2 cis

(
(n+3)π4

)
n ≥ 0

Cn = 1
3 2−(n−1)/2 cis

(
(n−3)π4

)
+ i n ≥ 1

cis θ = cos θ + i sin θ

They draw the curve directed upwards and expanding on the left so the
corresponding limits for BlobStart and BlobEnd here are conjugate for mirror
image and factor i to rotate.
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blob

k−1

blob

k

k−2
blob0

start
1
end

BlobEndk−2

BlobStartk−1

C−1

BlobEndk−1

BlobStartk
C0

C1

bk − iBlobEndk−2

bk − iBlobStartk−1

2
3

bk − iBlobEndk−3

bk − iBlobStartk−2

C2

Blob starts and ends

corresponding to

connection points

i conj

(
BlobStartk−n

bk

)
→ i conj

(
BlobEndk−1−n

bk

)
→ C−n n≥0

i conj

(
1− iBlobStartk−n

bk

)
→ i conj

(
1− iBlobEndk−1−n

bk

)
→ Cn n≥1

For Cn with n ≥ 1, the blobs are from the end of the curve towards the
middle. So at 1 and factor −i to unfold and reverse. C1 is the end of blob k−2
so index BlobEndk−1−n and correspondingly BlobStartk−n. When n=1 there is
no blob k−1 in the curve end, but after the bridge after blob k−2 is where a
k−1 would start.

The powers in BlobStart (305) and the cis in Cn show how the blob positions
spiral out from (or in towards) the curve ends.

blob k=7, odd,
straight crossing

blob k=8, even,
diagonal crossing

Theorem 65. A line from blob start to end goes straight along curve segments
when k odd, or 45◦ angle diagonally across enclosed unit squares when k even.

Proof. Blob 5 is the first with a non-empty line from start to end. It is straight
across with ER start and OL end. The following diagrams show the pattern of
successive expansions for such a crossing.

=⇒k≡1

start ER OL end start EL ER end
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=⇒k≡2
start EL ER end start OR EL end

=⇒
k≡3

start OR EL end
start OL OR end

=⇒k≡0
start OL OR end start ER EL end

In the first diagram, straight ER--OL expands to diamonds EL--ER.
In the second diagram, diamonds EL--ER expand to straight OR--EL.
In the third diagram, straight OR--EL expands to diamonds OL--OR. For

this expansion, only the unit squares above the straight line are required, even
though the second diagram shows the diamonds give unit squares both above
and below.

In the fourth diagram, diamonds OL--OR expand back to the first straight
ER--EL again. Those diamonds expand to unit squares above and below but
only the verticals of those squares are required in the first diagram.

A length curve start to end can be calculated by lines going either along
curve segments or through enclosed unit squares. Such a path must go along
the bridge segments between blobs and then the shortest path across the blobs
is the line start to end as above. So length

GeomLengthk = NonBlobSegmentsk +
∑

j=BlobListk

∣∣BlobDeltaj
∣∣

=

{
2k if k < 4

(1+
√

2).
√

2
k

+ (4− 3
2

√
2)k +

[
−8+2

√
2, −10+ 7

2

√
2
]

if k ≥ 4

= 1, 2, 4, 8, 12, 18, 24+
√

2, 34+
√

2, 40+6
√

2, 58+6
√

2, . . .

Scaled by
√

2k for curve endpoints a unit length the limit is the ``silver
ratio'',

0
start

1
end

GeomLengthk√
2k

→ 1+
√
2

= 2.414213... A014176
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Variations could be made going diagonally across the bridges if desired. But
they are only the linear part in GeomLength and do not change the

√
2k term

which becomes limit 1+
√

2.

The rational and
√

2 parts of GeomLength separately are

GeomLengthk = GeomLengthRatk + GeomLengthSqrtk
√

2

GeomLengthRat =

{
2k if k < 4

2dk/2e + 4k − [8, 10] if k ≥ 4

= 1, 2, 4, 8, 12, 18, 24, 34, 40, 58, 64, 98, 104, 170, . . .

GeomLengthSqrt =

{
0 if k < 4

2bk/2c − 3 bk/2c+ 2 if k ≥ 4

= 0, 0, 0, 0, 0, 0, 1, 1, 6, 6, 19, 19, 48, 48, . . . k≥6 undup A005578

GeomLengthSqrt is unchanged at k odd since for k≥6 the BlobList gains k
and k−2 which are both odd and so rational crossing lengths.

GeomLengthRat at k even similarly does not gain any blob crossings since
both k and k−2 even are irrational crossing lengths, but it does gain the two
bridges +6.

12.2 Middle Nearest

Theorem 66. In dragon curve k, the right boundary point or points nearest the
curve middle 1

2 b
k are on the bridge after the middle biggest blob. Their distance

to the middle is

Rneark =


1
2 if k=0

mk if k ≡ 0, 2, 3 mod 4 and k ≥ 1√
m2
k + 1

2 if k ≡ 1 mod 4 (two point equal distance)

= 1
2 ,

1
2

√
2, 0, 0, 0, 1, 1,

√
2, 2,

√
13, 5, 5

√
2, 10,

√
221, . . .

k≥4 even A000975, k≥3 odd
√
A241892

where mk = 1
6

(√
2k − [4,

√
2, 2, 2

√
2]
)

= − 1
2 , 0, 0, 0, 0, 1

2

√
2, 1,

√
2, 2, 5

2

√
2, 5, 5

√
2, 10, . . .

k≥4 even A000975, k≥3 odd 1/
√

2×A000975

For k ≡ 1 mod 4, there are two equal nearest points, one above and one
below the line from curve start to end. For other k, the nearest point is unique.

middle

k ≡ 0
mod 4

middle
k ≡ 1
mod 4

two equal
closest

middle
nearest
cases
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middle

k ≡ 2
mod 4

middle k ≡ 3
mod 4

Proof. For k < 4, the points nearest the middle can be calculated explicitly.
For k ≥ 4, consider the surrounding curves on the right side and take convex

hulls around their segments and their boundary squares.

a

b

c

start endmiddle

R

PQ5a

PQ6a

PQ1b PQ2bPQ6c

PQ7c

Figure 62:

convex hulls of curves
surrounding right side

The hull including boundary squares can be calculated the same as the seg-
ments hull in theorem 37, since the curve with boundary squares comprises an
unfold of sub-curves k−1 and their boundary squares. For k ≥ 4 there are 10
vertices.

The boundary squares push the vertices out by 1 unit square on each straight
side. Working through the hull recurrences the result is the same location forms
as segments vertices P1 etc (196), but a change of index and direction for the
offset terms (p becomes pq).

PQ1 (k) = − 1
3

(
bk+3 + pq(k+3)

)
, etc

pq(m) = i.p(m+2)

The boundary squares of the surrounding curves push into the right bound-
ary R so that minimum extents for the boundary points are given by maximum
extents of the surrounding hulls.

In figure 62, and working through the vertex formulas, the surrounding curve
c hull side PQ7c--PQ6c is vertical and nearest to the middle, with PQ7c on or
above the midline.

Curve a has the same left side as c but PQ6a to PQ5a slopes further away.
Curve b side PQ1b--PQ2b is horizontal and is always further away than

PQ7c. In the factors of bk, PQ1b is at 2
3 distance up so 1

3 from the middle
whereas PQ7c is 1

6 .

Vertex PQ7c is the single minimum point for k ≡ 0, 2, 3 mod 4. For k ≡
1 mod 4, it is the upper of the two equal minimums.

PQ7 (k) = 1
3

(
(3+i)bk + ipq(k)

)
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PQ7c(k) = (1−i)bk + i.PQ7 (k)

Rneark =
∣∣ 1

2b
k − PQ7c(k)

∣∣
The middle biggest blob is the lower end of the bridge. In each case, the

end of that blob end is the required horizontal distance,

mk = Re
BlobEndk − 1

2b
k

ωk8

For k ≡ 1 mod 4, the extra vertical half diagonal is 1
2

√
2 so

√
m2
k+ 1

2 .

Scaled by
√

2k for curve endpoints a unit length, the limit for Rneark is the
coefficient 1

6 in mk.

Rneark√
2k

→ 1

6

The twindragon boundary is two dragon right sides, so 2Rneark+1 is the
shortest distance across twindragon k by a line passing through its middle.
Scaled by

√
2k+1 for endpoints a unit length, this is limit 1

3 from side to side
across its middle.

start

end

1
3

1

twindragon nearest
opposite points

2Rneark+1√
2k+1

→ 1

3

Diagonal distances across are in the first and second halves as two twindrag-
ons 1/

√
2 smaller. Or a vertical distance is from four twindragons 1

2 smaller.
The whole midpoint is the end of the two vertical small twindragons so nearest
point at 2

3 each from the but scaled 1
2 for 2

3 vertically.

start

end

1

3
√
2

1

3
√
2

2
3

1
3
/
√
2 = 0.235702 . . . A020775

Another approach for the nearest point is to consider blob crossings within
k−1 sub-curves.
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start
end

join

middle 1
2
bk nearest

second sub-curve,
middle biggest blob

�rst sub-curve,
second horizontal

The crossings are straight and 45◦ diagonal. Working through their lengths
and endpoints shows that among the crossings and bridge points the Rnear
bridge is the nearest to the middle.

The curve right boundary points are on the right of these crossings. As
the curve curls around some of them are facing in towards the middle. To
show those boundary points are still not closer than Rnear , consider the same
crossings in sub-curves on the top side, completing a square in the manner of
the twindragon.

start

end

top
Rnear

Rnear

Dragon curves arranged like this do not overlap so the right side of the curve
is outside the crossing lines of these top curves. Their closest to the middle is
the top Rnear and the curve right side does not touch that because there must
be room for a further 2 curve arms in between for 4-arm plane filling at both
start and end.

12.3 Blob Boundary

Theorem 67. Blob k has boundary length

BlobBk = 2BlobBk−1 − 2BlobBk−2 + 4BlobBk−3 (307)

− 3BlobBk−4 + 2BlobBk−5 − 2BlobBk−6 k ≥ 10

= 0, 0, 0, 0, 4, 10, 20, 38, 68, 122, 212, . . .

Generating function gBlobB(x) = x4 4 + 2x+ 8x2 + 2x3 + 4x4 + 4x5

(1−x) (1+x2) (1−x−2x3)
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= 4 + 2x+ 4x2 + 2x3 − 6

1−x
+

2x

1+x2
+

2

1−x−2x3
(308)

Proof. The total curve boundary B is all the blob boundaries plus both sides of
the non-blob segments.

Bk =

( ∑
j=BlobListk

BlobB j

)
+ 2NonBlobSegmentsk (309)

Taking a difference of successive BlobList ,

Bk −Bk−1 = BlobBk + BlobBk−2 + dNonBlobSegmentsk−1 k ≥ 2

dNonBlobSegmentsk = NonBlobSegmentsk+1 −NonBlobSegmentsk

=

{
1, 2, 4, 4, 5 if k = 0 to 4

6 if k ≥ 5

is a recurrence for BlobB using B

BlobBk = (Bk−Bk−1) − dNonBlobSegmentsk−1 − BlobBk−2 k ≥ 2(310)

Usual recurrence manipulations give (307) and from that the generating
function. In those manipulations, it can be convenient to start from k−1 ≥ 5
for dNonBlobSegmentsk−1 = 6 constant.

Repeatedly expanding (310) gives BlobB as an alternating sum of B.

BlobBk = Bk −Bk−1 − dNonBlobSegmentsk−1

− Bk−2 +Bk−3 + dNonBlobSegmentsk−3

+ Bk−4 −Bk−5 − dNonBlobSegmentsk−5

− Bk−6 +Bk−7 + dNonBlobSegmentsk−7 . . .

The signs on B are pattern +−−+. dNonBlobSegments = 6 for k ≥ 5 so
its alternating sum cancels out until the bottom-most terms. The sum can be
continued down to B0 with a suitable adjustment. (Stopping earlier or taking
pairs of B etc is a different adjustment.)

BlobBk = Bk −Bk−1 −Bk−2 +Bk−3 + − − + · · ·B0 (311)

−

{
2, 2, 2, 6 if k = 0 to 3

[6, 4, 6, 8]k if k ≥ 4

This is seen in the gBlobB partial fractions (308),

gBlobB(x) =
1−x
1+x2

gB(x) +
2x

1+x2
− 6

1−x
+ 4+2x+4x2+2x3

Factor 1−x
1+x2 is a descending alternating sum +−−+ of B and it cancels

factor 1+x2

1−x in gB (122). The 2x
1+x2− 6

1−x part is periodic −[6, 4, 6, 8]. The fixed
terms adjust the initial four of those to −[2, 2, 2, 6] instead.

Factor 1−x
1+x2 is the usual way to take a descending sum +−−+ in a gener-

ating function.
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Sum(x) = gB(x)− xgB(x)− x2gB(x) + x3gB(x) + x4Sum(x)

Sum(x) =
1− x− x2 + x3

1− x4
gB(x) =

1− x
1 + x2

gB(x) (312)

The cubic part of the generating function partial fractions is a multiple of
gJA, giving an identity with the remaining periodic terms

BlobBk = 4JAk+2 − [4, 2, 4, 6] k ≥ 4

The left side and right side boundary lengths can be taken separately. The
sides are reckoned going blob start to end as the blob appears at the start of
the full curve.

start

end

left

BlobL6 = 6

right

BlobR6 = 14
blob k=6

left and right
boundary lengths

Theorem 68. Blob k has left boundary length

BlobLk = BlobLk−4 + Lk−3 k ≥ 8 (313)

= BlobLk−1 + 2BlobLk−3 + BlobLk−4 (314)

− BlobLk−5 − 2BlobLk−7 k ≥ 11

= 0, 0, 0, 0, 0, 3, 6, 11, 20, 39, 66, 111, 192, . . .

gBlobL(x) = x4 3x+ 3x2 + 5x3 + 3x4 + 4x5 + 2x6

(1−x) (1+x) (1+x2) (1−x−2x3)

= 2+x+2x2+x3 − 5
2

1

1−x
− 1

4

1

1+x
+

x

1+x2
+ 1

4

3−2x+2x2

1−x−2x3

And right boundary length

BlobRk = BlobRk−4 + Lk−3 + 2Lk−4 k ≥ 8 (315)

= same recurrence (314) as BlobL k ≥ 11

= 0, 0, 0, 0, 4, 7, 14, 27, 48, 83, 146, 247, 420, . . .

gBlobR(x) = x4 4 + 3x+ 7x2 + 5x3 + 3x4 + 4x5 + 2x6

(1−x)(1+x)(1+x2)(1−x−2x3)

= 2+x+2x2+x3 − 7
2

1

1−x
+ 1

4

1

1+x
+

x

1+x2
+ 1

4

5+2x−2x2

1−x−2x3

Proof. Blobs k−2, ..., 4 at the end of the curve are directed from the end to-
wards the middle so their left boundary is on the right side of the curve, and
their right boundary is on the left side of the curve. The boundary on each side
is then

Lk =

( k∑
j=4

BlobLj

)
+

( k−2∑
j=4

BlobRj

)
+ NonBlobSegmentsk
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Rk =

( k∑
j=4

BlobRj

)
+

( k−2∑
j=4

BlobLj

)
+ NonBlobSegmentsk

Taking the differences of successive BlobList ,

Lk − Lk−1 = BlobLk + BlobRk−2 + dNonBlobSegmentsk−1 k ≥ 2

Rk −Rk−1 = BlobRk + BlobLk−2 + dNonBlobSegmentsk−1

which are mutual recurrences for BlobL and BlobR

BlobLk = (Lk − Lk−1)− BlobRk−2 − dNonBlobSegmentsk−1 k ≥ 2 (316)

BlobRk = (Rk −Rk−1)− BlobLk−2 − dNonBlobSegmentsk−1 (317)

Substitute (317) into (316) then dNonBlobSegmentsk−3 = 6 constant when
k−3≥ 5 so

BlobLk = BlobLk−4 + (Lk − Lk−1)− (Rk−2 −Rk−3) k ≥ 8

The R difference is Rk−2 − Rk−3 = Lk−3 from unfolding (110). Then one
application of the L recurrence (100) simplifies to (313).

Similarly for BlobRk substitute (316) for BlobL into (317). This time apply-
ing the L recurrence leaves Lk−3 + 2Lk−4 per (315).

BlobRk = BlobRk−4 + (Rk −Rk−1)− (Lk−2 − Lk−3) k ≥ 8

Some recurrence or generating function manipulations can express the left
and right boundary in terms of the whole

BlobRk = 3
4BlobBk − 1

4BlobBk+1 + 1
8BlobBk+2 + [1,− 1

4 , 0,
1
4 ]

BlobLk = 1
4BlobBk + 1

4BlobBk+1 − 1
8BlobBk+2 − [1,− 1

4 , 0,
1
4 ]

BlobB grows as a power of r (section 2) so these give limits for the proportion
of right or left boundary out of the whole blob. Notice the blob right boundary
is a bigger fraction than in the whole curve right boundary (125).

BlobRk

BlobBk
→ 3

4 −
1
4r + 1

8r
2 = 0.685486 . . . (318)

BlobLk
BlobBk

→ 1
4 + 1

4r −
1
8r

2 =
1

r3 − r
= 0.314513 . . .

start end

left

right

BlobLQ = 7

BlobRQ = 15

BlobBQ = 22 total

blob k=7 boundary squares

Theorem 69. The number of boundary squares on blob k is
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BlobBQk = BlobBQk−1 − BlobBQk−2 + 3BlobBQk−3 + 2BlobBQk−5 k≥10

= 0, 0, 0, 0, 4, 8, 13, 22, 37, 64, 109, 182, 309, . . .

gBlobBQ(x) = −1− 2x− x2 − 2x3 − x4 +
x

1+x2
+

1

1−x−2x3
(319)

Proof. At a bridge the boundary squares of blobs do not overlap and are all
the squares on the bridge. The bridge from blob 4 to 5 has 1 boundary square
which is part of the initial non-blob squares (or final squares at the end of the
curve).

Bridge k to k+1

for k ≥ 5, all squares

on blob boundary

blob 5

blob 4

non-blob
boundary
square

Total blob boundary squares are a sum of blobs like (309) then take differ-
ences etc.

BQk =

( ∑
j=BlobListk

BlobBQj

)
+ NonBlobBQk

NonBlobBQk =

{
2, 3, 5, 9, 11, 13 if k ≤ 5

14 if k ≥ 6

The generating function partial fractions (319) is an identity

BlobBQk = dJAk+2 − [0, 1, 0,−1] k ≥ 5

Left and right blob boundary squares also similar to left and right boundary
segments are

BlobLQk = 2BlobLQk−3+3BlobLQk−4+2BlobLQk−5+2BlobLQk−6 k≥11

= 0, 0, 0, 0, 0, 3, 4, 7, 11, 21, 34, 57, 97, . . .

gBlobLQ(x) = −x− x3 − x4 − 3
8

x

1+x
+ 1

2

x

1+x2
+ 1

8

3− 2x+ 2x2

1−x−2x3

BlobRQk = same recurrence as BlobLQ , different initial values k≥10

= 0, 0, 0, 0, 4, 5, 9, 15, 26, 43, 75, 125, 212, . . .

gBlobRQ(x) = −1− x− x2 − x3 + 3
8

x

1+x
+ 1

2

x

1+x2
+ 1

8

5 + 2x− 2x2

1−x−2x3

Blob boundary squares and segments are related

BlobBk = 2BlobBQk −

{
0, 0, 0, 0, 4 if k ≤ 4

6 if k ≥ 5

BlobLk = 2BlobLQk −

{
0 if k ≤ 4

[2, 3]k if k ≥ 5
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BlobRk = 2BlobRQk −

{
0, 0, 0, 0, 2 if k ≤ 4

[4, 3]k if k ≥ 5

They are each a factor of 2 so the limits (318) for proportions of blob bound-
ary segments are the same for blob boundary squares.

Boundary squares up to and including a given blob k are sums

start

k=7
blob

leftright

PreBlobLQ = 10

PreBlobRQ = 22

PreBlobBQ = 32 total

boundary squares pre blob k=7

blob k=4

PreBlobRQk = 4 +

k−1∑
j=4

BlobRQj for k ≥ 4

= 1
2

(
BlobRQk+2 + [−1, 1, 0, 1]

)
(320)

= 4, 8, 13, 22, 37, 63, 106, 181, 306, 518, . . . k≥4

PreBlobLQk = 3 +

k−1∑
j=4

BlobLQj for k ≥ 4

= 1
2

(
BlobLQk+2 + [0,−1, 1,−1]

)
k≥5 (321)

= 3, 3, 6, 10, 17, 28, 49, 83, 140, 237, . . . k≥4

PreBlobBQk = PreBlobLQk + PreBlobRQk for k ≥ 4

= 1
2

(
BlobBQk+2 + [−1, 0, 1, 0]

)
k≥5

= JAk+2 + [0, 0, 1, 1] k≥5 (322)

= 7, 11, 19, 32, 54, 91, 155, 264, 446, 755, . . . k≥4

For PreBlobLQ4 = 3, blob k=4 has no left boundary squares. It is taken as
the 3 squares preceding k=5 so as to have difference for all k ≥ 4

BlobLQk = PreBlobLQk+1 − PreBlobLQk

Forms (321),(320),(322) follow from some recurrence or generating function
manipulations.

The whole curve right comprises blob rights up to middle biggest k, and
from the end blob lefts up to k−2 biggest end. For k=5 there are no end blobs
and there is 1 fewer squares there than PreBlobLQ would count, so −1 in that
case. The whole curve left is similar, but the k=5 end is already right.

PreBlobRQk+1 + PreBlobLQk−1 − (1 if k=5) = RQk

PreBlobLQk+1 + PreBlobRQk−1 = LQk

PreBlobBQk+1 + PreBlobBQk−1 − (1 if k=5) = BQk
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12.4 Blob Area

start

end

blob k=8 area

BlobAL8 = 20 left, grey

BlobAR8 = 13 right, black

BlobA8 = BlobAL8 + BlobAR8 = 33

Theorem 70 (Daykin and Tucker [13]). Blob k has area

BlobAk = Ak −Ak−1 −Ak−2 +Ak−3 + − − + · · ·A0 (323)

= 3BlobAk−1 − 3BlobAk−2 + 5BlobAk−3 (324)

− 6BlobAk−4 + 2BlobAk−5 − 4BlobAk−6 k≥ 6

= 0, 0, 0, 0, 1, 3, 6, 14, 33, 71, 150, . . . A003477

Generating function gBlobA(x) =
x4

(1−2x)(1+x2)(1−x−2x3)
(325)

= 1
5

1

1−2x
+ 1

10

3+x

1+x2
− 1

2

1

1−x−2x3

Proof. Per Daykin and Tucker, the total of all blob areas is the curve area

Ak =
∑

j=BlobListk

BlobAj

Taking the difference of successive BlobList ,

Ak −Ak−1 = BlobAk + BlobAk−2

BlobAk = Ak −Ak−1 − BlobAk−2 (326)

(326) expanded repeatedly is the pattern of signs in (323). Usual manipulations
on that sum give recurrence (324) and the generating function.

Each enclosed unit square in a blob has all four sides traversed and satisfies
the conditions of lemma 1. So blob area, boundary and segments are related

4BlobAk + BlobBk = 2BlobSegmentsk

This allows any one to be derived from the other two if desired. BlobB is
the slightly more difficult one due to non-blob segments in the curve total.

In (323), the repeating signs +−−+ are the same as on B in BlobB at
(311). Here A0 = A1 = A2 = A3 = 0 so terms can be taken down to A0 or in
pairs or in fours as desired and there is no extra adjustment term.

Generating function gBlobA is related to area gA by factor 1−x
1+x2 which is

the descending alternating sum +−−+ the same as for gBlobB at (312).

gBlobA(x) =
1− x
1 + x2

gA(x) (327)
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Area difference Ak−Ak−1 = ALk from (146) gives blob area as an alternating
sum of every second left side area.

BlobAk = ALk −ALk−2 + ALk−4 −ALk−8 + · · · (328)

gBlobA is related to left area gAL in a similar way to (327), but this time
factor 1−x2

1−x4 = 1
1+x2 for alternating sum of every second term.

gBlobA(x) =
1

1 + x2
gAL(x) (329)

The converse, AL in terms of BlobA, is per Daykin and Tucker,

ALk = BlobAk + BlobAk−2

This sum makes terms ALk−2 and below in (328) cancel, or in (329) factor 1+x2

moves up to the left side.
In gBlobA partial fractions (325), term 3+x

1+x2 is a 4-period repeating

3, 1,−3,−1, 3, 1,−3,−1, 3, 1,−3,−1, . . . A112030

This and writing the cubic part as dJA or JA gives identities

BlobAk = 1
5 2k − 1

2 dJAk+2 + 1
10 [3, 1,−3,−1] k ≥ 0 (330)

= 1
5 2k − JAk − 1

5 [1, 2, 4, 3] k ≥ 0

When the curve is scaled to a unit length, each enclosed square has area
1/2k. The limit for the middle biggest blob is the factor on its 2k term (since
dJA grows only a power of the cubic root r).

BlobAk

2k
→ 1

5

The blobs towards the start or end of the curve are smaller. The limit for
size n levels down from the biggest is

BlobAk−n

2k
→ BlobAf n =

1

5
.

1

2n
(331)

The limit for the area of the whole fractal is the total of blob areas counted
down successively away from the middle. The middle is n=0 and there is just
one n=1, then both start and end n≥ 2.

Ak
2k
→ 1

2
= BlobAf 0 + BlobAf 1 + 2

∞∑
n=2

BlobAf n (332)

= 1
5 + 1

2 ·
1
5 + 2· 15

(
1
4 + 1

8 + · · ·
)

Chang and Zhang[9] use (332) for area of the blobs in the dragon fractal as
fraction of the total dragon area. Knowing blob areas decrease by factor 1/2n

gives the following, with solution BlobAf 0 = 2
5Af .

Af = BlobAf 0 + 1
2BlobAf 0 + 2

∞∑
n=2

1

2n
BlobAf 0
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The areas enclosed on the left side and right side of a blob can be calculated
separately. The sides are reckoned from blob start to end as the blob appears
at the start of the full curve.

Theorem 71. Blob k has left side area

BlobALk = ALk −ALk−1 −ARk−2 + ARk−3 + − − + · · ·AL0 or AR0 (333)

= 3BlobALk−1 − 2BlobALk−2 + 2BlobALk−3 − 3BlobALk−4 (334)

− 3BlobALk−5 + 2BlobALk−6 − 2BlobALk−7 + 4BlobALk−8 k≥ 8

= 0, 0, 0, 0, 1, 2, 4, 9, 20, 41, 85, 176, 361, 736, 1498, . . .

gBlobAL(x) = x4 1− x− x3

(1−x)(1+x)(1+x2)(1−2x)(1−x−2x3)

= − 1
8

1

1−x
+ 1

16

1

1+x
+ 1

20

3+x

1+x2
+ 1

10

1

1−2x
− 1

16

3−2x+2x2

1−x−2x3

and right side area

BlobARk = ARk −ARk−1 −ALk−2 + ALk−3 + − − + · · ·AL0 or AR0 (335)

= same recurrence as BlobAL, di�erent initial values k ≥ 8

= 0, 0, 0, 0, 0, 1, 2, 5, 13, 30, 65, 142, 304, 639, 1332, . . .

gBlobAR(x) = x5 1− x+ x2

(1−x)(1+x)(1+x2)(1−2x)(1−x−2x3)

= 1
8

1

1−x
− 1

16

1

1+x
+ 1

20

3+x

1+x2
+ 1

10

1

1−2x
− 1

16

5+2x−2x2

1−x−2x3

Proof. The sum of blob areas is the curve area on the respective sides. The
blobs at the end of the curve are an unfold so their left and right swap.

ALk =

( k∑
j=4

BlobALj

)
+

( k−2∑
j=4

BlobARj

)

ARk =

( k∑
j=4

BlobARj

)
+

( k−2∑
j=4

BlobALj

)
Taking the difference of successive sums,

ALk −ALk−1 = BlobALk + BlobARk−2 k ≥ 2

ARk −ARk−1 = BlobARk + BlobALk−2

is mutual recurrences for BlobAL and BlobAR

BlobALk = (ALk −ALk−1) − BlobARk−2 k ≥ 2

BlobARk = (ARk −ARk−1)− BlobALk−2

Substitute each into the other for recurrences

BlobALk = BlobALk−4 + (ALk −ALk−1) − (ARk−2 −ARk−3) k ≥ 4

BlobARk = BlobARk−4 + (ARk −ARk−1)− (ALk−2 −ALk−3)
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which are the alternating signs and sides (333),(335). Since AL0 = AR0 = · · · =
AL3 = AR3 = 0 the sum can be continued down to the 0 term (either AL or
AR). The recurrence and generating functions follow from those sums.

gBlobAL(x) =
1

1− x4

(
gAL(x)− x gAL(x)− x2gAR(x) + x3gAR(x)

)
gBlobAR(x) =

1

1− x4

(
gAR(x)− x gAR(x)− x2gAL(x) + x3gAL(x)

)
With ARk+1−ARk = ALk from (145) the two blob sides are can be expressed

with just AL if desired in a pattern of 3 terms out of each 4.

BlobALk = ALk −ALk−1 −ALk−3 · · · coefficients +1,−1, 0,−1

BlobARk = ALk−1 −ALk−2 + ALk−3 · · · coefficients 0,+1,−1,+1

Or similar with AR (or likewise Ak = ARk+1). In BlobAL, there is a high
ARk+1 before the repeating part.

BlobALk = ARk+1 − 2ARk + ARk−1 −ARk−2 + 2ARk−3 · · ·
coefficients −2, +1, −1, +2

BlobARk = ARk − 2ARk−1 + 2ARk−2 −ARk−3 · · ·
coefficients +1, −2, +2, −1

Some recurrence manipulation gives BlobAL and BlobAR in terms of a power
of 2 similar to (330).

BlobALk =

{
1 if k=4
1
10 2k − 1

10 [1,−3, 4, 3]− 1
2BlobLQk if k ≥ 5

BlobARk = 1
10 2k + 1

10 [4, 3, 1,−3]− 1
2BlobRQk

The limits BlobAL/2k → BlobAR/2k → 1
10 are the same. BlobAL is always

bigger, with difference

BlobAL− BlobAR =

{
1 if k = 4 or 5

BlobLQk−1 − [0, 0, 1, 0] if k ≥ 6

= 0, 0, 0, 0, 1, 1, 2, 4, 7, 11, 20, 34, 57, 97, 166, . . .

12.4.1 Blob Area by Join

Blob area can also be calculated by considering how the join area JA and the
blobs on each side of it combine to make a new middle biggest blob.
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start

end

join

unfold 7

unfold end blob 5

unfold end blob 4

end blob 5

end blob 4
new blob 8

7

6

5

4

unfold 6 unfold 5

unfold 4

Figure 63:

k=8 middle blob

made from

end blobs, join area,

and unfolded blobs

Theorem 72. On unfolding curve k−1 to make k, the new middle biggest blob
k is formed by the join area connecting end blobs and unfolded copies of the end
blobs and middle biggest blob so that

BlobAk = 2

( k−3∑
j=0

BlobAj

)
+ BlobAk−1 + JAk−1 k ≥ 1

BlobALk =

( k−3∑
j=0

BlobAj

)
+ BlobARk−1 + JAk−1

BlobARk =

( k−3∑
j=0

BlobAj

)
+ BlobALk−1

Proof. The unit squares of the join area are connected at their corners since it
is a contiguous part of the left boundary squares. All the blobs which touch the
join area combine to a single new blob. In curve level k, this must be the new
middle biggest blob k because the join area is all the touching for the unfold
and there is no other way to make a new bigger blob k.

Some of the end of BlobListk−1 and its unfold reversal make the new blob
k. To form BlobListk there must be 4, ..., k−1 before the join and there must
be k−2, ..., 4 after the join.

4, 5, ..., k−3, k−2, k−1, k−3, ..., 5, 4

4, 5, ..., k−3, k−1, k−2, k−3, ..., 5, 4

new blob k

BlobListk−1

unfold reversal

BlobListk

The blob sizes in the dashed box are combined for the new biggest blob and
are per the sum in the theorem.
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For the left and right side areas, unfolded blobs have their left and right sides
swapped. Sizes 4 to k−3 are in pairs so are the BlobAj sum. The k−1 blob
from the unfold is reversed so its left goes to the new right and vice versa.

This construction gives an identity for BlobRQ . On the curve right side, the
middle unfold towards start is left sides of blobs up to k−3. Middle towards
end is right sides also of blobs up to k−3, plus left side of the k−1 which had
been middle biggest in the second half. So

BlobRQk = PreBlobBQk−2 + BlobLQk−1 − (1 if k=6) k ≥ 6

For k=6, the middle towards start curve end lefts are only 2 squares, so −1
in that case.

start

end

2 squares,

not

PreBlobLQ4 = 3

k=6

new blob

The enclosed JA squares shown in figure 63 go part way around the last end
blob of the curve first half.

start

J

. . .

to start

end

Jend
blob k−2 = 6

end
blob k−3 = 5

pre end blob k−2
join area

k = 8

on end blob k−2
JAblobRQ8 = 5

Numerically, which blob the join extends to can be found by recurrence
manipulations falling PreBlobRQk−2 < JAk < PreBlobRQk−1.

The amount of join on end blob k−2 is by subtracting the preceding blobs.
Since they are end blobs, this is their right sides.

JAblobRQk = JAk − PreBlobRQk−2

= 2, 3, 5, 9, 17, 28, 48, 82, 140, 237, . . . k ≥ 6

For k=6, there is no k−3 blob to go upto, but the PreBlobRQ4 = 4 squares
preceding blob k−2 = 4 is as desired.

A limit proportion of JAblobRQ within its BlobRQ follows by some recur-
rence manipulations for an identity

JAblobRQk = 1
14

(
4BlobRQk−2 − 2BlobRQk−1 + 3BlobRQk − [14, 11, 5, 5]

)
ready to divide, for limit proportion a little under 2

3 ,

JAblobRQk

BlobRQk−2

→ 1
14 (4− 2r + 3r2) = 0.659581 . . .
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The join area is also some of the unfolded curve boundary squares. This is
its right side and the join extends to some of its middle biggest blob.

unfold

J

. . .

end

middle blob k=8

J

end
blob k−2 = 6

rest of RQk

is JAk+2

pre unfolded blob k

join area on unfolded

k = 8

on unfolded blob k
BlobRQ8 − JAblobRQ8+2 − 1 = 8

From theorem 29, the curve right squares comprise two join areas and middle
join square (dotted J). JAk is the black and grey squares, and the rest is JAk+2.

But JAblobRQk+2 is JAk+2 on the right of blob BlobRQk, starting at its
blob start. So the part of unfold blob k boundary squares which are JAk is
difference

BlobRQk − JAblobRQk+2 − 1 = 1, 1, 3, 5, 8, 14, 26, 42, 71, 123, . . . k≥4

12.5 Blob Sub-Parts

Ngai and Nguyen [38] show that a blob in the dragon fractal comprises 3 sub-
blobs and a twindragon. Their argument holds in finite iterations too.

Theorem 73 (Finite form of Ngai and Nguyen). Blob k ≥ 8 can be subdivided
into four parts: a twindragon k−4, a blob k−2, and two blobs k−4.

Proof. The parts are seen in blob k=8,

twindragon k=4
(grey)

blob k=4
A

blob k=4
B

M blob k=6
(black)

bridge
EL,OL

OR

end

ER
OR

bridge

start, OL

S

J

Figure 64:

Blob k=8
comprising
3 sub-blobs

and twindragon

The unit square A at the start and B at the end are blobs k=4. They both
have bridge ends OL before and OR after which is how they appear at the start
of the full curve (but rotated 180◦), so they expand as subsequent blob levels.
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Blob k=6 in the middle has ER before and EL after. This is how it appears
in the end part of the full curve (and is oriented vertically the same as it appears
there too, per the top of figure 59).

As a remark, M blob k=6 and A blob k=4 are as they appear as middle
biggest and first end blob in curve k=6, as for example in figure 1.

The twindragon is an excursion part-way along the k=6 blob. The twin-
dragon is a closed loop so it returns to the same point.

When all the segments expand in the next level, the division into these
respective parts and bridges between is maintained.

In figure 64, point S at 12−4i is the start of the twindragon in its usual
orientation (first segment East). Its end marked J is the curve join where two
k=7 curves unfold. On each expansion these points grow by factor b so

BlobPartsTstartk = ( 3
4−

1
4 i) b

k

BlobPartsTendk = ( 1
2−

1
2 i) b

k

The excursion off the k−2 blob is at a twindragon corner. The twindragon
is the enclosed square of sub-curves for the join area in figure 25.

The k−4 sub-blobs A,B are middle biggest blobs of k−4 sub-curves,

start

end

start end

start end

sub-
blob
A

4−4i
sub-blob B

8

blob
k=8

BlobPartsAorigin
BlobPartsBorigin

start end

The origin locations of these sub-curves are 4−4i and 8 respectively in k=8
and on each expansion grow by factor b so

BlobPartsAorigink = ( 1
4−

1
4 i)b

k (336)

BlobPartsBorigink = 1
2 b
k

These blobs are turned 180◦. The start segment of each is directed West,
rather than the normal curve start East. This means factor −1 to rotate when
taking a location in these sub-blobs from their origins. For example, the start
of blob A is the start of the whole blob,

BlobPartsAorigink + (−1).BlobStartk−4 = BlobStartk

The k−2 sub-blob M also occurs as the middle biggest blob of a sub-curve,
but its initial segments are not part of the curve as such. That absent part is
shown dashed, then the sub-curve is the two k−4 sub-blob curves and further
sub-curve between.
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start

end

start

end

sub-
blob
M

4−4i

12−4i

blob k=8

BlobPartsMorigin

The start is at 12−4i in k=8 and on each expansion grows by factor b so

BlobPartsMorigink = ( 3
4−

1
4 i)b

k (337)

This sub-curve is turned −90◦ from its normal direction, as can be seen by
start segment South, rather than the normal East. This means factor −i to
rotate when taking a location from this origin.

The two k−4 blob A,B crossings go in the same direction as blob k. The
k−2 blob M is the opposite direction. The A,B unit squares in figure 64 don't
make their direction particularly clear, though it follows from the bridge types.
In blob k=9, the shapes k=5 show their orientations,

start

end

A

B

M

T

Figure 65:

blob k=9

comprising

3 sub-blobs

and twindragon

The parts give a recurrence for BlobSegments. Twindragon k−4 has 2k−2

segments and the two bridges are 6 segments so

BlobSegmentsk = BlobSegmentsk−2 + 2BlobSegmentsk−4 + 2k−2 + 6 k≥8

The parts also give a recurrence for blob area,

BlobAk = BlobAk−2 + 2BlobAk−4 + TAk−4 k≥8

+ 3LQk−8 + 4RQk−8 + JAk−8 + JAk−7

The gap between the twindragon and the blobs (as seen in k=8 figure 64)
comprise 3 curve left sides and 4 curve right sides, so are those respective bound-
ary squares. The end of the gap is an odd point with dragons meeting so join
JAk−8. The start of the gap is an even point with dragons pointing away so
JAk−7 (the opposing side is a left so does not touch).
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With JAk−8 + JAk−7 = LQk−8 − 1 from theorem 29, there are 4 lefts and 4
rights so simplify to BQ .

BlobAk = BlobAk−2 + 2BlobAk−4 + TAk−4 + 4BQk−8 − 1 k≥8 (338)

Or taking out the power-of-2 part of TA,

BlobAk = BlobAk−2 + 2BlobAk−4 + 2k−3 − dJAk−1 k≥4 (339)

The breakdown also gives left and right side blob area. The middle k−2
blob is reversed so its left and right sides swap. The twindragon is traversed
anti-clockwise so its inside is the left of the curve and is area 2k−4.

The joins between the blobs and twindragon are all on the right side of
the curve. The outside area of the twindragon is 2Ak−4 per (256). The same
simplifications as above apply to the join parts, or just subtract the left (340)
from the whole (339).

BlobALk = BlobARk−2 + 2BlobALk−4 + 2k−4 (340)

BlobARk = BlobALk−2 + 2BlobARk−4 + 2Ak−4

+ 3LQk−8 + 4RQk−8 + JAk−8 + JAk−7

= BlobALk−2 + 2BlobARk−4 + 2k−4 − dJAk−1

The breakdown has sub-blobs k−4 at start and end, and a middle k−2. That
middle then has k−2−4 = k−6 at start and end. Repeating this is sub-blobs
of sizes k−4, k−6, k−8, . . . , with bridges between, through to the middle of the
blob. The bridges alternate which side they bend so that the sub-blob crossings
are either on or 1 away from the whole blob crossing. For example,

start end...

...

blob 11 blob 9

blob
7

blob
5

blob 11blob 9

blob
7

blob
5

blob k=15

start and end sub-blobs

leading to middle

At the middle, the curve goes down for more curve below, then through the
middle gap up to curve above.

blob

start

blob

end Figure 66
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The bridge locations and blob crossing line locations show this middle of the
blob crossing line is the bridge after the biggest blob of sub-curve 2 of level k−2.

0

1

2

3start end

blob

start

blob

end

middle
bridge

blob k=8

blob

start

blob

end

middle
bridge

blob k=9
(rotated −90◦)

The limit for the dragon fractal is

start

end

midpoint0

1

2

3

Figure 67:

middle biggest blob midpoint

is bridge in segment 2

0

1

2

3start end

Gosper's illustration a260482.png in OEIS A260482[23] is a high resolution
image with the curve coloured according to how it falls between visits to this
midpoint. There are 3 visits (15ths fractions) and they divide the curve into 4
parts.

In finite iterations, let the point numbers n for the two points in the middle
bridge be MidMNs for the start side and MidMNe for the end side. Let MidSN
and MidEN be their other visits respectively, being when the curve reaches
there from curve start, or leaves to go to curve end, respectively.

These points are BridgeLN etc from theorem 63 in sub-curve 2. BridgeLN
etc are before biggest blob so level +1 for after, and then −2 for sub-curve here.
Left side BridgeLN is the blob start side, and BridgeRN is the blob end side.

MidMNsk = 2k−1 − BridgeLN k−1 k ≥ 5

= 2k−1 + BlobN k−1 − [2, 1]

= 7
10 2k + 1

5 [−1,−2,−4, 7]

= 22, 44, 91, 179, 358, 716, 1435, . . .

MidSN k = other
(
MidMNsk

)
= 2k−1 − BridgeLotherk−1

= 13
30 2k + 1

15 [1, 2, 4,−7]

= 14, 28, 55, 111, 222, 444, 887, . . .

MidMNek = 2k−1 + BridgeRN k−1
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= 2k−1 + BlobN k−1 − [1, 2]

= 7
10 2k + 1

5 [4,−7, 1, 2]

= 21, 45, 90, 180, 357, 717, 1434, . . .

MidEN k = other
(
MidMNek

)
= 3.2k−1 − BridgeRotherk−1

= 23
30 2k + 1

15 [−4, 7,−1,−2]

= 25, 49, 98, 196, 393, 785, 1570, . . .

In successive levels, the bridge after middle biggest alternates in bending left
or right, so MidMNs and MidMNe alternate in which is the bigger. The curve
always goes to the right first and then up and through as shown in figure 66,
simply since that is where sub-curve 2 goes.

k=5 is the first blob with a middle bridge, ie. with a non-zero crossing
distance. The formulas above use a ``bridge'' imagined preceding k−1 = 4. The
3 segments there are not a bridge to another blob as such, but do follow the
general pattern and suit here. The ``2'' sub-part is only k−2 = 3 and has no
blobs or bridges at all as such, but there too the 3 segments of the general case
still suit.

... ...
blob start blob end

k=5

Successive middle blobs put a twindragon on alternate sides, starting from
k−4 on the right. So twindragons k−4, k−8, . . . on the right and k−6, k−10, . . .
on the left.

startend

twindragon k=7

twindragon k=3

twindragon k=1

twindragon k=5

blob k=11

blobs and twindragons

to middle

These twindragons stop at the sub-blob bridges, and they are on or +1
from the whole blob crossing line, hence their bases making a straight line
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across. There are bites into them by the bigger blobs, and in all cases they
mesh perfectly.

The breakdown can be applied repeatedly to all the sub-blobs to reduce
entirely to a set of twindragons. Blobs k = 4, 5 are taken to be twindragons
k−4 = 0, 1 and no sub-blobs. Blobs k = 6, 7 are taken as twindragons k−4 = 2, 3
and middle blob k−2 = 4, 5 which in turn contain twindragons 0, 1.

start

end

k=4

start

end

k=5

start

end

k=6

start end

k=7

startend

Figure 68:

blob k=11

twindragons
area

BlobTA11 = 258

The area due to these twindragons is a recurrence in TA.

BlobTAk =

{
0 if k < 4

BlobTAk−2 + 2BlobTAk−4 + TAk−4 if k ≥ 4
(341)

= BlobAk − 2RQk−4 + [ 2
3 ,

5
6 ].2bk/2c − 1

3 [2, 1, 1, 2] k≥4 (342)

= 0, 0, 0, 0, 1, 2, 5, 10, 25, 54, 121, 258, 561, 1182, . . .

This is less than BlobA area by the amount of the gaps between the twin-
dragons and at start and end. Recurrence or generating function manipulations
give (342) showing total gap growing as 2RQ . The half power 2bk/2c grows only
as
√

2 which is less than RQ growing as r (98).

BlobAk−BlobTAk = 2RQk−4 − [ 2
3 ,

5
6 ].2bk/2c + 1

3 [2, 1, 1, 2] k ≥ 4

= 0, 0, 0, 0, 0, 1, 1, 4, 8, 17, 29, 60, 104, 193, . . .

The generating function for BlobTA is

gBlobTA(x) =
x4 (1− 2x+ x2 − 2x3 + 4x4)

(1−x)(1−2x)(1+x2)(1−2x2)(1−x− 2x3)

This is gTA with a factor for the BlobTA terms of (341),
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gBlobTA(x) =
x4

1− x2 − 2x4
gTA(x) =

x4

(1+x2)(1−2x2)
gTA(x)

The total number of twindragons in this recursion is the same recurrence
but counting 1 for each twindragon.

BlobTnumk =

{
0 if k < 4

BlobTnumk−2 + 2BlobTnumk−4 + 1 if k ≥ 4

=
⌊

1
3 .2
bk/2c

⌋
= 0, 0, 0, 0, 1, 1, 2, 2, 5, 5, 10, 10, 21, 21, . . . k≥1 2-rep A000975

= binary 101010... k≥1 2-rep A056830

12.6 Area Left and Right of Crossings

The blob crossings of section 12.1 divide each blob into a left and right half.

start

end

left area (grey)

BlobAcl6 = 3
2

right area

BlobAcr6 = 9
2 Blob k=6 crossing

Theorem 74. The enclosed area of blob k on the left and right of its crossing
line are

BlobAclk=

 0 if k ≤ 4, and otherwise

2
452k + 1

9 [1,1,2,2].2

⌊
k
2

⌋
+ 1

90 [−59,17,−101,−67]− 1
2BlobLQk

(343)

= 0, 0, 0, 0, 0, 1, 3
2 , 5, 7, 16, 69

2 , 76, 140, 295, 1231
2 , 1275, . . .

BlobAcrk=

0 if k ≤ 3, and otherwise

7
452k + 1

9 [1, 1, 2, 2].2

⌊
k
2

⌋
+ 1

90 [86, 37, 74, 13] − 1
2BlobRQk

(344)

= 0, 0, 0, 0, 1, 2, 9
2 , 9, 26, 55, 231

2 , 242, 525, 1080, 4429
2 , 4523, . . .

BlobAk = BlobAclk + BlobAcrk whole blob area (345)

Proof. Using the blob parts of section 12.5, for k odd the blob crossing line goes
straight along segments. The two sub-blobs k−4 are on the crossing line so their
left sides are the left of k. Sub-blob k−2 is 180◦ so its right side is on the left
of k, and it is offset by one segment of the bridges. This offset is 1 unit square
for each BlobDeltaLen plus 1 on the bridges at each end. (Eg. per figure 65.)

For k even likewise, but the offset for sub-blob k−2 is two half-squares for
each BlobDeltaLen plus 3

2 for the ends.

BlobAclk = 2BlobAclk−4 + BlobAcrk−2 + BlobDeltaLenk−2 + [ 3
2 , 2] (346)

A similar recurrence applies for right side BlobAcr , but with the twindragon
on the right side too, and area between it and the blobs as from (338). Going
by difference from whole area BlobA per (345) is also possible.
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BlobAcrk = 2BlobAcrk−4 + BlobAclk−2 − BlobDeltaLenk−2 − [ 3
2 , 2] (347)

+ TAk−4 + 4BQk−8 − 1 for k ≥ 8

Recurrence or generating function manipulations give (343),(344). BlobLQ
and BlobRQ are convenient ways to express the cubics which arise.

When k odd the crossing line is along segments so BlobAcl and BlobAcr are
whole unit squares. When k even the line divides squares diagonally, giving
half integers when BlobDeltaLen is odd, so BlobAcl and BlobAcr half integers
for k ≡ 2 mod 4.

When scaled to curve start to end a unit length, limits for the middle biggest
blob are coefficients of the 2k terms

2
45

left

7
45

right

blob area limits

left and right

of crossing line

BlobAclk
2k

→ 2

45

BlobAcrk
2k

→ 7

45

Recurrences (346),(347) become for the limits

left 2
45 = 2. 1

16 .
2
45 + 1

4 .
7
45 right 7

45 = 2. 1
16 .

7
45 + 1

4 .
2
45 + 1

8

The sub-blob areas scale by 1
4 for blob k−2 and 1

16 for blobs k−4. The
twindragon is unit area at unit length and here is length 1

4

√
2 so area 1

8 . These
relations are also a way to find the proportions of left and right area with-
out working through the exact calculation since they must satisfy these scale
equations (and total BlobAf 0 = 1

5 ).

Theorem 75. The area left and right of the crossing lines of the whole curve
are

Aclk =

{
0 if k ≤ 3
1
62k + 1

3 [1, 1, 1, 2].2

⌊
k
2

⌋
+ 1

6 [6, 4, 5, 7] − 1
2LQk if k ≥ 4

= 0, 0, 0, 0, 0, 1, 7
2 ,

21
2 , 22, 47, 215

2 , 477
2 , 494, 1031, . . .

Acrk =

{
0 if k ≤ 3
1
32k − 1

3 [1, 1, 1, 2].2

⌊
k
2

⌋
+ 1

6 [9, 7, 8, 10] − 1
2RQk if k ≥ 4

= 0, 0, 0, 0, 1, 3, 15
2 ,

35
2 , 45, 105, 455

2 , 971
2 , 1045, 2201, . . .

Ak = Aclk + Acrk total area

Proof. The left and right side areas are sums of the blobs at start and end of
the curve. The blobs at the end of the curve are directed towards the middle
so their left and right sides swap.
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Aclk =

k∑
j=0

BlobAcl j +

k−2∑
j=0

BlobAcr j

Acrk =

k∑
j=0

BlobAcr j +

k−2∑
j=0

BlobAcl j

The sums up to k−2 have pairs of left and right sides balancing to be 1
2Ak

half total curve area. The middle biggest blob k and preceding k−1 are not
balanced that way but an offset can be applied to push from half area to left or
right area.

Aclk = 1
2Ak −

1
2

(
BlobAcdiff k + BlobAcdiff k−1

)
Acrk = 1

2Ak + 1
2

(
BlobAcdiff k + BlobAcdiff k−1

)
BlobAcdiff k = BlobAcrk − BlobAclk

=


0 if k ≤ 3,

1 if k = 4 or 5, and otherwise
1
9 2k − 1

9 [2, 4, 4, 8].2bk/2c + 1
9 [10, 2, 22, 8] − BlobLQk−1

= 0, 0, 0, 0, 1, 1, 3, 4, 19, 39, 81, 166, 385, 785, . . .

BlobAcdiff k is an integer since the half squares of a diagonal crossing go the
same to each side. Its limit 1

9 is BlobAcr − BlobAcl limits 7
45 −

2
45 = 1

9 .

1
6
left

1
3
right

Area limits

left and right

of crossing line

Aclk
2k
→ 1

6

Acrk
2k
→ 1

3

When a new middle biggest blob is formed at the join when the curve unfolds
per theorem 72, some area is on the outside of the component curves.

start

end

join

left
k−1

right
k−3

left
k−3

Figure 69:

Blob k=10

crossing area outside

of unfolding sub-curves

AunfOut10 = 40
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The sides from join to the blob start are the blobs at the end of the first
sub-curve. They are blob left sides 4 to k−3.

The sides from join to the blob end are the blobs at the end of the unfolded
second sub-curve. They are blob right sides 4 to k−3, plus a left side k−1 (the
middle biggest blob of the unfolded copy).

Together all these are a whole curve left Aclk−1 except for missing k−2 blob
left,

AunfOutk = Aclk−1 − BlobAclk−2 outside

=

{
0 if k = 0 or 2, and otherwise
13
180 2k + 1

9 [2, 1, 1, 2].2bk/2c − 1
90 [4, 23, 1, 92] − 1

2BlobRQk

= 0, 0, 0, 0, 0, 0, 1, 5
2 , 9, 17, 40, 183

2 , 204, 418, . . .

The area inside these joins, and on the right side of the new blob crossing,
is then by difference

AunfInk = BlobAcrk −AunfInk inside

= 1
12 2k − 1

3 [1, 1, 1, 2].2bk/2c + 1
6 [6, 4, 5, 7]

= 0, 0, 0, 0, 1, 2, 7
2 ,

13
2 , 17, 38, 151

2 , 301
2 , 321, 662, . . .

Taking the inside as everything not outside means some of the JA join area
between the two sub-curves is included, though only what is on the right of the
crossing line, not the whole JA. This is most noticeable at the sub-curve ends
(marked ``join'' in figure 69).

A geometric interpretation of inside limit AunfInk/2
k → 1

12 is to take the
inside area as triangles.

start

end

1
18

1
72

1
144

, etc

AunfIn limit triangles
1
18

+ 1
72

(1+ 1
2
+ · · · ) = 1

12

The big triangle with hypotenuse start to end and side as the k−1 crossing
is area 1

18 . Further triangles are made by noting that the crossings are at
successive 45◦ angles and so a crossing in the first sub-curve extends back to
the end of a crossing in the unfolded second sub-curve, giving a spiral of triangles
successively halving in area. The extensions back are shown dotted.

12.7 Blob Points

Blob k=7

single-visited
points

BlobS7 = 20

Blob k=7

double-visited
points

BlobD7 = 14

(same as area)
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Theorem 76. The number of single-visited points in blob k is

BlobSk =

{
0 if k < 4
1
2BlobBk + 1 if k ≥ 4

= same recurrence as BlobB (307) k ≥ 9

= 0, 0, 0, 0, 3, 6, 11, 20, 35, 62, 107, 180, 307, 526, . . .

Generating function gBlobS (x) = x4 3 + 5x2 − 2x3 + 2x4

(1−x−2x3) (1+x2) (1−x)

= 1 + x2 − 2

1−x
+

x

1+x2
+

1

1−x−2x3

The number of double-visited points is

BlobDk = BlobAk

Proof. Each blob traverses all four sides of each enclosed unit square since it is
a run of connected unit squares of the full curve. A blob is a continuous run of
segments so lemma 2 applies for S = 1

2B + 1 and D = A.

The recurrence for BlobS is the same as BlobB but for BlobS it can start at
k=9 rather than k=10 for BlobB .

The number of distinct visited points in blob k is

BlobPk = BlobSk + BlobDk

= 0, 0, 0, 0, 4, 9, 17, 34, 68, 133, 257, 498, 972, . . .

gBlobP(x) = x4 4− 7x+ 5x2 − 12x3 + 6x4 − 4x5

(1−x) (1+x2) (1−2x) (1−x−2x3)

= 1 + x2 − 2

1−x
+ 1

10

3+11x

1+x2
+ 1

5

1

1−2x
+ 1

2

1

1−x−2x3

Blob points can be used to count connected horizontal and vertical lines in
a blob the same as for the full curve in section 5.4.

start end start end

Horizontal

11 lines

Vertical

10 lines

Lines in blob

k=7

Theorem 77. The number of horizontal and vertical lines in blob k are

BlobHorizontalsk = 1
2 (BlobSk + [1, 0, 1, 2]) = JAk k ≥ 4

= 0, 0, 0, 0, 2, 3, 6, 11, 18, 31, 54, 91, . . . A003479

gBlobHorizontals(x) = −x3 + 1
2

(
−1

1−x
+

1

1−x−2x3

)
BlobVerticalsk = 1

2 (BlobSk + [1, 2, 1, 0]) k ≥ 4

= 0, 0, 0, 0, 2, 4, 6, 10, 18, 32, 54, 90, . . .
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gBlobVerticals(x) = −x+
x

1+x2
+ 1

2

(
−1

1−x
+

1

1−x−2x3

)
BlobLinesk = BlobVerticalsk + BlobHorizontalsk

= 0, 0, 0, 0, 4, 7, 12, 21, 36, 63, 108, 181, . . .

gBlobLines(x) = −x− x3 − 1

1−x
+

x

1+x2
+

1

1−x−2x3

Proof. Every single-visited point is one end of a vertical and one end of a hori-
zontal. The start and end of the blob are double-visited points. Each is an end
of either a horizontal or vertical. Blob 4 has a horizontal start and vertical end
and the subsequent bridge expansions give a period-4 pattern

start H, V, V, H
end V, V, H, H

These together are period-4 count of horizontal ends [1, 0, 1, 2] and vertical
ends [1, 2, 1, 0]. There are two ends for each line, so 1

2 (BlobS + periodic) in each
direction.

The generating functions follow from gBlobS and periodic parts

x4

(
1

1− x
− x

1 + x2

)
= [1, 0, 1, 2] k ≥ 4

x4

(
1

1− x
+

x

1 + x2

)
= [1, 2, 1, 0] k ≥ 4

In gBlobHorizontals, the periodic part of BlobS has cancelled out leaving
BlobHorizontalsk = JAk. Term −x3 in gBlobHorizontals adjusts to make
BlobHorizontals3 = 0 whereas the rest is gJA which has JA3 = 1.

From the periodic terms, BlobVerticalsk = BlobHorizontalsk when k even or
an alternating difference +1 or −1 when k odd.

Summing lines in all blobs is the total in the full curve. The middle segment
of each bridge is 1 further line over the lines in the blobs. At the start of the
curve there are 6 further lines, and for k ≥ 5 the same unfolded at the end of
the curve.

Linesk =

( ∑
j=BlobListk

BlobLinesj

)
+ BridgeCountk + 12 k ≥ 5

Similarly for horizontals and verticals in the full curve separately, but the
blobs at the end of the curve are rotated −90◦ which means horizontals and
verticals swap. The line in the bridge after blob k goes in a pattern H,H,V,V
(per BlobStart of theorem 64). Including in both sums over blobs means the
middle bridge after blob k is counted twice, so adjust accordingly. The lines at
the start and end of the curve for k≥5 are 3 horizontals and 3 verticals so total
6 in each direction.
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Horizontalsk =

( k∑
j=4

BlobHorizontalsj + [1, 1, 0, 0]j

)
k ≥ 5

+

( k−2∑
j=4

BlobVerticalsj + [0, 0, 1, 1]j

)
− [1, 1, 0, 0]k + 6

Verticalsk =

( k∑
j=4

BlobVerticalsj + [0, 0, 1, 1]j

)
k ≥ 5

+

( k−2∑
j=4

BlobHorizontalsj + [1, 1, 0, 0]j

)
− [0, 0, 1, 1]k + 6

These sums could be used to derive blob lines from the full curve lines by
successive differences as for the blob boundaries. But going from BlobS is a
little easier and BlobS from BlobB has effectively been through those differences
already.

12.8 Blob Convex Hull

Ngai and Nguyen[38] establish a 10 vertex convex hull around the blob fractal.
This is the same in finite iterations except there are extra vertices at fixed
distances from blob start and end for some k mod 4. Vertex numbering here is
per Ngai and Nguyen. The extras are BP4 ′ and BP8 ′. (For reference, their e6

shown x=− 1
12 is a misprint which should be + 1

12 , vertically under e7 as in their
figure 5.)

BP1BP2

BP3

BP4

BP4′

BP5

BP6 BP7

BP8′

BP8

BP9

BP10

start

end

Theorem 78 (Finite form of Ngai and Nguyen). The vertices of the convex
hull around blob k are, using some of P and p(m) from the whole curve hull
from theorem 37,

BP1 (k) = P1 (k) same as whole curve

BP2 (k) = (1
2−

2
3 i)b

k + 1
3 p(k−2)

BP3 (k) = ( 5
12−

7
12 i)b

k + 1
3 p(k−3)

BP4 ′(k) = BP4 (k) + [0, 0, 4+i, 2+3i, 0, 0,−4−i,−2−3i]
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BP4 (k) = BlobStartk + [−i,−1,−1−i,−i, i, 1, 1+i, i]

= ( 1
3−

1
3 i)b

k + 1
3 [2−2i,−2+3i,−5+i,−3−i, −2+2i, 2−3i, 5−i, 3+i]

BP5 (k) = 1
3 b
k + 1

3 i.p(k+2)

BP6 (k) = ( 5
12+ 1

12 i)b
k + 1

3 i.p(k+1)

BP7 (k) = (1
2+ 1

12 i)b
k + 1

3 i.p(k)

BP8 ′(k) = BP8 (k) + [−3+2i, 0, 0, 1−4i, 3−2i, 0, 0,−1+4i]

BP8 (k) = BlobEndk + [1,−1, i,−1+i, −1, 1,−i, 1−i]
= 2

3 b
k + 1

3 [1−3i,−2−2i, 3+2i, 1+5i, −1+3i, 2+2i,−3−2i,−1−5i]

BP9 (k) = (5
6−

1
6 i)b

k + 1
3 p(k+9)

BP10 (k) = P10 (k) same as whole curve

Vertex BP4 ′ is present when k ≡ 2 or 3 mod 4, and set equal to BP4 oth-
erwise. Vertex BP8 ′ is present when k ≡ 0 or 3 mod 4, and set equal to BP8
otherwise.

For k < 9, the above points are the hull vertices but with some duplications,
and some exceptions at k=4.

k vertices duplication exclude

4 4 BP2=BP3=BP4 BP5,BP6,
and BP1=BP10 and BP8=BP9 BP7,BP8′

and missing −2+i

5 6 BP1=BP2 and BP4=BP5
and BP6=BP7=BP8

6 7 BP2=BP3=BP4′ and BP5=BP6
and BP8=BP9

7 9 BP3=BP4′ and BP6=BP7=BP8′

8 10 BP7=BP8′

Proof. Hulls around blobs k=4 to k=8 can be formed explicitly. The following
diagrams are drawn oriented for curve endpoints horizontal so as to keep the
relative locations of the hull vertices consistent.

k=4

BP1
= BP10

BP2
= BP3
= BP4

= BP8
BP9start

end

k=5
BP2 = BP1

BP3

BP4=BP5

BP6 = BP7
= BP8

BP9

BP10

start

end

k=6

BP1BP2

BP4′ =
BP3 =

BP4

BP6 =
BP5 BP7

= BP8
BP9

BP10

start

end
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k=7

BP1BP2

BP4′ = BP3

BP4

BP5

BP6 = BP7 = BP8′

BP8

BP9

BP10
start

end

k=8 BP1BP2

BP3

BP4

BP5

BP6 BP7 = BP8′

BP8

BP9

BP10

start

end

In k=6 and k=7, vertex BP4′ exists but the offsets make it coincide with
BP3. In k=7 and k=8, vertex BP8′ exists but the offsets make it coincide with
BP7.

Ngai and Nguyen use their blob sub-parts (section 12.5 here) to determine
the hull around the fractal. The same can be done for finite iterations

BP6 = BP1m

BP5 = BP10m

BP9m

BP5a

BP4 = BP4a

BP4′ = BP4a′

BP3a

BP3 = P4t′

BP2 = P3t′

BP2m = BP7

BP7b
BP8b′ = BP8′

BP8b = BP8
BP9b

P3t

P4t = BP9

P1t′ = BP10

P2t′ = BP1

a

m
b

t

For k ≥ 9, the sub-blob vertices are positioned relative to their respective
origins (336),(337), and using the rotation factors described there. The twin-
dragon vertices similarly.

BP1a(k) = BlobPartsAorigin + (−1).BP1 (k−4) etc

BP1b(k) = BlobPartsBorigin + (−1).BP1 (k−4) each

BP1m(k) = BlobPartsMorigin + (−i).BP1 (k−2) BPn

P1t(k) = BlobPartsTstartk + P1(k+1− 4)

P1t ′(k) = BlobPartsTendk − P1(k+1− 4)

The slopes of the sub-blob sides show those hulls do not overlap. Working
through the formulas then shows left side verticals BP4a--BP5a and BP9m--
BP10m are co-linear, forming BP4--BP5. Similarly BP8b--BP9b and P3t--P4t
on the right 45◦ diagonal are co-linear forming BP8--BP9.
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BP3a--BP4a′ extended back passes through P4t′ to form BP3--BP4′. Sim-
ilarly BP7b--BP8b′- extended back passes through BP2m at top right forming
BP7--BP8′. So vertices

BP1 (k) = P2t ′(k) BP4 (k) = BP4a(k) BP8 ′(k) = BP8b′(k)

BP2 (k) = P3t ′(k) BP5 (k) = BP10m(k) BP8 (k) = BP8b(k)

BP3 (k) = P4t ′(k) BP6 (k) = BP1m(k) BP9 (k) = P4t(k)

BP4 ′(k) = BP4a ′(k) BP7 (k) = BP2m(k) BP10 (k) = P1t ′(k)

These are not recurrences as such. BP1,2,3,9,10 are the twindragon vertices.
BP5,6,7 go to sub-blob k−2 then are twindragon vertices there. BP4,4,′8,8′

inherit from their respective k−4 sub-blobs down to initial k = 5 to 8 base
cases.

At blob start and end a hanging square sticks out so that vertices BP4 and
BP8 are 1 or 2 segments away. BP4′ and BP8′ are at fixed distances from BP4
and BP8 where the blob juts out at 5 segments away. In both cases, for limits
/bk these differences →0 so that there are just 10 vertices around the fractal
(and among them blob start and end) per Ngai and Nguyen.

The area of the blob hull is calculated by triangles like HA from section 7.

BlobHAk =

{
0 if k ≤ 3
29
96 2k − 1

12 [11, 16, 11, 14]2

⌊
k
2

⌋
+ 1

6 [−1, 1,−3,−5] if k ≥ 4

= 0, 0, 0, 0, 1, 9
2 ,

23
2 ,

57
2 ,

125
2 , 267

2 , 559
2 , . . .

BlobHAk

2k
→ BlobHAf =

29

96
= 0.30208333...

The boundary length of the hull is calculated from its sides. For k ≥ 8, side
BP3--BP4′ is slope 1:3 so length a multiple of

√
5 or

√
10. Side length BP7--

BP8′ is the same as the preceding k−1 side BP3--BP4′,∣∣BP7 (k)− BP8 ′(k)
∣∣ =

∣∣BP3 (k−1)− BP4 ′(k−1)
∣∣

Sides BP4′--BP4 and BP8′--BP8, when they exist, are fixed lengths of slope
4:1 or 3:2 which are

√
17 and

√
13 respectively. The remaining 8 sides are

straight or 45◦ diagonal.

BlobHBk = 4 if k=4, or otherwise(
11
12 + 1

2

√
2 + 1

12

√
5 + 1

12

√
10
)
.
√

2k (348)

+ 1
3 [1, 3,−4,−6] − 1

3 [6, 8, 9, 7].
√

2

+ 1
3 [−4, 1, 1,−4].

√
5 − 1

3 [1, 1, 2, 2].
√

10

+ [1, 0, 0, 1].
√

13 + [0, 0, 1, 1].
√

17

= 4, 5+
√

2+
√

5, 6+
√

2+
√

5+
√

17, 6+5
√

5+
√

13+
√

17, ... k≥4

Scaled by /
√

2k to endpoints a unit length, the limit is the coefficient at
(348),
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BlobHBk√
2k

→ BlobHBf = 11
12 + 1

2

√
2 + 1

12

√
5 + 1

12

√
10 = 2.073635...

The two points of the blob furthest apart must be vertices of its convex hull.
They are BP1 and BP6 except for k=4 where across the unit square. This can
be seen by taking vertices pairwise in the manner of theorem 39. The distance
apart is

BlobHdiamk =
2√
{

2 if k = 4
5
8 2k − [ 3

2 , 2].2

⌊
k
2

⌋
+ 1 if k ≥ 5

=
2√

2, 13, 29, 65, 137, 289, 593, 1217, 2465, . . . k ≥ 4

BP1

BP6

start

end

BlobHdiamk√
2k

→
√

5

8

= 0.790569...

= 1
2

Hdiamf

BlobHdiam9 = 17 is an integer but all other BlobHdiam are irrational. That
can be seen like theorem 39 again. With the same rotation as there, the xk
distance for BP1--BP6 is always a power of 2,

xk = 1
4 2dk/2e

So BlobHdiam2
k can have at most 3 bits. But its negative half-power puts

≥ 4 bits in the high half for k≥ 15. For k < 15, it can be verified explicitly only
BlobHdiam9 is rational. The legs and hypotenuse of BlobHdiam9 are primitive
Pythagorean triple 8, 15, 17.

BlobHdiamk is close to 1
2Hdiamk, ie. half the whole curve diameter (213).

Equality holds for the limits BlobHdiamf = 1
2Hdiamf . In finite iterations, the

halves can be illustrated geometrically by taking two copies of the middle biggest
blob, both turned +90◦, and placed along the curve diameter.

start

end

P3

= �rst BP6

P8

= second BP1

�rst
BP1

second
BP6

k=8

two BlobHdiam8

plus 1 segment

give curve Hdiam8
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The first blob (lower left) has its BP6 at the whole curve diameter endpoint
P3 . At this position, the k−2 blob of the whole curve coincides with blob sub-
part m. The blob twindragon part has its start at curve start, but turned +90◦

so it follows the left of the curve around like a +90◦ arm.
The second blob (upper right) has its BP1 at the whole curve diameter

endpoint P8 . At this position, the end of the whole curve coincides with the
end of the twindragon part of the blob.

The two blob diameters arranged this way have a unit segment between
BP1 of the first and the BP6 of the second.(

P8 (k)− P3 (k)
)

= 2i
(

BP1 (k)−BP6 (k)
)

+ idk/2e k ≥ 5

The i power is the direction of the segment. For k=8 shown above, the extra
is idk/2e = 1 horizontal. If the curve is rotated ω k8 to endpoints horizontal then
the extra is 1 horizontal when k even or 1 segment +45◦ when k odd.

Theorem 79. The blob diameter line BP1�BP6 is everywhere within an en-
closed unit square or a boundary square.

Proof. The diameter across blob k=8 is

start

end

BP6

BP1

blob k=8

The lines shown are slopes are 3:1. The actual diameter line is between them,
so at most 1

3 across anywhere. The claim will be that the 3:1 lines, through to
the middle, are within 1

3 of an enclosed or boundary square.
BP6 is an even point (x+y even) and the 3×1 block immediately below BP6

includes the following segments, as does the next 3×1 below it. These segments
expand 4 times to

...

BP6

=⇒

new BP6

3×1 block
even to even
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In the expansion it can be noted each new 3×1 along the path has the original
set of segments and possibly more, so the 3:1 line passes though enclosed or
boundary squares.

The new BP6 vertex is located above-left of the original point. This is per
the following identity, noting that expanding 4 times is a 180◦ rotation of the
start segment, so offset 1−i in the identity is negated to −1+i in the diagram.

BP6 (4j+8 + 4) = b4.BP6 (4j+8) + (1−i).(−1)j

Similarly at BP1 which is an odd point and its set of segments expand

...

BP1

=⇒

new BP1

3×1 block
odd to odd

The new BP1 is at offset −1−2i per identity

BP1 (4j+8 + 4) = b4.BP1 (4j+8) + (1+2i).(−1)j

Applying successive 4-fold expansions this way starting from k=8 shows the
theorem for blobs k=4j+8. Blobs k=4j+6 have the same 3:1 slope and blocks,
but swapped so BP1 is the even case and BP6 is the odd case.

The diameter line in blob k=7 is

start end

BP6

BP1

blob k=7

It's convenient to consider the crossing lines in 4×2 blocks so that they go
even point to even point from BP1, and odd point to odd point from BP6.
Segments at the respective blocks and the way they expand are then
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...

BP6

=⇒

new BP6

4×2 block
odd to odd

...

BP1

=⇒

new BP1

4×2 block
even to even

The offsets to the new BP1 and BP6 points are per identities

BP6 (4j+7 + 4) = b4.BP6 (4j+7)− i.(−1)j

BP1 (4j+7 + 4) = b4.BP1 (4j+7) + 2i.(−1)j

Applying successive 4-fold expansions this way starting from k=7 shows the
theorem for blobs k = 4j+7. Blobs k = 4j+9 have the same 3:1 slope and
blocks, but swapped so BP1 is the even case and BP6 is the odd case.

Diameter lines in blobs k≤ 6 can be verified explicitly.

12.9 Blob Centroid and Inertia

Theorem 80. Consider the segments of blob k to have mass uniformly dis-
tributed along their length. Their centroid is located at

BlobGSk =
BlobGStotalk

BlobSegmentsk
k ≥ 4

= − 5
2+ 3

2 i, −
39
11−

25
22 i, −

105
44 −

205
44 i,

211
94 −

326
47 i, . . . k ≥ 4

where BlobGStotal is the sum of the midpoints of the segments (254)

BlobGStotalk =

BlobNk+1−4∑
j=BlobNk

midpoint(j)
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=
8− 4i

35
(2b)k

+ 1
30

[
−39+7i,−23+9i,−51+23i,−67+21i

]
.bk (349)

+ 1
42

[
24+16i,−26−11i, 5−39i,−31−68i,

−24−16i, 26+11i,−5+39i, 31+68i

]
= −10+6i, −39− 25

2 i, −
105
2 −

205
2 i, 211

2 −326i, . . . k ≥ 4

Proof. Let GStotalk be the total midpoints of the whole curve, as from centroid
theorem 46.

GStotalk =

2k−1∑
j=0

midpoint(j) = 2kGSk

This total of the whole curve comprises the blob segment midpoints, all the
bridge segment midpoints, and the segments at the start and end of the curve.

GStotalk =

k∑
j=4

(
BlobGStotal j + 3BridgeMiddlej

)
k ≥ 6 (350)

− i
k−2∑
j=4

(
BlobGStotal j + 3BridgeMiddlej

)
− 3BridgeMiddlek unduplicate bridge k

+ bkBlobN k−1 shift segments after middle (351)

+ (1+(−i)) .
(
−1+ 15

2 i
)

start and end 7 segments

Blobs at the end of the curve are rotated −i by the unfolding back along the
curve. Each point z reckoned from the end of the curve is to be at bk + (−i)z.
Term (351) is all those bk.

BridgeMiddlej is the midpoint of the bridge after blob j, which is the cen-
troid of its 3 segments.

BridgeMiddlek = 1
2 (BlobEndk + BlobStartk+1)

= 2
3b
k + 1

6 [−1,−1+2i, i, 2+i, 1, 1−2i,−i,−2−i] (352)

= − 5
2 , −

5
2−3i, − 11

2 i, 5− 11
2 i,

21
2 , . . .

The sums have BridgeMiddle after each blob which means the bridge after
blob k is counted twice, so subtract to unduplicate.

Difference GStotalk − GStotalk−1 using (350) leaves two BlobGStotal so a
2-delayed recurrence similar to the other blob forms,

BlobGStotalk = iBlobGStotalk−2

+ GStotalk −GStotalk−1 + (bridge + bk terms)

Factor i gives an 8-period pattern of factors on descending GStotal terms

1,−1, i,−i, −1, 1, −i, i

It's convenient to write (350) in generating functions and solve for gBlob
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GStotal rather than sum all the various bk etc terms and their periodic factors.
Partial fractions for the result gives various 1

1±bx which are in (349) as bk with
periodic direction.

For the curve scaled by bk to endpoints a unit length, the limit for BlobGS
is the ratio of BlobGStotal term (2b)k and BlobSegments term 2k.

BlobGSk
bk

→ BlobGSf =
4

7
− 2

7
i (353)

start

0
end

1

BlobGSf = 4
7
− 2

7
i

Figure 70:

Blob

segments

centroid

The horizontal through BlobGSf at − 2
7 i is close to the curling boundary to

its right, but the curl goes lower. In general, the extents of such boundary curls
follow from the convex hull (section 7) around relevant sub-curves. The hull
extent limits are multiples of 1

3/2
k at k levels smaller, so never a multiple of 1

7 .
In this case, the curl is the start S of the twindragon part of the blob. That
start is at BlobPartsTstartk/b

k → 3
4−

1
4 i. The sub-curve to its right in figure 64

is 8 levels smaller and hull extent 2
3 downwards (the segment right side).

− 1
4 −

2
3 .
√

2−8 = − 7
24 < − 2

7 = Im BlobGSf − 7
24 + 1

168 = − 2
7 (354)

− 1
4
i

− 2
7
i

BlobGSf

S

curl extends to − 7
24
i

The centroid of the convex hull surrounding the blob (section 12.8) can be
calculated from the triangles making up the hull (like HG at (230)).

BlobHGk =
BlobHGtotalk

BlobHAk
k ≥ 4 convex hull centroid

= − 5
2+ 3

2 i, −
32
9 −

29
27 i, −

55
23−

316
69 i,

128
57 −7i, 3488

375 −
599
125 i, . . .

BlobHGtotalk =
∑

(triangle centroid) .(triangle area)
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=



− 5
2 + 3

2 i if k=4, and otherwise for k ≥ 5,

bk


(

599
3456 −

29
324 i

)
2k

+
[−47

96 + 29
108 i,

−37
48 + 10

27 i,
−157
288 + 233

864 i,
−191
288 + 313

864 i
]
.2

⌊
k
2

⌋
+
[−17

72 −
11
108 i,

11
72+ 1

216 i,
−7
72 + 13

108 i,
−29
72 + 7

216 i
]


+ 1

162

[
84+i, 4−19i,−17−66i,−64−85i,
−84−i,−4+19i, 17+66i, 64+85i

]
= −5+3i

2 , −96−29i
6 , −165−316i

6 , 384−1197i
6 , 3488−1797i

6 , . . .

With the curve scaled to endpoint bk a unit length, the hull centroid limit
is the coefficients of the high power terms in BlobHGtotal and BlobHA

BlobHGk

bk
→ BlobHGf =

599
3456−

29
324 i

29/96
=

599

1044
− 8

27
i (355)

= 0.573754... − 0.296296...i

This is very close to the segments centroid limit of figure 70. BlobHGf is a
little to the right and below BlobGSf .

BlobHGf − BlobGSf = 17
7308−

2
189 i = 0.002326...− 0.010582...i Im =A021949

12.9.1 Blob Inertia

Theorem 81. Consider blob k to have unit masses in the middle of each line
segment. The blob moment of inertia tensor is, with axes through the blob
centroid and x axis parallel to the endpoints of the whole curve,

BlobI (k) =

 BlobI x −BlobI xy 0

−BlobI xy BlobI y 0

0 0 BlobI z


where

BlobI x(k) = 53
4165 4k − 1

8820 [1875, 1009, 1227, 2093] 2k

+ 1
441 [159, 146, 180, 503] 2bk/2c (356)

− 1
299880 [239861, 81122, 289859, 565558]

+
(

1
882 [304, 135,−55, 2079] 2bk/2c

− 1
1764 [2422, 477, 1114, 9531]

)
/BlobSegmentsk

= 1
2 ,

115
11 ,

4001
88 , 8725

47 , 39227
50 , . . . k≥4

BlobI y(k) = 23
4165 4k − 1

8820 [815, 1229, 1807, 1393] 2k

+ 1
441 [146, 220, 314, 367] 2bk/2c

− 1
299880 [176501, 143202, 347779, 253918]

+
(

1
882 [−72, 407, 585, 259] 2bk/2c

− 1
1764 [630, 1229, 3546, 1199]

)
/BlobSegmentsk
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= 1
2 ,

31
11 ,

1249
88 , 3577

47 , 17147
50 , . . . k≥4

BlobI xy(k) = − 8
4165 4k − 1

4410 [253, 181, 257, 329] 2k

+ 1
882 [337, 158, 358, 326] 2bk/2c

+ 1
59976 [−20635, 2290,−30467, 13622]

+
(

1
294 [68,−83,−59,−245] 2bk/2c

+ 1
588 [−14, 241, 430, 1125]

)
/BlobSegmentsk

= 0, − 57
22 , −

783
88 , −

1783
47 , − 3369

25 , . . . k≥4

BlobI z(k) = BlobI x(k) + BlobI y(k)

= 76
4165 4k − 1

4410 [1345, 1119, 1517, 1743] 2k

+ 1
441 [305, 366, 494, 870] 2bk/2c

− 1
149940 [208181, 112162, 318819, 409738]

+
(

1
441 [116, 271, 265, 1169] 2bk/2c

− 1
882 [1526, 853, 2330, 5365]

)
/BlobSegmentsk

= 1, 146
11 ,

2625
44 , 12302

47 , 28187
25 , . . . k≥4

Proof. Inertia can be calculated by taking the blob in the parts of Ngai and
Nguyen per section 12.5. The inertia of the blob is the inertia of its parts and
the bridges between the parts, all shifted to new centroid G = BlobGS by the
parallel axis theorem.

start

end

G
x

y

Ga

GbGm

Tmiddle

a

m

b

twindragon

Blob parts
and centroids,
x axis aligned to
curve endpoints

G = BlobGSk

The two k−4 sub-blobs labelled a, b are the same direction as blob k so their
BlobI (k−4) is used without rotation. k−2 sub-blob m is turned 180◦ which
does not change inertia so it too is without rotation.

The twindragon endpoints are at +45◦ (and back 180◦ which is no change),
so the axes in TI (theorem 59) must be rotated −45◦.

The bridges rotated to curve endpoints horizontal have two cases,
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x

y

k even

x

y

x

y

k odd x

y

For k even, the midpoints of the two bridges are the same configuration
each. The bridge centroid is the middle point so inertia tensors, with x axis
aligned to the curve endpoints, are

BridgeIak =

{
Ipoint( 1

2+ 1
2 i) + Ipoint(− 1

2+− 1
2 i) if k even

Ipoint( 1
2

√
2i) + Ipoint(− 1

2

√
2i) if k odd

=

(
1/2 −1/2 0
−1/2 1/2 0

0 0 1

)
if k even,

(
1 0 0
0 0 0
0 0 1

)
if k odd,

BridgeIbk =

{
BridgeIak if k even

Ipoint( 1
2

√
2) + Ipoint(− 1

2

√
2) if k odd

=
(

0 0 0
0 1 0
0 0 1

)
if k odd,

Offsets from the blob k centroid to the centroids of the parts follow from
the blob sub-part origins (336),(337).

GtoGak = (BlobPartsAorigink + (−1).BlobGSk−4)− BlobGSk

GtoGbk = (BlobPartsBorigink + (−1).BlobGSk−4)− BlobGSk

GtoGmk = (BlobPartsMorigink + (−i).BlobGSk−2)− BlobGSk

The middles of the two bridges similarly, with (352) and reckoning the first
bridge as after sub-blob A and the second as before sub-blob B.

GtoBak =
(
BlobPartsAorigink + (−1).BridgeMiddlek−4

)
− BlobGSk

GtoBbk =
(
BlobPartsBorigink + (−1).BridgeMiddlek−5

)
− BlobGSk

For the twindragon, its middle which is its centroid is between start and
end,

BlobPartsTmiddlek = 1
2 (BlobPartsTstartk + BlobPartsTendk) = ( 5

8−
3
8 i) b

k

GtoTmidk = BlobPartsTmiddlek − BlobGSk

Each of the G offsets above are in a curve ending at bk, so factors ω8
k to

rotate for curve end on the x axis. R is the +45◦ matrix of rotation from (244),
here used to turn the twindragon axes −45◦.

BlobI (k) = BlobI (k−2) + BlobSegments(k−2).Ipoint(GtoGmk .ω8
k)(357)

+ BlobI (k−4) + BlobSegments(k−4).Ipoint(GtoGak .ω8
k)

+ BlobI (k−4) + BlobSegments(k−4).Ipoint(GtoGbk .ω8
k)
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+R.TI (k−4).R−1 + 4.2k−4 .Ipoint(GtoTmidk .ω8
k)

+ BridgeIa(k) + 3.Ipoint(GtoBak .ω8
k)

+ BridgeIb(k) + 3.Ipoint(GtoBbk .ω8
k)

Recurrence manipulations give (356) etc.

The various GtoGm etc terms are differences of BlobGS . Those offsets are
fractions with denominators BlobSegmentsk for G, BlobSegmentsk−2 for Gm,
and BlobSegmentsk−4 for Ga,Gb. The total is fractions over BlobSegmentsk
only. This is not quite obvious in the terms, but the total is offsets from G to
half-integer segment midpoints, so BlobSegmentsk only.

BlobI (k) =

BlobNk+1−4∑
n=BlobNk

Ipoint
(

(midpoint(n)− BlobGSk) .ω8
k
)

Multiplying through by BlobSegmentsk is integers, halves and quarters,

BlobI x.BlobSegmentsk = 2, 115, 4001
4 , 8725, 78454, 666301, 21457681

4 , ... k≥4

BlobI y.BlobSegmentsk = 2, 31, 1249
4 , 3577, 34294, 280913, 9098193

4 , ...

BlobI xy .BlobSegmentsk = 0,− 57
2 ,−

783
4 ,−1783,−13476,− 211789

2 ,− 3347519
4 , ...

BlobI xy =
∑
xy is negative, and is then negated to positive in the BlobI

matrix. Coordinate products xy are positive in the 1st and 3rd quadrants and
negative in the 2nd and 4th. Roughly speaking, BlobI xy negative means there
is more in the 2nd and 4th than in 1st and 3rd, as reckoned by the products.

When the curve is scaled so the whole curve is unit length and unit mass,
the limit for inertia of the middle biggest blob is

BlobI (k)

4k
→ BlobIf =

1

4165

53 8 0
8 23 0
0 0 76

 blob inertia limit

Each entry is the coefficient of the 4k term at (356) etc (and negate xy for
the matrix). With this scaling the blob has area BlobAf 0= 1

5 per (331), and
mass 2

5 per BlobSegments.
For the limit, the sum of parts at (357) can ignore the bridges, giving the

following identity for BlobIf by parts. Each level shrinks x,y by 1/
√

2 and
mass reduced in proportion to area. So blob k−2 is reduction 1

16 and blob k−4
reduction 1

256 . The twindragon inertia limit TIf from (301) is for unit length
and here it is 1/

√
23 (and axes at −45◦) so reduction 1

64 .

BlobIf = 1
16BlobIf + 2 1

256BlobIf + 1
64R.TIf .R−1 (358)

+ 1
16 .

2
5 Ipoint(GtoGa) + 1

16 .
2
5 Ipoint(GtoGb)

+ 1
4 .

2
5 Ipoint(GtoGm) + 1

4 Ipoint(GtoTmid)

GtoGa = − 5
28−

1
28 i GtoGm = − 3

28+ 5
28 i

GtoGb = 1
14+ 3

14 i GtoTmid = 3
56−

5
56 i
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start end

0 1

1
3−

1
3 i

blob start

2
3

blob

end

G

= 4
7−

2
7 i

x

y

Ga= 11
28−

9
28

Gb = 9
14−

1
14

13
28−

3
28 = Gm

Tmid = 5
8−

3
8 i

The sub-blobs are unrotated so BlobIf in (358) is a fraction of rotated TIf
plus Ipoint offsets.

BlobIf = 128
119

(
1
64R.TIf .R−1 + Ipoint ...

)
All the twindragons in all the sub-blobs are at the same 45◦ orientation (eg.

figure 68) so this is also effectively a total sum over twindragons of descending
sizes and their locations.

The inertia of the whole curve is the sum of the blob inertias, each shifted to
the curve centroid. For finite iterations, this is complicated by the bridges and
segments at curve start and end. In the inertia limits, the sum is an identity

If =

∞∑
j=0

1

2j
R−j .BlobIf .Rj + 2

5

1

2j
Ipoint

(
BlobGSf /bj −GSf

)
(359)

+

∞∑
j=2

1

2j
R−j−2.BlobIf .Rj+2 + 2

5

1

2j
Ipoint

(
1−iBlobGSf /bj −GSf

)
The first sum (359) is from middle biggest blob to start of the curve. The

second sum is the blob after the middle (which is 2 levels smaller) to curve end.
Each level smaller has axes rotated +45◦, and the curve end has further 90◦ for
the unfolding. Each level shrinks coordinates by 1/

√
2 in each of x,y so area

factor 1/2j . Mass likewise reduced by that factor for the terms shifting blob
centroids to the curve centroid.

The principal axes of inertia for the middle biggest blob limit follow in a
similar way to (250).

BlobIαmax = 1
2 arctan −2.−8

53−23 = arctan 1
4 = 14.036243◦ . . .

radians A195727 (360)

BlobIαmin = BlobIαmax + 90◦ = 104.036243◦ . . .
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start

end

x

y

BlobIαmax

= 14.03◦...

slope 1:4

BlobIαmin

= 104.03◦...

BlobIαmax axis passes close to the twindragon part start S, but the axis is
just above that point. S is at 3

4−
1
4 but slope 1:4 up from G passes the vertical

there at

− 2
7 + ( 3

4 −
4
7 ). 14 = − 27

112 > − 1
4 axis above by − 27

112 − (− 1
4 ) = 1

112

The axis also passes close to the top of the curl there, but the curl goes
higher. For example directly above S the hull extent is higher by calculating
similar to (354) but k=12 levels down so the sub-curve right side faces upwards
(with curve endpoint horizontal),

− 1
4 + 2

3 .
√

2−12 = − 23
96 > − 27

112 axis below by − 23
96 − (− 27

112 ) = 1
672

The blob inertia limit when rotated by arctan 1
4 to its principal axes, with x

the maximum, is

1
4165

55 0 0
0 21 0
0 0 76

 principal axes

The inertia of the blob convex hull (section 12.8) can be compared to the
inertia of the blob it surrounds. The hull inertia is calculated from its polygon.
For the limit with curve unit length, density mass = 2.area the same as the
curve, and axes through the hull centroid BlobHGf ,

BlobHI x = 24281
1119744 BlobHI y = 37471

3608064 BlobHI xy = − 2213
746496

BlobHIαmax = 1
2 arctan 192531

366910 = 13.843813◦ . . .

This is a little shallower slope than the segments principal axis BlobIαmax

(360), and the hull centroid is a little below.

13 Hanging Squares

On the boundary there are some hanging squares attached to the rest of the
curve only at a corner. Some are single unit squares, some are pairs of unit
squares, and some are quads of 4 unit squares.
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· · ·

· · ·

single

· · ·

· · ·

pair

· · ·

· · ·

quad

Some hanging singles occur as the end of a pair, and some occur as the two
singles in a quad. For the purpose of the following HQ1 , all the singles are
counted no matter what further form they might be part of.

Theorem 82. The number of hanging single squares on the dragon curve k is

HQ1Lk =

{
0 if k < 3

2JAk−3 if k ≥ 3
left boundary

= 0, 0, 0, 0, 0, 0, 2, 4, 6, 12, 22, 36, 62, 108, . . .

HQ1Rk =

{
0 if k < 1

JAk−1 if k ≥ 1
right boundary

= 0, 0, 0, 0, 1, 2, 3, 6, 11, 18, 31, 54, 91, 154, . . .

HQ1 k = HQ1Lk + HQ1Rk whole boundary

=

{
0 if k < 3

JAk − 1 if k ≥ 3

= 0, 0, 0, 0, 1, 2, 5, 10, 17, 30, 53, 90, 153, 262, . . .

Proof. When the starts of two dragon curves are at right angles they may form
a hanging square comprising some segments from the first curve and some from
the second.

k=0 k=1 k=2
hanging square

k=2 forms a hanging square and the curve start is the same for k > 2.
From the left boundary breakdown of figure 14, the number of hanging

squares in level k+4 is the preceding k+3, two k+1, and possible new hanging
squares at the two right angle meetings where those k+1 are inserted.

HQ1Lk+4 = HQ1Lk+3 + 2HQ1Lk+1 +

{
0 if k < 2

2 if k ≥ 2
(361)

The 2 new hanging squares are at points 6 and 7 in figure 14. The sub-
curves pointing inward from there touch as an inward join but they do not
touch the new hanging squares since per theorem 27 the first side touches at
vertex number JN k and this is to be ≥ 1. The second side touches at JNother
from the start which is 2.2k − JNotherk and is to be ≥ 3. This is so for k ≥ 2.

Draft 23 page 256 of 391



3

6

JNk

2.2k − JNotherk

J

(361) is the same recurrence as JA growth (162) but +2 instead of +1. Initial
values are HQ1L0 = · · · = HQ1L5 = 0 so the +2 becomes factor 2 on all HQ1L,
giving 2JA with offset.

For the right boundary, the unfolding of section 3.2 is two dragon ends
meeting and they create a new hanging square for k ≥ 3, per join area JA3 = 1.

HQ1Rk+1 = HQ1Rk + HQ1Lk +

{
0 if k < 3

1 if k ≥ 3

Hanging squares on a blob can be calculated from the total for the curve
in the same way as blob area section 12.4. The hanging squares of each blob
sum to the hanging squares of the whole curve in the manner of the blob area
calculation (since there are no hanging squares on the bridges).

Blob k=4 is a single unit square and is reckoned as a hanging square in the
sense of hanging from its start/end point, so BlobHQ1 4=1 here and BlobHQA
=1 below. This makes the whole curve the sum of the blobs.

BlobHQ1 k = same recurrence as BlobA (324) k ≥ 8 (362)

= 0, 0, 0, 0, 1, 1, 2, 4, 5, 9, 18, 28, 45, 81, 138, 228, . . .

BlobHQ1Lk = same recurrence as BlobAL (334) k ≥ 8

= 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 6, 8, 14, 26, 43, 71, . . .

BlobHQ1Rk = same recurrence as BlobAL (334) k ≥ 10

= 0, 0, 0, 0, 1, 1, 1, 3, 4, 6, 12, 20, 31, 55, 95, 157, . . .

For hanging pairs, a similar calculation is made. For the left side, the out-
ward sub-curves form a pair for k ≥ 4 which is JN k ≥ 2 and 2.2k−JNotherk ≥ 6.
For the right side, a pair is formed for k=5.

k=4 outward
hanging pair

k=5 unfold
hanging pair

...

...

So pairs occur 2 levels later on both left and right, giving the same as the
singles but delayed.

HQ2Lk = HQ1Lk−2 left boundary pairs

HQ2Rk = HQ1Rk−2 right boundary pairs

HQ2 k = HQ1 k−2 whole boundary pairs
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Hanging quads similarly. For the left side, the outward sub-curves form a
pair for k ≥ 5 which is JN k ≥ 4 and 2.2k − JNotherk ≥ 12. For the right side,
a pair is formed for k=6. This is then 3 levels later than the hanging single
squares.

k=5 outward
hanging quad

for left k=6 unfold
hanging quad

for right......

HQ4Lk = HQ1Lk−3 left boundary pairs

HQ4Rk = HQ1Rk−3 right boundary pairs

HQ4 k = HQ1 k−3 whole boundary pairs

As noted above, a pair includes a hanging single square and a quad includes
a hanging pair and a further hanging square. Each pair has 1 unit square not
accounted for by the singles. Each quad has 1 unit square not accounted for by
the pair and the single in it. So total hanging area

HQAk = HQ1 k + HQ2 k + HQ4 k

= 0, 0, 0, 0, 1, 2, 6, 13, 24, 45, 80, 137, 236, 405, . . .

There are 4 boundary segments for each such total hanging square. The
proportion of boundary on hanging squares out of total boundary is found by
some recurrence or generating function manipulation to express HQA in terms
of B. Then since B grows as a power rk,

4HQAk

Bk
=

5
2Bk + 1

2Bk+1 −Bk+2 − 14

Bk
k ≥ 6

→ 5
2 + 1

2r − r
2 = 0.472680 . . . as k→∞

= 1
r −

8
r8 (363)

The limit is the same for the left or right side of the curve taken separately.
In form (363), 1/r is the proportion of right boundary segments out of

total boundary (125). The hanging square sides here is smaller by 8/r8 =
0.117073 . . . .

The limit is the same for a blob since the same coefficients occur on BlobB
and like B it grows as a power rk.

4BlobHQAk = 5
2BlobBk + 1

2BlobBk+1 − BlobBk+2 − [13, 7, 11, 17] k ≥ 5

13.1 Points on Boundary

To count points on the boundary of a blob, there is a point at the start of
each boundary segment BlobB but attachment points of a hanging square are
then counted twice. Unduplicating those, and not reckoning the blob k=4 unit
square as a hanging square the way BlobHQA does, gives
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BlobPBk = BlobBk −

{
0 if k = 4

BlobHQAk if k 6= 5

blob boundary
points

= 0, 0, 0, 0, 4, 9, 17, 32, 60, 107, 185, 316, . . .

and enclosed points by difference from total BlobP

BlobPEk = BlobPk − BlobPBk blob enclosed points

= 0, 0, 0, 0, 0, 0, 0, 2, 8, 26, 72, 182, . . .

The boundary points of the whole curve are the sum of the blobs, plus
non-blob points which are at curve start and end and 2 on each bridge. Or
alternatively, boundary segments Bk less hanging squares and less the points
duplicated by segments on both boundaries which are counted twice by B.

NonBlobPointsk =

{
2k + 1 k = 0 to 3

4k − 4 k ≥ 4

= 2, 3, 5, 9, 12, 16, 20, 24, 28, 32, . . .

PBk = NonBlobPointsk +
∑

j=BlobListk

BlobPB j boundary points

= Bk −HQAk − 8k + 24 k ≥ 6

= 2, 3, 5, 9, 16, 29, 54, 99, 180, 323, 572, 999, 1728, . . .

gPB(x) = 69
2

1

1−x
− 8

1

(1−x)2
+ 1

4

13 + 9x+ 14x2

1−x−2x3

− 111
4 − 21x− 29

2 x
2 − 9x3 − 5x4 − 2x5

and enclosed points are then, by difference from total points P ,

PEk = Pk − PBk enclosed points

= 0, 0, 0, 0, 0, 0, 0, 2, 10, 38, 118, 326, 830, . . .

Boundary points
PB8 = 180

start
end

k=8

Enclosed points
PE8 = 10

start
end

k=8

blob 7 �rst
enclosed points

The first enclosed points are in blob k=7. For k < 7, the boundary points
are simply all points Pk from (175).

The enclosed points grow as 2k (like enclosed area Ak) so eventually exceed
the boundary points in either the whole curve or a blob.

PEk > PBk iff k ≥ 15
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BlobPEk > BlobPBk iff k ≥ 13

Boundary points are either single or double-visited. All single-visited points
are on the boundary and enclosed points are always double-visited,

Sk = single-visited on boundary

DBk = double-visited on boundary

PEk = double-visited enclosed

So double-visited boundary points by difference either of two ways

DBk = PBk − Sk doubles on boundary

= Dk − PEk

= 0, 0, 0, 0, 1, 4, 11, 26, 57, 114, 217, 398, 709, . . .

BlobDBk = BlobPBk − BlobSk

= BlobDk − BlobPEk

= 0, 0, 0, 0, 1, 3, 6, 12, 25, 45, 78, 136, 233, . . .

The proportion of single-visited or double-visited points among the boundary
points can be found by some recurrence or generating function manipulation to
write Sk in terms of PBk.

Sk = 1
29

(
16PBk + 24PBk+1 − 14PBk+2 + 208k − 721

)
for k ≥ 6

Then since PBk grows as power rk,

Sk
PBk

→ 16
29 + 24

29r −
14
29r

2 = 0.567002 . . . as k →∞

DBk

PBk
→ 13

29 −
24
29r + 14

29r
2 = 0.432997 . . .

Each hanging square attachment point is a double-visited boundary point.
There are HQA of them. The remaining non-hanging double-visited boundary
points are then

DBnH k = DBk −HQAk non-hanging boundary doubles

= 0, 0, 0, 0, 0, 2, 5, 13, 33, 69, 137, 261, . . .

The proportions within DB are found by writing in terms of DB ,

HQAk = 1
19

(
−27DBk + 16DBk+1 + 2DBk+2 − 72k + 313

)
k ≥ 6

DBnH k = 1
19

(
46DBk − 16DBk+1 − 2DBk+2 + 72k − 313

)
k ≥ 6

HQAk

DBk
→ −27

19 + 16
19r + 2

19r
2 = 0.309483 . . . as k →∞

DBnH k

DBk
→ 46

19 −
16
19r −

2
19r

2 = 0.690516 . . .

Or the proportions out of the whole PB boundary points are

HQAk = 1
29

(
3PBk + 48PBk+1 − 28PBk+2 + 184k − 804

)
k ≥ 6
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DBnH k = 1
29

(
10PBk − 72PBk+1 + 42PBk+2 − 392k + 1525

)
k ≥ 6

HQAk

PBk
→ 3

29 + 48
29r −

28
29r

2 = 0.134005 . . . as k →∞

DBnH k

PBk
→ 10

29 −
72
29r + 42

29r
2 = 0.298991 . . .

All of these limits are the same in a blob.

Left and right side boundary points can be counted separately. Similar to
above, points are left or right segments L or R and unduplicate the left or right
side hanging square attachment points.

PLk = Lk + 1−HQALk left boundary points

= 2, 3, 5, 9, 13, 21, 35, 57, 93, 155, 261, . . .

PRk = Rk + 1−HQARk right boundary points

= 2, 3, 5, 9, 16, 27, 45, 76, 129, 218, . . .

Left boundary points
PL8 = 93

start
end

k=8

Right boundary points
PR8 = 129

start
end

k=8

The curve unfolding means boundary points PB in level k become right
boundary points PR in k+1. Points on both the left and right boundaries in
PB are separated by the unfold, except those at the curve end which continue
to touch. For k ≥ 6, they are 4 points of a hanging quad.

Pbothk =

{
2, 3, 5, 9, 13, 19 k = 0 to 5

8k − 22 k ≥ 6

points on both
left and right boundary

PRk+1 = PBk + Pbothk −

{
1, 1, 1, 2, 2, 3 if k = 0 to 5

4 if k ≥ 6
(364)

Relation (113) between left and right boundary squares has an equivalent
for points,

2PRk = PLk+2 −

{
1 if k=0

3 if k ≥ 1

Left plus right boundary points exceed total boundary points by Pboth but
it is only linear so the limits of left and right over total boundary approach 1.

PLk + PRk = PBk + Pbothk

PLk
PBk

+
PRk

PBk
→ 1 as k →∞
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The proportion of left or right boundary points out of total points are
the same as left or right boundary segments out of total segments at end of
section 3.3. The PR limit is from (364). The PL limit follows from writing
PLk = PBk − PBk−1 + 12 for k ≥ 7.

PRk

PBk
→ 1

r
= 0.589754 . . .

PLk
PBk

→ 1− 1

r
= 0.410245 . . .

13.1.1 Twindragon Boundary Points

Twindragon boundary points can be found similarly as boundary segments less
right-side hanging squares HQAR. At curve start and end there are up to 6
boundary points of the two k+1 component dragons which touch and are to be
unduplicated for the total.

TPBk = TBk − 2HQARk+1 −

{
0, 1, 3, 5 if k = 0 to 3

6 if k ≥ 4
boundary

= 4, 7, 13, 25, 46, 82, 144, 250, 428, 730, . . .

TPEk = TPk − TPBk enclosed

= 0, 0, 0, 0, 1, 7, 27, 79, 207, 503, . . .

The first enclosed point of the twindragon occurs in k=4 as TPE 4 = 1.
The boundary points TPB are either single or double-visited. All single-

visited points (theorem 53) are on the boundary so the double-visited boundary
points by difference two ways

TDBk = TDk − TPEk = TPBk − TSk double-visited boundary

= 0, 1, 3, 7, 16, 32, 58, 104, 182, 312, . . .

Theorem 83. For k ≥ 4, the number of double-visited boundary points on the
twindragon is equal to the number of complex base 8-side boundary squares from
(270).

TDBk = EightBk − (1 if k < 4)

Proof. The unit squares of complex base i+1 correspond to diamonds of the
twindragon and where the sides of unit squares touch is a double-visited twin-
dragon point. The double-visited boundary points are those touching sides
where one end of the side is on the boundary.

twindragon
k = 5

Construct a graph where vertices are the unit squares with at least one corner
on the boundary. Such a square shares a side with 1 or more neighbours. These
sides are where the twindragon diamonds connect. Graph edges are across these
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touching sides. So the vertices are 8-side boundary unit squares and edges are
twindragon double-visited boundary points.

A touching side can have both ends on the boundary (two corners of the
square). These are the hanging squares (diamonds) of the twindragon. They
form little trees off a cycle around the rest of the complex base shape. There
is a single cycle since only hanging squares have a single corner attachment to
the rest of the curve.

For k ≥ 4, there is a cycle and such a graph has vertices = edges so TDB =
EightB . For k < 4, there is only a tree which is vertices = edges+1 so TDB =
EightB − 1. These are cases of Euler's formula vertices+regions = edges+2 for
a connected planar graph. Here the cycle divides the plane into regions = 2, an
inside and an outside.

14 Triangles in Regions

Consider the following regions around the ends of the dragon curve. Number
the regions the same as Duvall and Keesling use for the Lévy C curve.

1

2

3 4

5

6

78

9

1011

12

13

14 15
TR

region numbers
around curve
start to end

Treat each segment of the dragon curve as having a triangle on each side.
These triangles fall variously into the regions. The number in each region can
be counted as a density measure.

Theorem 84. The number of triangles in each region above for dragon curve
k is

TR(k, 1) =

{
1, 2, 3, 4 k = 0 to 3
53
1002k + k [−3

10 ,
2
5 ,

3
10 ,
−2
5 ] + [ 43

25 ,
1
25 ,
−43
25 ,

−1
25 ] k ≥ 4

(365)

TR(k, 2) =

{
1, 0, 1, 3 k = 0 to 3

11
502k − k [−3

10 ,
2
5 ,

3
10 ,
−2
5 ] − [ 43

25 ,
1
25 ,
−43
25 ,

−1
25 ] k ≥ 4

TR(k, 8) =

{
0, 1, 0, 1 k = 0 to 3
61
3002k + k [ 1

20 ,
7
20 ,
−1
20 ,

−7
20 ] + [ 41

75 ,
−377
300 ,

−107
150 ,

427
300 ] k ≥ 4

TR(k, 9) =

{
0 k = 0 to 3

1
202k + [−4

5 ,
−3
5 ,

4
5 ,

3
5 ] k ≥ 4
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TR(k, 10) =

{
0, 1, 3, 3 k = 0 to 3

113
3002k + k [−7

20 ,
1
20 ,

7
20 ,
−1
20 ] + [ 28

75 ,
209
300 ,

−31
150 ,

−259
300 ] k ≥ 4

TR(k, 11) =

{
0, 0, 1, 3 k = 0 to 3

16
752k + k [−1

20 ,
−7
20 ,

1
20 ,

7
20 ] + [−16

75 ,
−23
300 ,

7
150 ,

73
300 ] k ≥ 4

TR(k, 3) = TR(k−1, 11) TR(k, 6) = TR(k−4, 11)

TR(k, 4) = TR(k−2, 11) TR(k, 7) = TR(k−5, 11)

TR(k, 5) = TR(k−3, 11)

TR(k, 12) = TR(k−1, 11) TR(k, 14) = TR(k−3, 11)

TR(k, 13) = TR(k−2, 11) TR(k, 15) = TR(k−4, 11)

TR(k, 1) = 1, 2, 3, 4, 9, 19, 34, 65, 135, 275, 544, 1081, . . .

TR(k, 2) = 1, 0, 1, 3, 3, 5, 14, 31, 57, 109, 224, 455, . . .

TR(k, 3) = 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, 219, 441, . . .

TR(k, 4) = 0, 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

TR(k, 5) = 0, 0, 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

TR(k, 6) = 0, 0, 0, 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

TR(k, 7) = 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

TR(k, 8) = 0, 1, 0, 1, 4, 7, 12, 25, 53, 106, 207, 414, . . .

TR(k, 9) = 0, 0, 0, 0, 0, 1, 4, 7, 12, 25, 52, 103, 204, . . .

TR(k, 10) = 0, 1, 3, 3, 5, 13, 26, 47, 94, 194, 389, 770, 1539, . . .

TR(k, 11) = 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, 219, 441, 873, . . .

TR(k, 12) = 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

TR(k, 13) = 0, 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

TR(k, 14) = 0, 0, 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

TR(k, 15) = 0, 0, 0, 0, 0, 0, 1, 3, 3, 5, 14, 30, 54, 106, . . .

Generating functions

gTR1 (x) = 53
100

1

1−2x
+ 1

25

58−9x

1+x2
− 1

5

3−4x

(1+x2)2
− 5

4 + 1
2x+ 2x2 + x3

gTR2 (x) = 11
50

1

1−2x
− 1

25

58−9x

1+x2
+ 1

5

3−4x

(1+x2)2
+ 5

2 − x
2

gTR8 (x) = 61
300

1

1−2x
+ 1

100

53−169x

1+x2
+ 1

10

1+7x

(1+x2)2
− 1

12

1

1+x
− 3

4+ 3
2x−x

3

gTR9 (x) = 1
20

1

1−2x
− 1

5

4+3x

1+x2
+ ( 3

4 + 1
2x− x

2 − x3)

gTR10 (x) = 113
300

1

1−2x
+ 1

12

1

1+x
+ 1

100

99+73x

1+x2
+ 1

10

−7+x

(1+x2)2
−( 3

4+ 1
2x−x

2−x3)

gTR11 (x) = 16
75

1

1−2x
− 1

12

1

1+x
+ 1

100

−3+19x

1+x2
− 1

10

1+7x

(1+x2)2

Draft 23 page 264 of 391



gTR3 (x) = x.gTR11 (x) gTR6 (x) = x4.gTR11 (x)

gTR4 (x) = x2.gTR11 (x) gTR7 (x) = x5.gTR11 (x)

gTR5 (x) = x3.gTR11 (x)

gTR12 (x) = x.gTR11 (x) gTR14 (x) = x3.gTR11 (x)

gTR13 (x) = x2.gTR11 (x) gTR15 (x) = x4.gTR11 (x)

Proof. k=0 is a single line segment with a triangle on each side which are regions
1 and 2 so TR(0, 1) = TR(0, 2) = 1. Thereafter a curve level k consists of two
level k−1 curves directed as

12

11

13

10

9

14

1

8

2

15

7

3

6

4

5

7

6

9

8

5

10

4

11

3

2

12

15

1

13

14

The total triangles in each region are the triangles from the two k−1 sub-
curves which fall in it. For example in the bottom middle region which is 9
there are triangles from k−1 regions 7 and 6 of the left sub-curve and regions 5
and 4 of the right sub-curve. So a set of 15 mutual recurrences

TR(k, 1) = TR(k−1, 1) + TR(k−1, 2) + TR(k−1, 3) + TR(k−1, 8)

TR(k, 2) = TR(k−1, 9) + TR(k−1, 10) + TR(k−1, 15)

TR(k, 3) = TR(k−1, 11)

TR(k, 4) = TR(k−1, 12)

TR(k, 5) = TR(k−1, 13)

TR(k, 6) = TR(k−1, 14)

TR(k, 7) = TR(k−1, 15)

TR(k, 8) = TR(k−1, 2) + TR(k−1, 3) + TR(k−1, 4) + TR(k−1, 5)

TR(k, 9) = TR(k−1, 4) + TR(k−1, 5) + TR(k−1, 6) + TR(k−1, 7)

TR(k, 10) = TR(k−1, 1) + TR(k−1, 6) + TR(k−1, 7) + TR(k−1, 8)

TR(k, 11) = TR(k−1, 9) + TR(k−1, 10)

TR(k, 12) = TR(k−1, 11)

TR(k, 13) = TR(k−1, 12)

TR(k, 14) = TR(k−1, 13)

TR(k, 15) = TR(k−1, 14)

Repeated substitution or a little linear algebra gives the power forms (365)
for each. The generating functions follow from the power forms.

There are 2 triangles per segment so total of all regions is
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2.2k =

15∑
j=1

TR(k, j)

The way the recurrences form the next level from copies of the preceding
can be illustrated,

1

2 3 4 5 6

8 9

7

10 11 12 13 14 15

initial

Notice 11 propagates to 3, 12, 13, 14, 15, and from them in turn to 4, 5, 6,
7. Each of those receive nothing else so give region 11 delayed. But 11 is not a
delayed 10 because it also receives 9.

The proportions as k→∞ are the factors of 2k in the power formulas or
1/(1−2x) terms in the generating functions. With common denominator 300
they are

159

66

32 16

8

4

261

15

11364

32

16

8 4 1

300
density as k →∞(
total

600

300

)

Full weight 300/300 occurs on the right side of a segment when there are
a total 8 segments all contributing their fractions. This occurs first in k=5 at
n = 21.

Full weight 300/300 occurs on the left side of a segment when there are 7
surrounding segments all contributing their fractions. This occurs first in k=5
at n = 14 and n = 21.

Right
300/300
when

8 segments

Left
300/300
when

7 segments

One use for these densities could be in computer graphics to approximate
the fractal by some grey-scale colours at the limit of desired resolution.

If a line segment is the side of a square pixel then that line contributes
to 6 surrounding pixels. If a line segment is a diagonal across a pixel then it
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contributes to 8 surrounding pixels. When curve start to end is horizontal, these
straight and diagonal cases are k even or odd respectively.

24 102 24

96 348 6

1

1200
density

48 12

12
225

24

48 3 15

1

600
density

A full-weight straight square is 4 full triangles so total 1200. A full-weight
diagonal square is 2 full triangles so total 600. The straight weights have com-
mon factor 6 and the diagonal weights have common factor 3. Dividing them
out would be full weight 200 in both cases.

In practice, the effect is only a few pixels fuzz at the boundary, and grey
down the thin curve start and end. This is the sort of thing general sub-pixel
grey-scaling can do, but an exact calculation has the attraction of accurately
representing the amount of fractal in each pixel.

For straight alignment, only 21 different net weights occur. The weights
near full weight are too close to distinguish by eye in adjacent pixels. The
following sample has a non-linear spread of greys to emphasise the pattern.

30
96
120
150
174
270
354
450
570
576
600
630
720
750
900
930
1020
1050
1080
1170
1200

k=8
grey scale

pixel squares

start

end

15 Graphs and Trees

15.1 Dragon Graph

The dragon curve as a graph is, by its construction, a planar unit distance graph
and has an Euler path from start to end (traverse all edges once). It is bipartite,
like any graph on a square grid, since vertices can be separated into those with
coordinates x+y odd or even.

The curve has no Hamiltonian path start to end (visit all vertices once) for
k ≥ 4 since the vertices in hanging squares cannot be visited without repeating
the vertex they attach to.

If hanging squares are removed then for k ≥ 5 there is still no Hamiltonian
path since start and end of each blob ≥5 then have two degree-2 neighbours.
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blob start or end
sans hanging squares

A path entering or leaving at the centre vertex shown cannot visit both the
upper and lower. Just one such blob start or end in the graph would make it
non-Hamiltonian but in fact every blob ≥ 5 starts and ends this way, as can
be seen by the way the bridge and adjacent segments expand. The following
diagram is like figure 60 but more adjacent segments.

OR

ER =⇒

OL

EL

OL

EL

=⇒
ER

OR

These patterns of additional segments begin at OL--EL bridge which is blob
5 to blob 6 and is shown on the right here.

Points circled are on the boundary. They remain so in the expansion and
they show segments which are then in turn on the boundary. Taking a subset
of those segments suffices for the next expanded forms. The 3-vertex start/end
form is seen in the expansions directly at OL and OR. And at EL and ER with
the hanging square beside them removed.

The start and end of the curve are degree 1 vertices, other single-visited
points are degree 2, and double-visited points are degree 4.

DegCount(k, 1) = 2

DegCount(k, 2) = Sk − 2 = 0, 1, 3, 7, 13, 23, 41, 71, 121, 207, . . .

DegCount(k, 4) = Dk

Counts of edges with vertices of degree 1, 2 or 4 at each end can be made
too, using counts of 1, 2 and 3-side boundary squares from (124).

Theorem 85. The number of edges with degree 1, 2 or 4 vertices at each end
are

EdgeCount(k, 1,1) =

{
1 if k = 0

0 if k ≥ 1

EdgeCount(k, 1,2) =

{
0 if k = 0

2 if k ≥ 1

EdgeCount(k, 2,2) =

{
0 if k = 0, 1

BQ1 k + 2k − 5 if k ≥ 2

= 0, 0, 2, 6, 10, 16, 26, 40, 62, 100, 162, 264, . . .
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EdgeCount(k, 2,4) =

{
0 if k = 0, 1

2BQk − 2BQ1 k − 4k + 4 if k ≥ 2
(366)

= 0, 0, 0, 0, 4, 12, 28, 60, 116, 212, 380, 668, . . .

EdgeCount(k, 4,4) =

{
0 if k = 0, 1

2k − 2BQk + BQ1 k if k ≥ 2

= 0, 0, 0, 0, 0, 2, 8, 26, 76, 198, 480, 1114, . . .

Proof. The curve start and end are degree 1 and are connected to each other
for k=0 or to a degree 2 vertex for k ≥ 1.

All other single-visited vertices are degree 2. Per theorem 32, they are where
boundary squares touch. All 1-side boundary squares give 2,2 edges and all 2
or 3-side boundary squares with all sides on a blob have double-visited points
in between and so do not give 2,2 edges.

2 2

1-side,
2,2 edge

2 4

2

2-side on blob,
two 2,4 edges

2 4

42

3-side on blob,
two 2,4 edges

Figure 71: graph edges around boundary squares

2 or 3-side boundary squares with sides not on a blob but instead on a bridge
or the curve start or end may give 2,2 edges. In each bridge there is one 2,2
edge, and for k ≥ 5 the start and end segments are unchanging giving

EdgeCount(k, 2,2) = BQ1 k + BridgeCountk + 4 k ≥ 5

For k < 5, the 2,2 edges can be counted explicitly which is the theorem.
The 2 or 3-side boundary squares with all sides on a blob give two 2,4 edges

each. The squares with one side not on a blob are immediately before and
after each blob and they would count the 2,4 edge there twice, so subtract
2BlobCount . The squares with all sides not on a blob are excluded entirely
since they are 2,2 edges at the start and end of the curve. So

EdgeCount(k, 2,4) = 2BQ2 k + 2BQ3 k − 2BlobCountk − 12 k ≥ 5

Or 2,4 edges can be calculated by difference from the 2,2 edges. There are
DegCount(k, 2) = BQk−2 vertices of degree 2. The 2 edges at each such vertex
might go to a degree 1, 2 or 4 vertex. Subtracting the edges to degree 1 or 2 is
form (366) of the theorem.

EdgeCount(k, 2,4) = 2(BQk−2)− 2EdgeCount(k, 2,2)− 2EdgeCount(k, 1,2)

4,4 edges are the remainder out of the total 2k,

2k = EdgeCount(k, 1,1) + EdgeCount(k, 1,2)

+ EdgeCount(k, 2,2) + EdgeCount(k, 2,4) + EdgeCount(k, 4,4)
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All edges with a degree 1 or 2 vertex are on the boundary. Some 4,4 edges
are on the boundary and some are enclosed. In graph terms, an enclosed edge
is part of two 4-cycles. The boundary 4,4 edges are the middle segment of each
3-side boundary square with all sides on a blob as shown in figure 71. So BQ3
excluding squares on bridges and curve start and end.

EdgeCount(k, 4,4, boundary) =

{
0 if k < 5

BQ3 k − 4k + 12 if k ≥ 5

= 0, 0, 0, 0, 0, 1, 5, 13, 29, 61, 117, 213, . . .

The total of these 4,4 edges and the degree 1 and 2 edges are the bound-
ary segments, counting a segment on both left and right boundary just once.
Segments on both left and right are the non-blob segments so

EdgeCount(k, 1,1) + EdgeCount(k, 1,2)

+ EdgeCount(k, 2,2) + EdgeCount(k, 2,4)

+ EdgeCount(k, 4,4, boundary) = Bk −NonBlobSegmentsk

The enclosed 4,4 edges are simply all segments not on the boundary. Again
noting that Bk counts both sides of the non-blob segments,

EdgeCount(k, 4,4, enclosed) = 2k − (Bk −NonBlobSegmentsk)

=

{
0 if k < 5

2k −Bk + 6k − 13 if k ≥ 5

= 0, 0, 0, 0, 0, 1, 3, 13, 47, 137, 363, 901, . . .

Various graph-theoretic topological indices are based on total edges by their
vertex degrees. The 4,4 edges are a power 2k whereas the others go only as the
cubic rk (section 2) so limits for an average index over edges go just as the 2k

many 4,4.

Theorem 86. The diameter of dragon curve k considered as a graph is uniquely
attained from curve start to end crossing each blob straight and stair-step. The
length of this path is

Diameterk =

{
1 if k = 0

[3, 4].2

⌊
k
2

⌋
+ k − [4, 3] if k ≥ 1

= 1, 2, 4, 8, 12, 18, 26, 36, 52, 70, 102, 136, 200, 266, . . .

start

end
dragon graph k=9

shortest path
start to end

Diameter
9
= 70
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Proof. The path start to end is similar to GeomLength from section 12.1, but
taking the blob crossings stair-step so distance Manhattan(z) = Re z + Im z.

Diameterk = NonBlobSegmentsk +
∑

j=BlobListk

Manhattan
(
BlobDeltaj

)
To show this distance is in fact the diameter, consider first a prospective path

ending in the middle biggest blob k. It can begin anywhere earlier, including
within blob k itself.

. . . curve
end

blob k blob k−2 blob k−3

S
E

S is the start of blob k (at BlobStartk). Path S to E is at most the blob di-
ameter. If the prospective path begins within blob k then the whole prospective
path is also at most the blob diameter.

An upper bound for blob diameter can be established from the way line
segments expand. Any pair of vertices in a blob has some path between them
of length at most the blob diameter. Consider a segment A--B which is part of
such a path. After two expansions, those points are distance 2 apart. If there
is a another segment on the left side of A then it fills the gap so there are 2
segments to go A to B.

A

B

=⇒
A

B

=⇒

If there is no segment on the left then segment A--B is on the boundary.
There is no segment straight below since the boundary never goes straight ahead.
But there is a segment to the right since A--B is in a blob and so part of an
enclosed unit square.

A

B

=⇒
A

B

C

D E

Figure 72

If A is not the endpoint of the path then that path must go C--A--B and
a stair-step C to B is 4 segments so still 2× the original. If A and B are both
endpoints then they are a fixed 4 apart. The initial values for the diameter
upper bounds used below always exceed 4.

If A is an endpoint of some path then the gap A to B is an extra +2. So
after two expansions all original points can be reached by at most 2× and at
each end +2.

New vertices created in the expansion are 1 or 2 segments away from an
original. In figure 72, new vertex D beside an A endpoint is +3 at that end.
New vertex E beside an A endpoint can go 4 segments to B which is a net +2
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by skipping A. The same if A not an endpoint but C is. So all original and new
vertices are separated by at most 2× and at each end +3.

Extra vertices are added to the blob at its start and end when the bridges
expand to enclose new unit squares. The following diagram shows how the end
types expand twice.

OR

ER

=⇒
3 away

EL

OL

=⇒
4 away

When OR expands there is a new vertex +3 away from the original OR.
All blob starts and ends are double-visited, so three is no need to consider the
single visited cases of A described above.

When EL expands there is a new vertex +4 away. The crossing diagrams
above show that a blob with OR start and EL end occurs (third case) so the
diameter of the expanded blob is potentially as much as total +7 segments
longer than between originals, but no more than that.

BlobDiameterk ≤ 2BlobDiameterk−2 + 7

BlobDiameterBoundk = [ 43
32 ,

59
32 ].2

⌊
k/2
⌋
− 7 for k ≥ 10 (367)

starting BlobDiameter10 = 36 and BlobDiameter11 = 52

The shortest path from S to the curve end is the sum of the blob crossings
and the non-blob segments through to the curve end. Per BlobList there is no
blob k−1 at the curve end so that size is skipped in the sum.

TailLenk =
∑

j=k, k−2,k−3, ...,4

Manhattan
(
BlobDeltaj

)
+ 3 (k − 5) if k ≥ 6 bridges

+

{
5 if k = 4

7 if k ≥ 5
end segments

= [ 5
3 , 2].2

bk/2c
+ 1

2 k − [ 11
3 ,

5
2 ,

13
3 ,

5
2 ]

= 5, 8, 12, 17, 27, 34, 54, 67, 109, 132, . . . k ≥ 4

For k=4 to 9, the blob diameters are calculated explicitly 2, 5, 8, 12, 18, 26
and each is < the corresponding TailLen. For k ≥ 10, TailLen exceeds the blob
diameter bound formula (367),

TailLenk − BlobDiameterk ≥ [ 31
96 ,

5
32 ].2bk/2c + 1

2k + [ 10
3 ,

9
2 ,

8
3 ,

9
2 ] > 0

So a path to the curve end is longer than anything ending in middle biggest
blob k.

If the prospective path ends in one of the later end blobs k−2 etc then the
same calculation applies but TailLen does not skip a size in its sum (the k−1
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term) and so is bigger.
If the prospective path ends in one of the earlier start blobs 4 to k−1 then

the TailLen sum is bigger and the blob diameter is smaller.
For the start of the path, the same argument applies and TailLen to the

curve start does not skip size k−1, so a path from the curve start is longer than
from anywhere else.

It can be noted a single blob k crossing length Manhattan(BlobDelta) is not
enough to exceed the blob diameter bound (367), nor, in general, enough to
exceed the actual blob diameter (the blob diameter is not attained by that start
to end crossing). But the sum of such blob crossings and the non-blob segments
through to the curve end are enough.

The blob diameter bound (367) used starts k≥10 to ensure TailLen is bigger.
The coefficients of 2bk/2c in the bound depend on the initial values and they
decrease on going up through successive actual blob diameters as initial values.

It would be possible to calculate the eccentricity of blob start S instead of
the blob diameter. Its values are smaller than the blob diameter in general,
giving a smaller bound. A prospective path starting and ending in blob k still
needs a bound for the blob diameter but it would be compared to the whole
curve Diameterk not just TailLenk.

Taking a Diameter increment flattens factors 3 and 4 to a single 2dk/2e.

dDiameterk = Diameterk+1 −Diameterk

=

{
1 if k = 0

2dk/2e + [2, 0] if k ≥ 1

= 1, 2, 4, 4, 6, 8, 10, 16, 18, 32, 34, 64, 66, . . . k≥1 2×A228693

Another longest graph path can be made considering only boundary seg-
ments. The effect is to go around the shorter side of each blob skipping hanging
squares.

start

end

Dragon k=8

Path start to end
boundary segments

BoundaryPathLen
8
= 64

Theorem 87. The curve start and end are the points furthest apart going only
by boundary segments. For dragon curve level k, they are at distance

BoundaryPathLenk = NonBlobSegmentsk +
∑

j=BlobListk

BlobLnohangj

=

{
2k if k < 4
1
8BlobBnohangk+4 + 4k − [ 17

2 ,
31
4 , 9,

31
4 ] if k ≥ 4

(368)

= 1, 2, 4, 8, 12, 20, 28, 44, 64, 96, 148, 236, 376, . . .
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gBoundaryPathLen(x) = −13
1

1−x
+ 4

1

(1−x)2
− 1

2

1

1+x
+ 1

2

1+2x

1−x−2x3

+ 10 + 5x+ 4x2 + 2x3

where BlobLnohang and BlobBnohang are blob boundary lengths without hanging
squares

BlobLnohangk = BlobLk − 4BlobHQALk

= 0, 3, 2, 7, 12, 19, 34, 63, 100, 171, . . . k ≥ 4

BlobBnohangk = BlobBk − 4BlobHQAk (369)

= 0, 6, 8, 14, 36, 62, 104, 190, 324, 542, . . . k ≥ 4

Proof. The path from start to end must traverse all the non-blob segments.
For each blob, it can go around either left or right. The left is always shorter
since some explicit calculation for k < 9 and then some recurrence or generating
function manipulations gives a difference

BlobRnohangk = BlobRk − 4BlobHQARk

= 0, 3, 6, 7, 24, 43, 70, 127, 224, 371, . . . k ≥ 4

BlobRnohangk − BlobLnohangk =

{
0, 0, 4, 0, 12 k = 4 to 8

4BlobRk−5 + [16, 8, 8, 8] k ≥ 9

≥ 0

The BlobBnohang form (368) for BoundaryPathLen is reached by further
recurrence or generating function manipulations to sum BlobLnohang .

Suppose a prospective path ends in the middle biggest blob k. It can start
anywhere earlier, including somewhere on that blob.

E

... curve
end

blob k
k−2

k−3
S

S is the start of blob k. The distance from there to the end of the curve is

BoundaryTailk = BlobLnohangk +

k−2∑
j=4

(
BlobLnohangj + 3

)
+

{
5 if k=4

7 if k ≥ 5

= 5, 10, 12, 23, 33, 50, 80, 131, 205, 342, . . . k ≥ 4

E is the end of the prospective path. It goes around the blob boundary
a distance at most 1

2BlobBnohangk and then might go into hanging squares.
For k=4 and k=5, it can be verified explicitly that BoundaryTail exceeds the
maximum E. For k ≥ 6, the maximum extra into a hanging quad is +5. The
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difference between BoundaryTail and that distance is positive by yet further
recurrence or generating function manipulations,

BoundaryTailk −
(

1
2BlobBnohangk + 5

)
=

1

4

(
dJAk−3 + 18dJAk−4 − 10dJAk−5

+ 8(k − 6) + [15, 21, 11, 17]

)
k ≥ 6

> 0 since dJA non-decreasing

Then similar to the proof above a path ending in a later blob also has the
curve end further than anywhere in the blob, and likewise at the start of a path
the curve start is further.

If the hanging squares are included in the boundary path, so a path is forced
to go all the way around the boundary, not cutting across hanging attachment
points, then a similar calculation gives curve start and end furthest apart for
such paths.

15.1.1 Dragon Graph Cheeger Constant

For a graph with vertex set V , the Cheeger constant is defined as

min
|edges A to V \A|

|A|
for A ⊂ V and |A| ≤ |12V |

A small value represents a narrow bottleneck, expressing how few edges there
are connecting some vertex subset A to the rest of the graph (vertices V \A),
as a fraction of the vertices in A. A is at most half the vertices so the ratio is
taken over the vertices on the smaller side of the bottleneck.

Theorem 88. The Cheeger constant of dragon curve k as a graph is attained at
the edge preceding middle biggest blob k, or for k≤3 in the middle of the curve.

Cheegerk =

{
1, 1, 1

2 ,
1
4 for k = 0 to 3
1

BlobPrecedingPk
for k ≥ 4

where BlobPrecedingPk is the number of vertices (distinct points) before blob k,
and not including any of that blob

BlobPrecedingPk = 7 +

k−1∑
j=4

(
BlobP j + 2

)
k ≥ 4

= 1
5 2k + 1

8BlobBk+2 + 1
20 [26, 37, 54, 43] (370)

= 7, 13, 24, 43, 79, 149, 284, 543, 1043, 2017, . . . k ≥ 4

gBlobPrecedingP(x) = x4 7

1−x
+

1

1−x

(
xgBlobP(x) + x5 2

1−x

)
= 5

4

1

1−x
− 1

10

7 + 4x

1+x2
+ 1

5

1

1−2x
+ 1

4

1 + 2x+ 2x2

1−x−2x3

− (1 + 2x+ 4x2 + 5x3)
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Proof. For k ≤ 3, the curve is a straight line so the worst bottleneck is its
middle.

For k ≥ 4, the edge before the middle biggest blob has BlobPrecedingPk

vertices preceding. This is the sum of the preceding blobs plus 2 points on the
bridge after each, and 7 points at the start of the curve. Some recurrence or
generating function manipulations give (370).

The total vertices are the distinct visited points Pk from (175). Some recur-
rence or generating function manipulations give the following difference, show-
ing BlobPrecedingPk <

1
2Pk so the points preceding are the smaller subset.

1
2Pk−BlobPrecedingPk = 1

202k + 1
2dJAk−1 − [ 3

10 ,
3
5 ,

17
10 ,

7
5 ] > 0 (371)

The end of the curve is a reversal of the start. Its blobs go to k−2 so
the points after the middle biggest blob are fewer than those before it. So
BlobPrecedingPk is the maximum for any 1-edge bottleneck.

A bottleneck of ≥ 2 edges would have minimum Cheeger constant 2/( 1
2Pk)

= 1/( 1
4Pk). But BlobPrecedingPk is bigger than

1
4Pk since some more recurrence

or generating function manipulation gives a difference with all positive terms.

BlobPrecedingPk − 1
4Pk = 3

402k + 1
4dJAk + 3

8dJAk+1 + [ 17
40 ,

29
40 ,

73
40 ,

61
40 ] (372)

> 0

The difference identities (371),(372) use dJA only as a convenient way to
express the cubic recurrence terms and see the result is positive.

At (370), BlobPrecedingP grows as 1
52k. Pk grows as 1

22k, for a ratio ap-
proaching 2

5 . That ratio is approached from above since the cubic and periodic
parts of the following identity are positive. In the proof it's enough that the
ratio is always between 1

4 and 1
2 .

BlobPrecedingPk = 2
5Pk + 1

20δk + [ 7
20 ,

13
20 ,

7
4 ,

29
20 ] k ≥ 4

where δk = δk−1 + 2δk−3 starting δ4,5,6 = 5, 15, 13

= 5, 15, 13, 23, 53, 79, 125, 231, . . . k ≥ 4

Variations on the Cheeger constant can be made by weighting the vertices.
An easy possibility for the dragon curve is to count double-visited points as
double weight, being the number of visits to each point. The worst location is
still the segment before the middle biggest blob with weight BlobN k preceding
that location. The ratio BlobN k to total 2k+1 approaches 2

5 per its 2
52k in

(302), the same ratio as BlobPrecedingPk to Pk.

15.2 Twindragon Graph

Theorem 89. For twindragon k as a graph, the length of the shortest path from
curve start to end is

TEndLengthk =

 2 if k=0

1
3

(
[10, 14] 2

⌊
k
2

⌋
+ [16, 11, 14, 13]

)
+ k if k ≥ 1

(373)

= 2, 2, 4, 8, 12, 20, 28, 40, 56, 80, . . .

Proof. The twindragon comprises two dragon curves back-to-back.
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start

end

second curve

end blob k−1
end blob k−2

�rst dragon curve,

start to end

second dragon curve,

end to start

Figure 73:

twindragon k=9 as two
dragon curves k+1

At the start of the twindragon, the left boundary is the end of the second
curve. The bridges between its blobs are on the boundary so the shortest path is
to go around across those blobs straight or stair-step as per diameter theorem 86.

Per the expansions in that theorem, the bridges are directed to the left side
of the blobs and these are the inward side of the spiralling end here. So the
blob endpoints are the furthest outwards among the bridge points.

Then at the start of end blob k−1 of the second curve, a direct stepped path
can be taken across the twindragon middle to the corresponding point at the
end of the twindragon in the first curve. This is shown dashed in figure 73. This
path can stay entirely between the diagonals of end blob k−1 and its following
middle biggest blob k+1. Since the two dragon curves mesh perfectly there is
a full grid of segments in between.

TMiddlek =
(
bk+1−iBlobStartk−1

)
−
(
iBlobStartk−1

)
across middle

= 2−4i, 6−2i, 8+4i, 4+14i, −10+20i, . . . k≥5

For k≥ 6, there is a blob k−2 ≥ 4 and a fixed 7 segments at the end of
dragon curve k+1. The path through the twindragon from start to end length
is then

TEndLengthk = 2

(
7 +

k−2∑
j=4

Manhattan
(
BlobDeltaj

)
+ 3

)
k≥6

+ Manhattan
(
TMiddlek

)
For k < 6, the shortest path is calculated explicitly and is per (373) too.

TEndLengthk is shorter than the dragon Diameterk+1 start to end since
the second back-to-back dragon gives opportunities for a shorter path in the
twindragon. This is achieved by following the second dragon curve (its end)
through to the middle as shown above. The shortening is

Diameterk+1 − TEndLengthk

=

{
0 if k=0

2
3

(
2dk/2e + [5, 1, 4, 2]

)
if k ≥ 1
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= 0, 2, 4, 4, 6, 6, 8, 12, 14, 22, 24, 44, 46, 86, 88, . . .
even 2×A023105, odd A052953

When the twindragon is scaled by 1/
√

2k+1 for start to end a unit length,
the odd and even cases of TEndLength do not converge to the same value. But
they do if distances are taken geometrically, so 45◦ along the blob diagonals
and directly across the middle by its slope.

TGeomLengthk = 2

(
7 +

k−2∑
j=4

∣∣BlobDeltaj
∣∣+3

)
+
∣∣TMiddlek

∣∣ k ≥ 6

= ( 2
3+ 1

3

√
2)
√

2 k+1 + (4− 3
2

√
2)k

+ 1
6

[
−52+20

√
2, −68+29

√
2, −56+22

√
2, −64+31

√
2
]

+ 1
3

√
5.2k+1 − [44, 40, 40, 80]2bk/2c + [52, 20, 40, 80]

TGeomLengthk√
2k+1

→ 1
3

(
2 +
√

2 +
√

5
)

= 1.883427 . . . (374)

This can be compared to the corresponding dragon curve GeomLength limit
1+
√

2 = 2.414... from section 12.1. The twindragon is shorter by factor

TGeomLengthk
GeomLengthk+1

→ 1
3

(√
2−
√

5 +
√

10
)

= 0.780141 . . .

When rotated to the twindragon endpoints horizontal as in figure 73, the
middle part has slope x = 2y except when k ≡ 0 mod 4 where it is one less unit
square at 45◦ so x = 2y −

√
2. In both cases, this gives

√
5 in the limit (374).

yk = Im TMiddlek .ω
k+1
8 = 1

3

√
2k+1 − [ 1

3

√
2, 2

3 ,
1
3

√
2, 4

3 ]

xk = Re TMiddlek .ω
k+1
8 = 2yk − [

√
2, 0, 0, 0] for k ≥ 1

∣∣TMiddlek
∣∣= √{5y2

k + 2
√

2yk − 2 k ≡ 0 mod 4

5y2
k k ≡ 1, 2, 3 mod 4

start

end

k=8
middle crossing
x one unit square
left of slope 2:1
shown dotted

15.3 Twindragon Area Tree

When the corners of the twindragon curve are chamfered off, the unit squares
enclosed inside the curve are connected through the resulting gaps. Call this an
area tree.
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start

end

k=6

twindragon
area tree

middle
edge

An equivalent definition is to connect unit squares which are on the left of
consecutive curve segments. When the curve turns to the right the unit squares
on the left of the segments are distinct. A turn is always left or right (never
straight ahead) so those connections are through corners of the squares

edge between unit squares
on left sides of consecutive

curve segments

Mandelbrot[34] conceives these area connections as rivers. The curve follows
the riverbank upstream until reaching a source and then goes back down along
the other side of the river and branches. For a closed curve like the twindragon,
the squares inside the curve form entirely inland waterways. For area enclosed
on the outside of a curve (or any unclosed curve), the rivers flow eventually to
the ``sea'' outside.

Nekrashevych[37] considers the tree as adjacencies between fractal tiles and
as a Schreier graph.

The tree edges correspond to the interior walls of the twindragon midpoint
labyrinth shown in figure 44. Vertices are degree 1, 2 or 3 and are quite sparse
when straightened out.

k=6
straightened to branches

o� the diameter

As from section 11.1, the unit squares inside the twindragon are diamonds at
135◦ corresponding to points in complex base i+1. Vertices of the twindragon
area tree can be numbered that way, and in that orientation.
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0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

k=4 twindragon area tree,

complex i+1 numbering
binary

Theorem 90. Label the vertices of twindragon area tree k with the point num-
bers n of complex base i+1. A horizontal edge is between a given n and its least
signi�cant bit toggled,

h 0

edge, horizontal

h 1 k ≥ 1

A vertical edge is between n points with low bits of the following form,

h 10 11 . . . 11 k ≥ 2upper

edge, vertical

00 . . . 0001hlower

zero or more bits

Proof. In twindragon k, suppose the diamonds at corners are complex base point
numbers sk start, ek end, and ak, ck opposite corners. The twindragon consists
of two copies of the previous level k−1

sstart

e end

ca

=⇒

0 1

s

e

c

a

s′

e′

a′ c′

s′

e′

a′ c′

Figure 74:

corner

expansion

So the respective points are given in terms of k−1, starting from a single
zero point s0 = e0 = a0 = c0 = 0 for k=0. For ck and ek, the sub-part corners
are in the right half so add 2k−1.

sk = sk−1 = 0

ak = ek−1 =

{
0 if k=0

2k−1 − 1 = 011 · · · 111 k−1 ones if k ≥ 1

ck = sk−1 + 2k−1 =

{
0 if k=0

2k−1 = 100 · · · 000 if k ≥ 1
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ek = ek−1 + 2k−1 = 2k − 1 = 111 · · · 111 k ones

The connection between the two twindragon sub-parts is 0.c′ to 1.a′. In
k=1, this is a horizontal edge 0 to 1

c0 = 0 left

a0 + 20 = 1 right

In k ≥ 2, this connection is lower = 0.c′ to upper = 1.a′

ak−1 + 2k−1 = 2k−1 + 2k−2 − 1 = 1011...11 = upper

ck−1 = 2k−2 = 0100...00 = lower

lower to upper edge is vertical since writing these bit patterns in complex
base b=i+1 has difference

upper − lower =

(
bk−1 +

k−3∑
j=0

bj
)
− bk−2 = i k ≥ 2

When the twindragon replicates all the existing edges are replicated so there
is an arbitrary run of high bits on the edge forms.

These bit patterns can be used to construct the tree for computer calculation,
including drawing it in the complex base shape by the edge directions. For a
whole tree it's probably most efficient to make edges upper to lower by a loop
over bit patterns. If going by n or an isolated part of the tree then some bit-
twiddling on n can identify when it has an edge to an upper and/or lower vertex.
Horizontal edges are always simply the low bit toggled.

TAVertexToLower(n)

mask = BITXOR(n, n+1) lowest 0 and all bits below

if BITAND(n,mask+1) 6= 0 bit above lowest 0

then n is an upper and has edge downwards to

lower = n−mask

TAVertexToUpper(n)

mask = BITXOR(n, n−1) lowest 1 and all bits below

if BITAND(n,mask+1) = 0 bit above lowest 1

then n is a lower and has edge upwards to

upper = n+ mask

The direction upper or lower from n can also be a parameter 0 = go up or
1 = go down. A possible low run of that bit is skipped and the next run (opposite
bit) must be only a single bit long. mask is the same as above but applied with
an XOR to toggle the low run and next two bits.

TAVertexToOther(n, direction = 0 or 1)

transitions = BITXOR(n, 2n+direction)

mask = BITXOR(transitions, transitions−1)
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if BITAND(transitions, mask+1) 6= 0

then there is an edge to

BITXOR(n, 2mask+1)

Predicates for when a vertex n has an upper or lower neighbour follow from
the bit patterns as simply testing bit above lowest 1-bit or 0-bit. These are the
curve turn sequence,

TAVertexToUpperPred(n) = TurnLpred(n)

TAVertexToLowerPred(n) = TurnRpred(n+1)

These bit operations are all for the tree continued infinitely. For a tree of
given k, the TAVertexToUpper would be restricted to an n < 2k.

Theorem 91. The number of degree 0, 1, 2 or 3 vertices in twindragon area
tree k are

TADegCount(k, 0) =

{
1 if k = 0

0 if k ≥ 1
A000007

TADegCount(k, 1) =

{
0, 2, 2 if k = 0 to 2

2k−2 + 2 if k ≥ 3
(375)

= 0, 2, 2, 4, 6, 10, 18, 34, 66, 130, . . .

TADegCount(k, 2) =

{
0, 0, 2 if k = 0 to 2

2k−1 − 2 if k ≥ 3

= 0, 0, 2, 2, 6, 14, 30, 62, 126, 254, . . .

TADegCount(k, 3) =

{
0, 0, 0 if k = 0 to 2

2k−2 if k ≥ 3
(376)

= 0, 0, 0, 2, 4, 8, 16, 32, 64, 128, . . .

Proof. Twindragon level k is two twindragons level k−1 meeting at a corner

start

end

Twindragon k
from two k−1

connected at corner
connection

The unit square at the corner of the sub-parts is formed by two dragon
curve ends meeting. For k ≥ 3, those ends are a U shape. This is seen in k=3
(JA3 = 1) and that shape is maintained by each expansion thereafter (the right
side unfold hanging square from (362)).

connection

Twindragon corner
connection square

for k−1 ≥ 3

start

start
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So for k−1 ≥ 3 the square which will connect to make twindragon k has just
one edge leaving it. The tree vertices by degree are two copies of the k−1 parts
except the connection changes two degree-1 squares to degree-2 each.

TADegCount(k, 1) = 2TADegCount(k−1, 1) − 2 k ≥ 4

TADegCount(k, 2) = 2TADegCount(k−1, 2) + 2

TADegCount(k, 3) = 2TADegCount(k−1, 3)

Second Proof of Theorem 91. Vertex degrees can also be counted from the bit
patterns of theorem 90.

For k ≥ 1, every vertex can toggle its low bit for the left to right edge so
degree ≥ 1. n is only one of these left or right so degree cannot be 4, only at
most 3.

Degree-3 vertices are those n which are both upper and lower forms. An
upper ending 1011...11 is also a lower only when it ends 01 so three bits 101.
Similarly lower ending 0100...00 is also an upper only when it ends 10 so three
bits 010. The bits above these are arbitrary so

TADegPred(k, n, 3) =

{
1 if k≥ 3 and n ≡ 2 or 5 mod 8

0 otherwise
n A047617 (377)

TADegCount(k, 3) = 2.2k−3 k ≥ 3

Degree-2 vertices are upper but not lower or vice-versa. Count upper and
subtract those which are both upper and lower (the degree-3 vertices). The
count of lower less both likewise.

TADegCount(k, 2) = 2

(( k−2∑
j=0

2j
)
− TADegCount(k, 3)

)

Degree-1 vertices are the remainder of the total 2k vertices. Or to count
directly, they are those n which are neither upper nor lower . For k ≥ 3, an n
entirely 11...11 or 011...11 is neither upper nor lower . Otherwise n with one or
more trailing 1-bits must end ...0011...11 to avoid being upper , and it cannot
end a single ...001 or that would be lower . The same for trailing 0-bits to be
neither upper nor lower , giving

TADegCount(k, 1) = 2

(
2 +

k−4∑
j=0

2j
)

k ≥ 3

A yet further approach for TADegCount(k, 1) is that a degree-1 vertex has all
sides of the twindragon diamond consecutive and so is on the left of a sequence
of 3 left turns. There are A3 leftk+1 of these (section 4.1) in each of the two
dragons making up the twindragon, and for k≥1 the twindragon start and end
are each a further 3 left turns so

TADegCount(k, 1) = 2A3 leftk+1 + 2 k ≥ 1

The total of all degrees is twice total edges, as for any graph. The twindragon
has 2k unit squares inside so the area tree has 2k−1 edges.
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2k−1 = 1
2

3∑
d=0

d.TADegCount(k, d)

For k ≥ 4, the degree-3 vertices are copies of the previous level tree, no new
degree-3 arise.

The degree of a given vertex n follows from the bit patterns too. An upper
is a 1-bit above lowest 0. A lower is a 0-bit above lowest 1. But in both cases
the bit above cannot be outside k bits for a level k tree.

TADegree(k, n) =
(
1 if k ≥ 1

)
+
(
BitAboveLowestZero(n) if k ≥ 1

)
+
(
1−BitAboveLowestOne(n) if n6=0 and n 6=2k−1

)
For the tree continued infinitely there is no restriction,

TADegree(∞, n) =

1 if n = 0

2 + BitAboveLowestZero(n)
− BitAboveLowestOne(n)

if n ≥ 1

= 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 1, 2, 3, 2, . . .

This can be written as an increment (using Zero in terms of One from (6))

TADegree(∞, n) =

{
1 if n = 0

2 + dBitAboveLowest(n) if n ≥ 1

dBitAboveLowest(n)=BitAboveLowestZero(n)−BitAboveLowestOne(n)

= BitAboveLowestOne(n+1)−BitAboveLowestOne(n)

= 0, 1,−1, 0, 1, 0,−1, 0, 0, 1, 0,−1, 1, 0,−1, 0, 0, 1,−1, 0, . . . n≥1

Cases for dBitAboveLowest can be written out like sBitAboveLowest at (22)

dBitAboveLowest(n) =


−BitAboveLowestOne(n) n≡0 mod 4

BitAboveLowestOne(n+1) n≡1 mod 4

−BitAboveLowestOne(n) + 1 n≡2 mod 4

BitAboveLowestOne(n+1)− 1 n≡3 mod 4

= (−1)LowestBit(n).

(
SecondLowestBit(n)

− BitAboveLowestOne
(
n+ LowestBit(n)

))
At (375),(376), count of degree-1s and degree-3s differ by just 2. Per (377),

degree-3s are every n ≡ 2, 5 mod 8, and it can be seen in TAdegree(∞, n) there
is a degree-1 between each.

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...

TAdegree(∞, n) = 1 2 3 1 2 3 2 1 2 2 3 2 1 3 2 1 2 2 3 1 2 3 2 ...

degree-3 at n ≡ 2, 5 mod 8

one degree-1 between each degree-3

This can be seen firstly by n ≡ 1 mod 8 = binary 001 and n ≡ 6 mod 8 =

Draft 23 page 284 of 391



binary 110 are always dBitAboveLowest = 0 so degree-2. Then at n ≡ 3 mod 4,
further bits to the lowest zero are some x011...11. And increments n+1 ≡ 4
mod 4 = x100...00. They have dBitAboveLowest = x−1 and −x respectively so
one is 0 and the other −1, hence exactly one is −1 for degree-1.

There is a degree-1 at n=0, and for finite k ≥ 1 there is another there is
another at the end n= 2k−1, so 2 more degree-1s than degree-3s.

The twindragon is symmetric in 180◦ rotation so the squares connected by
the new middle edge are at equivalent positions in each half. So the tree is
symmetric across its centre edge and likewise each half is symmetric across its
centre edge, etc, all the way down to a single vertex.

halves identical across centre edge,
each half likewise identical across centre edge

A tree with this recursive isomorphic halves property always has 2k vertices.
Various such trees can be made by choosing which vertex of each half to connect.
The connection can be between the same vertex in each half, like the twindragon
area tree has, or between any two of equal eccentricity.

A straight-line path of 2k vertices is trivially such a tree and is the only such
tree for k≤ 2. For k=3, there is the 8-path and one non-path. The twindragon
area tree is the non-path. For k≥ 4, the twindragon area tree is one among
several trees.

Theorem 92. In twindragon area tree k≥ 1, the only automorphism is a 180◦

rotation. Single vertex k=0 trivially has no automorphisms.

Proof. k has an automorphism swapping the two k−1 halves. Any other auto-
morphism would be swapping branches within a half, and that would be so also
in k−1. So by induction there are no such.

The automorphism swapping halves in k−1 is lost because k−1 is bicentral
(for k−1≥ 1) so branches at the connection are unequal sizes. This holds for all
trees of isomorphic halves connected at same vertex as described above.

The connection argument for the degree counts above can also give counts of
edges which have vertices of degree 1, 2 or 3 at each end. Twindragon k≥ 4 has
corner square degree-1 as above, and also the square connected to that corner is
degree-2. When the degree-1 of each half are linked their adjacent edges change
from 1,2 to 2,2 and the new edge is 2,2 also.

TAEdgeCount(k, 1,2) = 2TAEdgeCount(k−1, 1,2) − 2 k ≥ 5

TAEdgeCount(k, 2,2) = 2TAEdgeCount(k−1, 2,2) + 3

TAEdgeCount(k, other) = 2TAEdgeCount(k−1, other)

With initial counts calculated explicitly,

TAEdgeCount(k, 1,1) =

{
1 if k = 1

0 otherwise
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TAEdgeCount(k, 1,2) =

{
0, 0, 2, 2 if k = 0 to 3

2k−3 + 2 if k ≥ 4

= 0, 0, 2, 2, 4, 6, 10, 18, 34, 66, 130, . . .

TAEdgeCount(k, 2,2) =

{
0, 0, 1, 0 if k = 0 to 3

2k−2 − 3 if k ≥ 4

= 0, 0, 1, 0, 1, 5, 13, 29, 61, 125, 253, . . .

TAEdgeCount(k, 1,3) =

{
0, 0, 0, 2 if k = 0 to 3

2k−3 if k ≥ 4

= 0, 0, 0, 2, 2, 4, 8, 16, 32, 64, 128, . . .

TAEdgeCount(k, 2,3) =

{
0, 0, 0, 2 if k = 0 to 3

3.2k−3 if k ≥ 4

= 0, 0, 0, 2, 6, 12, 24, 48, 96, 192, 384, . . .

TAEdgeCount(k, 3,3) =

{
0, 0, 0 if k = 0 to 2

2k−3 if k ≥ 3

= 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, . . .

Various graph-theoretic topological indices are based on sums over edges
and their vertex degrees. Notice all the edge types (except the solitary 1,1 in
k=1) go as a power 2k so all contribute to a limit if taking a mean index over
number of edges.

As an example, the second Zagreb index M2 of Gutman and Trinajsti¢ [25]
is product of vertex degrees at the ends of each edge.

ZagrebM2 (graph) =
∑

edges

degree1 .degree2

TAZagrebM2 k =
∑

d1,d2=1,2,3

d1.d2.TAEdgeCount(k, d1,d2)

=

{
0, 1, 8, 31 if k = 0 to 3

5.2k − 8 if k ≥ 4

= 0, 1, 8, 31, 72, 152, 312, 632, 1272, . . . k≥4 A154252

15.3.1 Twindragon Area Tree Diameter and Wiener Index

Theorem 93. The graph diameter of twindragon area tree k is uniquely attained
between the squares at curve start and end. They are connected along the left
boundary squares of the two k+1 back-to-back dragons forming the twindragon.

k

start

end

LQ
TAdiameterk = LQk+1 − 1

= 0, 1, 3, 5, 9, 17, 29, 49, 85, 145, . . .
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start

end

k=6
diameter squares
between dragons

TAdiameter6 = 29

Proof. It will also be shown that the graph eccentricity (longest path beginning
there) of the square at the opposite corner is achieved by the right boundary
squares going to the start square.

k

ecck

start

end

RQ
ecck = RQk−1

= 0, 1, 2, 4, 8, 14, 24, 42, 72, 122, . . .
k≥1 1

2 A227036

For k=0, the twindragon is a single square and the diameter and this eccen-
tricity are both 0. Suppose then the theorem and eccentricity are true of some
k. For k+1, the expansion of the twindragon component sides are

start

end

TAdiameterk+1 = 2ecck + 1

= LQk+2−1

Any tree has every vertex eccentricity ≥ ddiameter/2e. When two copies of
a tree are joined by a new edge the new diameter is always across that connection
since the eccentricities of the two vertices connected give a path through there
≥ 2dd/2e+ 1 > d.

For TAdiameterk+1, this is 2ecck + 1 going twindragon start to end. The
four k dragon curves which have these squares on their left are the left side of a
k+2 curve and therefore TAdiameterk+1 = LQk+2 − 1. Or also 2RQk as from
figure 19 and identity (113).

For the eccentricity in level k+1,

start

endecck+1

ecck

ecck+1 = max(TAdiameterk, LQk + ecck)

= max(LQk+1−1, LQk+RQk−1)

= max(LQk+1−1, RQk+1−1)

= RQk+1 − 1

Corner ecck+1 is dragons pointing away so the start point of level k. If
its eccentricity is achieved within the upper half then it is TAdiameterk. If the
eccentricity goes into the bottom half then it follows left side k to the connection
and the eccentricity there is ecck is to the start square. The latter is greatest
since its two parts make a dragon right RQk+1 and this is > LQk+1 since
RQk+1 − LQk+1 = dJAk+2 > 0 from (166).
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LQk is even for k ≥ 1, since it is for k = 1, 2, 3 and its recurrence then
maintains that. So TAdiameterk is odd for k ≥ 1 making the area tree bicentral
after the single-vertex tree of k=0.

The height of a rooted tree is the eccentricity of the root. For the twindragon
area tree, TAdiameter is attained by a path from the start, so TAdiameter is
also the height.

The Wiener index is a measure of total distance between pairs of vertices in
a graph.

Wiener index = 1
2

∑
vertices u,v

distance(u, v)

Factor 1
2 has the effect of taking distance between a pair u, v in just one

direction, not also its reverse v, u.

Theorem 94. The Wiener index of twindragon area tree k is

TAW k = 10TAW k−1 − 32TAW k−2 + 160TAW k−3 (378)

− 768TAW k−4 + 1024TAW k−5

=
(

1
136LQk + 19

136LQk+1 + 9
272LQk+2 − 1

8

)
4k − 3

34 2k (379)

= 0, 1, 10, 68, 488, 3536, 23968, . . .

gTAW (x) =
x− 32x4

(1−2x) (1−4x) (1−4x−128x3)

= − 3
34

1

1−2x
− 1

8

1

1−4x
+ 1

136

29 + 112x+ 768x2

1− 4x− 128x3

Proof. Twindragon area tree k comprises two k−1 trees connected across a
middle edge c1, c2.

k

C

S
start

end

=⇒
k−1

k−1

start

endC

S

c2

c1

Let TAwS be the sum of distances from start vertex S to all other vertices,
and let TAwC be the sum of distances from corner connection vertex C to all
other vertices.

TAwSk =
∑

v
distance(S, v)

= 0, 1, 6, 22, 80, 296, . . .

TAwC k =
∑

v
distance(C, v)

= 0, 1, 4, 18, 72, 248, . . .
(380)

TAwS can be calculated from the two k−1 sub-trees. For S to vertices in
the lower half, the total distance is TAwSk−1. For S to vertices in the upper
half, take first the distance from S to c2, which is RQk−1 as from the diameter
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in theorem 93. There are 2k−1 vertices in the upper half, so that factor on this
distance. Then c2 is a C type corner so TAwC k−1 from c2 to the upper vertices.

Similarly TAwC , except the distance C to c1 is LQk−1

TAwSk = TAwSk−1 + 2k−1RQk−1 + TAwC k−1 (381)

TAwC k = TAwSk−1 + 2k−1LQk−1 + TAwC k−1 (382)

starting TAwS0 = 0, TAwC 0 = 0

The right sides are a sum TAwSC = TAwS + TAwC , and (381)+(382) is a
recurrence for that sum

TAwC k = TAwSC k−1 + 2k−1LQk−1

TAwSC k = 2TAwSC k−1 + 2k−1BQk−1 = 2k−1
k−1∑
j=0

BQj

= 2k−2
(
BQk+2 − 5

)
= 0, 2, 10, 40, 152, 544, 1888, . . .

The Wiener index can then be calculated from TAwC of the two tree halves.
Distance between vertex pairs both in the upper half is Wiener TAW k−1, and
the same when both in the lower half. For one vertex in the lower half and
one in the upper, there is distance TAwC k−1 to go from lower vertices to c1,
multiplied by 2k−1 upper vertices which each one then goes to. The same upper
vertices to c2. Then add 4k−1 total paths across edge c1, c2.

TAW k = 2TAW k−1 + 2.2k−1TAwC k−1 + 4k−1

= 2k−1(2k−1) + 2k
k−1∑
j=0

TAwC k−1

This cumulative TAwC is cumulative LQ plus double-cumulative BQ . Some
recurrence or generating function manipulations give (378) and (379). For the
generating functions, a term like 2kLQk becomes gLQ(2x). The final factor
4k is substitute 4x into the dragon cubic so 1 + 4x + 2(4x)3 in the gTAW
denominator.

Second Proof of Theorem 94. The Wiener index can also be calculated bottom-
up by considering traversals of edges at vertices.

Take each vertex and possible edges in directions s, a, c, e in the manner of
figure 74. Let s, a, c, e be the number of vertices in the sub-tree on the other
side of each such edge respectively. Vertices are at most degree-3 so at least
one of these counts is 0 for no other vertices and no edge there.

1
2s

1
2

c 1
2

e

1
2 a

TAW k = 1
2

∑
each
vertex

∑
t =
s,a,c,e

t (2k − t)k
vertex

(383)

The Wiener index is sum of crossings of each edge. The number of paths
crossing an edge is product of number of vertices on each side. For example e
on one side and everything else 2k−e on the other. Summing over all edges at
each vertex counts edges twice (the vertex at each end) so 1

2 at (383).
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On expanding 2 and 3 times each vertex becomes

4s

4c 4e

4a

k+2

8s 8a

8c 8e

k+3

Crossings in k+2 are TAW k+2. Expanding k+2 to k+3 replaces each vertex
by a pair. The edges between the pairs are the same crossings as in k+2, but
2× vertices so products 4×. The pair edges are 1 vertex in from the outside so
their crossings ∑

vertices

∑
t=s,a,c,e

(
8t+1

) (
2k+3 − 8t+1

)
= 16.4k + 12.2k + 64

∑
vertices

∑
t=s,a,c,e

t(2k−t) (384)

(384) is since s+a+c+e = 2k−1. The double sum part of (384) is TAW k from
(383), so

TAW k+3 = 4TAW k+2 + 128 TAW k + 16.4k + 12.2k

It's necessary to go to k+2 and k+3 to match up crossings of the extra
edges on expansion to make a recurrence. The outer edge crossings correspond
to k, as do the edges immediately inwards such as the pairs. But the middle
vertical is products like (c+e).(s+a) and k+2, k+3 have extra edges in the s
and e direction which are not isolated by the sum in k. Expanding to k+1 can
give the middle edge, but not the extras.

The expansion of each vertex to a horizontal pair allows the crossings of
horizontal and vertical edges to be counted separately. k−1 connections become
the verticals in k, but in k there are 2× vertices each side so 4× crossings. The
horizontal crossings are then by difference from total TAW k.

TAW k = TAWhorizk + TAWvertk

TAWvertk =

{
0 if k=0

4TAW k−1 if k ≥ 1

= 0, 0, 4, 40, 272, 1952, 14144, . . .

TAWhorizk =

{
0, 1, 6 if k = 0, 1, 2

128TAW k−2 + 4k−1 + 3.2k−1 if k ≥ 3

= 0, 1, 6, 28, 216, 1584, 9824, . . .

There are 2k−1 horizontals and 2k−1−1 verticals, for k≥1, but the vertical
crossings are greater, as can be seen by initial TAWvhdiff 3,4,5 > 0 and then
recurrence manipulations to reach (385).

TAWvhdiff k = TAWvertk − TAWhorizk

= 4TAWvhdiff k + 128TAWvhdiff k + 4k−1 + 9.2k−1 k≥4 (385)
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= 0,−1,−2, 12, 56, 368, 4320, . . .

In terms of just tree connectivity, vertical and horizontal crossings can be
counted working inward from leaves. The replications mean that leaf vertices
have horizontal edges, degree-2 have 1 vertical and 1 horizontal, and degree-3
have 2 vertical, 1 horizontal. Going inward from the leaves reaches outermost
degree-3s with at least 2 edge directions determined, giving the third.

The Wiener index divided by number of pairs is a mean distance between
vertices. Such a mean is usually taken over vertex pairs in one direction (like the
Wiener index) and excluding a vertex to itself, so number of pairs is binomial(

2k

2

)
= 1

22k(2k − 1). The mean can be expressed as a fraction of TAdiameter .
TAW at (379) is written in terms of LQ with a view to dividing TAdiameter

which grows as LQk+1, and ratios LQk+1/LQk → r etc as from section 2. The
result is limit mean distance between vertices of just over 2

5 the diameter.

TAW k
1
2 (4k − 2k) .TAdiameterk

→ 1
68

1

r
+ 19

68 + 9
136r = 0.400294 . . .

= 7
136r

4 − 6
17

1

r5
mean

Gutman, Furtula and Petrovi¢ [24] consider a terminal Wiener index which
is distances between pairs of terminal vertices (ie. leaf nodes, degree 1).

Theorem 95. The terminal Wiener index of twindragon area tree k is, in terms
of the full Wiener index,

TATW k =

{
0, 1, 3, 22 if k = 0 to 3
1
16TAW k + 7

324k + 15
322k − 1 if k ≥ 4

(386)

= 0, 1, 3, 22, 93, 459, 2423, 13807, . . .

Proof. Make a calculation similar to TAW theorem 94 above. c1 and c2 are
terminal vertices for k−1 ≥ 3 and on joining are no longer terminals so adjust
to exclude them.

TAtwSk =
∑
leaf v

distance(S, v)

= 0, 1, 3, 12, 33, 101, ...

TAtwC k =
∑
leaf v

distance(C, v)

= 0, 1, 3, 10, 31, 89, ...

TAtwSk = TAtwSk−1 − (RQk−1 − 1) lower except c1 k≥4

+
(
TADegCount(k−1, 1)− 1

)
.RQk−1 S to c2

+ TAtwC k−1 c2 into upper

TAtwC k = TAtwSk−1 − (LQk−1 − 1) upper except c2 k≥4

+
(
TADegCount(k−1, 1)− 1

)
.LQk−1 C to c1

+ TAtwC k−1 c1 into lower

starting TAtwS3 = 12, TAtwC 3 = 10

TAtwSC k = TAtwSk + TAtwC k

= 2TAtwSC k−1 + 2k−3BQk−1 + 2 k ≥ 4
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= 24.2k−3 − 2 + 2k−3
k−1∑
j=3

BQj

TAtwC k = TAtwSC k−1 + 2k−3LQk−1 + 1 k ≥ 4

TATW k = 2
(
TATW k−1 − TAtwC k−1

)
halves except c1,c2

+ 2
(
TADegCount(k−1, 1)− 1

)
.TAtwC k−1 c1, c2 into halves

+
(
TADegCount(k−1, 1)− 1

)
2 across c1 to c2

= 2.4k−3 + (2k+15)2k−3 + 2k
k−1∑
j=3

TAtwC k−1 k ≥ 4

TATW term 1
16TAW in (386) arises essentially from the number of terminal

vertices TADegCount(k, 1) being 1
4 of the total 2k (plus a constant).

The mean distance between distinct pairs of terminal vertices as a fraction
of the diameter has the same limit as the full TAW .

TATW k(
TADegCount(k,1)

2

)
.TAdiameterk

→ 1
68

1

r
+ 19

68 + 9
136r same as TAW

15.3.2 Twindragon Area Tree Parent, Depth, Width

Theorem 96. Label the vertices of twindragon area tree k with the point num-
bers n of complex base i+1. The parent of vertex n ≥ 1 is in the direction given
by the following state machine on bits of n high to low.

d=1 up

d=2 left

d=3 down

d=0 right

0

1

01 0

1

01

start

Figure 75:

TAparentDir(n),

bits of n

high to low

TAparentDir(n) = �nal state of bits high to low

= 2, 3, 2, 0, 3, 3, 2, 0, 1, 0, 3, 0, 3, 3, 2, 0, 1, . . . n≥1

TAstepDir(n, dir) =


TAVertexUpper(n) if dir = 1

TAVertexLower(n) if dir = 3

BITXOR(n, 1) if dir = 0 and n even

BITXOR(n, 1) if dir = 2 and n odd

TAparent(n) = TAstepDir(n,TAparentDir(n))

= 0, 1, 2, 5, 2, 5, 6, 9, 10, 11, 4, 13, 10, 13, 14, 17, 18, . . . n≥1

The initial state is d=1. Since n ≥ 1 there is always a high 1-bit so always
a transition from there to d=2 (left). If n=1 then that is the only transition.

Proof. In the corners of theorem 90, the parent node is towards the start s. The
expansion of figure 74 shows how aiming towards a given corner of k becomes
a corner of k−1 according as the top bit of n.
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For example, if the high bit of n is 1 then aiming for s which is in the 0 half
means go towards a′ and from there lower step to c′ and from there to s. For
finding the parent, it's enough to know that aiming for s means in part 1 new
state towards a and then lower .

to c
then upper

to e
then left

to a
then lower

to s
then right

0

1

01
0

1

01

start Figure 76: TAparentDir(n)

aiming for corners

s or a are in the 0 low half of the tree. A 1-bit means n is in the 1 high half
of the tree and it's necessary to go towards the a in that high half, or if already
there then go lower to the 0 half. Similarly conversely when in the 0 half and
aiming for e or c which are in the 1 half.

When already in the 0 half, aiming for a becomes aiming for e on expansion.
If already at e then its only edge is to the left. Similarly in the 1 half aiming c
becomes s on expansion and its edge is to the right.

In terms of the bit patterns, for n = 1xxxxx the way to zero its high 1-bit is
to go towards corner a = 101111 and take the lower edge down to c = 010000.
Working down the bits of n, if a bit is not already the desired 0 or 1 for such
an aim then it is to be set or cleared by going towards the necessary upper or
lower flip, or at the lowest bit by horizontal edge flip.

The TAparentDir state machine has a similar structure to dir mod 4 in
figure 9, but +1 over dir , and states 0,3 of TAparentDir have out transitions
flipped 0↔1. The effect of those changes is that the runs of 1-bits which dir
identifies become like

11111 0 0000 11111 0 0000 11111. . .dir(n)

11111 0 1111 00000 1 0000 11111. . .TAparentDir(n)

bit �ip

High 1-bits are unchanged, then 0 goes to state 3 in TAparentDir so bit flip
there and state 0 which is the 0-bits, until state 1 unchanged again. The flip or
not changes after each 10 of dir ,

TAparentDir
(
FlipBelow10 (n)

)
− 1 ≡ dir(n) mod 4

FlipBelow10 (n) = at each 10 pair in n flip output bits below

= 0, 1, 2, 3, 5, 4, 6, 7, 11, 10, 9, 8, 13, 12, 14, 15, 23, 22, 21, . . .

binary = 0, 1, 10, 11, 101, 100, 110, 111, 1011, 1010, . . .

For FlipBelow10 , pairs 10 are found in n without any flips. The output
begins as n and is modified by 0↔1 flips below each. Those flips accumulate,
so after two 10 there are two flips so unchanged, etc.
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· · · 1 0 · · · 1 0 · · · 1 0 · · · n in binary

�ip unchanged �ip FlipBelow10 (n)

The 10 pairs located are like FlipAt10 from theorem 54, but there each 10 is
flipped too. FlipBelow10 is also similar to the negations for point in figure 12,
but there below 01 pairs.

The converse, from TAparentDir runs to those of dir is a similar flip below
10, but when a flip is applied the next lower 10 is identified in those changed
bits (not the original n).

dir
(
UnFlipBelow10 (n)

)
+ 1 ≡ TAparentDir(n) mod 4

UnFlipBelow10 (n) = at each 10 pair in n flip bits below

= 0, 1, 2, 3, 5, 4, 6, 7, 11, 10, 9, 8, 13, 12, 14, 15, 23, 22, 20, . . .

binary = 0, 1, 10, 11, 101, 100, 110, 111, 1011, 1010, . . .

The first few values of FlipBelow10 and UnFlipBelow10 are the same but
further values are not. Below the highest 10 pair in n, if there is any 10 or 01
then further bits below there are different flipped or not. The first difference is
at n=18 binary 10010 which is 10 immediately followed by 01 and a 0 bit below.
The 01 is flipped by both, but the 0 is flipped by FlipBelow10 and unchanged
by UnFlipBelow10 .

In general, to be the same means below the highest 10 (if any) only a run
of all 0s or all 1s until the lowest 2 bits. For k≥2 bits 2k−1≤n<2k, there are
just 4(k−2) many n with FlipBelow10 (n) = UnFlipBelow10 (n).

The TAparentDir state machine in figure 75 is bits high to low. Some usual
state machine manipulations can take bits low to high instead.

1 non

2

46

non

35

yes

7

9 10 yes

8

start
d=0

start
d=1

start, opposite
d=2

start, opposite
d=3

0

1

0

1

0
1

0
1

0

1

0

1

0

1

0

1

0

1 0

1

TAparentDir(n),

bits of n

low to high

The start state is 1 to test for TAparentDir(n) = 0 (right), or state 8 to test
for TAparentDir(n) = 1 (up). In both cases, an n is accepted on ever reaching
``yes'', or ending at any of the double-circle accepting states. Reaching ``non'' or
ending in any non-accepting state is an n not of the respective parent direction.

For d=0, an odd n goes immediately to ``non''. This is simply that an odd
n has no edge to the right at all.
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Directions 2 and 3 are the same state machine, but starting states 10 or 9
respectively and flipping the sense of accepting and non-accepting everywhere.

High 0-bits on n do not change the results, since each state reached by a
0 has the same accepting-ness or not as its predecessor. Geometrically this is
simply the first half, quarter, etc, within a bigger tree.

States 8 and 10 are only reached by 0-bits and are preceded by accepting
states. Since n 6=0, if n is written without high 0-bits then states 8 and 10 are
never final states and their accepting-ness doesn't matter.

In the 0 half of the expansion in figure 74, the connection to the high half
is at c′. The same aiming-for procedure as above can be applied to go towards
c then up. This goes down the tree continued infinitely. Starting from n=0 it
steps along the infinite spine. Starting from other n goes first to the spine then
down.

TAtospineDir(n) = final state of figure 75 starting at d=0

= 0, 1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 0, 3, 3, 2, 1, 2, . . .

TAtospine(n) = TAstepDir(n,TAtospineDir(n))

= 1, 2, 5, 2, 11, 4, 5, 6, 23, 8, 9, 10, 13, 10, 13, 14, 47, 16, . . .

TAspine(m) = TAtospine(TAtospine(. . . (0))) m times

= 0, 1, 2, 5, 4, 11, 10, 9, 8, 23, 22, 21, 18, 17, 16, 47, 46, 45, . . .

0 1

2

4 58 9

10 11

16 17

18

21

22 23

32 33

34

36 37

42 43

45

46 47
start

k=6
twindragon area tree

spine continuing in�nitely
...

The depth of a vertex is its distance to the root. The root itself is depth 0.
The aiming-for corner procedure for parent direction gives the depth of vertex
n by summing distances across preceding trees.

Theorem 97. The depth of vertex n in the twindragon area tree is given by
sums RQ followed by run of LQ according to the following bit runs of n,

111...11 011...11 000...00 100...00 11 . . .n =

high low

TAdepth(n) = RQk+LQk−1

+ · · ·
+LQk−l

+ RQp+LQp−1

+ · · ·
+LQp−q

+ · · ·
(387)
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= 0, 1, 2, 3, 4, 3, 4, 5, 8, 7, 6, 5, 8, 7, 8, 9, 14, . . .

These are the runs of 1-bits in UnFlipBelow10 (n),

111...11 000...00 111...11 000...00 11 . . .UnFlipBelow10 (n) =

The index k etc of the RQ and LQ terms are the bit position of the respective
bits of each run, counting upwards from 0 for the least significant bit of n.

Proof. In the manner of TAparent , the distance to the start s follows by the
state machine of figure 76.

to s

to a

to e

to c

start
01

add RQ
0

1

add LQ

01

add RQ
0

1

add LQ

On expansion, when the target corner is in the opposite half of the tree
the distance across that other half is added. In the manner of TAdiameter
theorem 93, this is either RQ or LQ following the boundary squares on the
right or left side of the dragon sub-curve.

The positions where RQ or LQ distances are added are then the n runs of
the theorem, and per the dir to TAparentDir correspondence these runs are the
bits of UnFlipBelow10 .

UnFlipBelow10 (n) itself has a geometric interpretation as the total sizes of
all power-of-2 sub-trees traversed to reach n.

Let WidthS (k, d) be the number of vertices at depth d. Let WidthC (k, d) be
the number of vertices at depth d from the corner connection, in the manner of
ecc from theorem 93. Then across the middle connection between k−1 sub-trees
have mutual recurrences

WidthS (k, d) = WidthS (k−1, d) + WidthC (k−1, d−RQk−1) (388)

WidthC (k, d) = WidthS (k−1, d) + WidthC (k−1, d−LQk−1) (389)

starting

WidthS (k, 0) = WidthC (k, 0) = 1

WidthS (k, d) = WidthC (k, d) = 0 if d < 0

WidthS (0, d) = 1

WidthS (1, d) = 1, 1

WidthS (2, d) = 1, 1, 1, 1

WidthS (3, d) = 1, 1, 1, 2, 2, 1

WidthS (4, d) = 1, 1, 1, 2, 2, 2, 1, 2, 3, 1
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WidthS (5, d) = 1, 1, 1, 2, 2, 2, 1, 2, 3, 2, 1, 1, 2, 3, 2, 2, 3, 1

The two terms of (388),(389) are vertices from the first and second k−1
sub-parts. For the second sub-part, the depth d is reduced by the distance to
the connection point and is then WidthC .

The sum of widths at all depths is the total 2k vertices

2k =

TAdiameterk∑
d=0

WidthS (k, d) =

ecck∑
d=0

WidthC (k, d)

The maximum width is unbounded with increasing k since there are 2k

vertices which must fit somewhere in TAdiameterk = LQk+1−1 many depths
and the latter grows only as the cubic rk.

The width at d is the number of solutions to TAdepth(n) = d, so from (387)

RQw+LQw−1+ · · ·+LQx +RQy+LQy−1+ · · ·+LQz + · · ·

zero or more

index gap ≥ 1 index gap ≥ 1

d =

k−1 ≥ w

These runs are in the WidthS recurrence (388) too. An RQ subtraction from
d goes to C and WidthC can stay there for a run of LQ subtractions.

A combinatorial interpretation of WidthS is the number of ways to write d
as sums of RQ and LQ terms in such runs.

RQ

LQ

gap

The index positions are significant for counting combinations. At the low
end RQ1=2 and LQ2=2 but their different positions are distinct ways to add 2
(runs and gaps permitting). Likewise RQ0=1 and LQ1=1. For example depth
d=8 has combinations

WidthS (4, 8) = 3 ways

8 = RQ3 + LQ2 + LQ1 = 5 + 2 + 1 + gap

8 = RQ3 + LQ2 + RQ0 = 5 + 2 + gap + 1

8 = RQ3 + RQ1 + LQ0 = 5 + gap + 2 + 1

RQ0 = LQ0 = 1 are also the same but the runs and gaps mean they never
make distinct forms. RQ0 only occurs when the position above it (index 1) is a
gap, whereas LQ0 only occurs when not a gap.

As a remark, all values of RQ and LQ are distinct except for 1 and 2 noted.
Each LQk falls in between RQk and its preceding RQk−1,

RQk > LQk > RQk−1 for k ≥ 3

since RQk − LQk = dJAk+1 > 0 from (166)
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and LQk − RQk−1 = dJAk−1 > 0 from (164),(165)

The same run forms apply for WidthC except it starts in an LQ run already.
So start LQk−1 and further LQ terms then a gap etc, or gap immediately with
no high LQk−1 at all.

Repeatedly expanding (388) is WidthS as a sum of WidthC , where depth
< 0 is taken to have width 0.

WidthS (k, d) =

k−1∑
j=0

WidthC (j, d−RQj) d ≥ 1 (390)

For a given d, these WidthC terms are 0 when j big enough that d−RQj < 0.
So when k is big enough WidthS (k, d) does not change with further increases in
k. This is the width of a twindragon area tree continued infinitely. (WidthC
treated similarly would be the same as WidthS since (389) becomes only its
WidthS term when k big enough that d−LQk−1 < 0.)

WidthS (∞, d) = WidthS (k, d) for k where RQk > d (391)

= 1, 1, 1, 2, 2, 2, 1, 2, 3, 2, 1, 1, 2, 3, 2, 3, 4, 2, 2, 2, . . .

0 1 2 6 3110 11

twindragon area tree
continued in�nitely

The depths 0, 1, 2, 6, etc shown are a single vertex tree width 1.

Theorem 98. In the twindragon area tree extended in�nitely, depths with just
a single vertex WidthS (∞, d) = 1 are at d equal to

DOne(m) =


0 if m=0

JAm+3 if m≡0 mod 3 and m > 0

JAm+3 − 1 if m≡1 mod 3

JAm+2 if m≡2 mod 3

= 0, 1, 2, 6, 10, 11, 31, 53, 54, 154, 262, 263, 755, 1281, 1282, . . .

gDOne(x) = −1− 1
2

1

1−x
− x

1−x3
+ 1

2

3 + 2x+ 2x2

1−x−2x3
− x2

1−7x3 + 12x6 − 8x9

Terms m ≡ 1, 2 mod 3 are consecutive depths. The index at m≡2 drops to
be the same as at m≡1 and without the constant −1.

Proof. The theorem can be verified explicitly for depths up to d < 25 = RQ6.
Then by induction suppose it is true of depths d < RQk−1 with k ≥ 7 and
consider further depths in the range RQk−1 ≤ d < RQk. Per (391) this range is
where WidthS (∞, d) = WidthS (k, d), and in sum (390) term WidthC (k−1, d)
is the highest. The following diagram illustrates sub-parts.
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S start

M

C . . .

Lend E

Twindragon k
start S to end E

S to C is RQk and S to M is RQk−1 as from theorem 93 diameter proof. So
depths RQk−1 ≤ d < RQk are squares between M and C.

The tree half above M partly overlaps below M. The upper half extends
from S to depth TAdiameterk−1 = LQk−1. This is only a partial overlap since
it is < RQk. Must have d exceeding this overlap or it would be width ≥ 2.

d > LQk so that WidthS (k−1, d) = 0

Point M is a corner position of the lower half. S to M is RQk−1 so depth
drem = d − RQk−1 down from M and now seeking WidthC (k−1, drem) = 1
with drem in the range

RQk − RQk−1 = LQk−1 > drem ≥ LQk − RQk−1 = dJAk−1

The tree quarter below L overlaps some of M to C. M to L is LQk−2 and
the quarter extends down ecck−2 = RQk−2 − 1. This is past C since

LQk−2 + RQk−2 = RQk−1 > LQk−1 drem limit

So drem must be smaller than the L point LQk−2. This leaves the quarter
M to C and restricted range of drem. M is a start corner in that quarter so now
seeking

WidthS (k−2, drem) = 1 for LQk−2 > drem ≥ dJAk−1 (392)

This LQk−2 > drem is below the RQk−2 condition for WidthS (∞) at (391),
so seeking drem = DOne(m) in the range (392). The possible JA values of
DOne which fall in and out of this range are

JAk ≥ LQk−2 > JAk−1, JAk−1−1 ≥ dJAk−1 > JAk−2 k ≥ 7

from identities

JAk = LQk−2 − [0, 0, 1] + dJAk−5+dJAk−8+ · · · ≥ LQk−2 k ≥ 5

LQk−2 = JAk−1 + JAk−2 + 1 > JAk−1 k ≥ 2
(393)

JAk−1−1 = dJAk−1 − [2, 1, 1] + dJAk−3+dJAk−6+ · · · ≥ dJAk−1 k ≥ 7

dJAk−1 = JAk−2 + [1, 1, 0] + dJAk−5+dJAk−8+ · · · ≥ JAk−2 k ≥ 2

(393) is left boundary as join areas from theorem 29. The others are by
induction or some generating function manipulations.

So have drem = JAk−1 and/or JAk−1−1 when they are DOne forms, and
in turn d is
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d = JAk−1 + RQk−1

= JAk+2 per theorem 26 (394)

So a previous DOne which is JAk−1 adds 3 to its index for a further DOne
at JAk+2. Initial DOne values are calculated explicitly then for k ≥ 7 this step
is the pattern of every third JA.

Generating function gDOne is formed by taking JA and reducing the index
at its 2 mod 3 terms by subtracting the appropriate dJA.

DOne(m) = JAm+3 − [0, 0, 1].dJAm+2 − [0, 1, 0]

Every third term of gdJA(x) is selected for this using third roots of unity in
the usual way. Its 1 mod 3 term is shifted by factor x to subtract at 2 mod 3 in
gDOne.

ω3 = e2πi/3 = − 1
2 + 1

2

√
3 i 3rd root of unity, +120◦

gdJA1mod3 (x) = dJA1 x + dJA4 x
4 + dJA7 x

7 + · · ·
= 1

3

(
gdJA(x) + ω2

3gdJA(ω3x) + ω4
3gdJA(ω2

3x)
)

(395)

=
x4

1− 7x3 + 12x6 − 8x9
(396)

gDOne(x) = −1 − x

1−x3
+

1

x3

(
gJA(x) − x gdJA1mod3 (x)

)
The denominator in (396) is product of the dragon cubic at x, ω3x and ω2

3x
which are the gdJA terms at (395).

(1−x− 2x3)(1−ω3x− 2x3)(1−ω2
3x− 2x3) = 1−7x3 + 12x6 − 8x9

Depth JA is the middle ``3'' square of figure 28. It is a branch point on
the tree spine so a candidate for width 1, but of course it must be established
whether earlier branches overlap it.

The number of vertices above a DOne depth can be calculated from the 3-
index steps the same as above. Stepping to M goes past 2k−1 preceding vertices,
so whereas the depth has sums of RQ from repeated (394) the vertices are sums
of corresponding powers of 2. These are the powers in JND from theorem 27.

RQk−1 + RQk−4 + · · · = JAk+2 per theorem 26 (397)

2k−1 + 2k−4 + · · · = JNDk+2

DOneV (m) =
∑

DOne(m)>d≥0

WidthS (∞, d)

=


0 if m=0

JNDm+3 if m≡0 mod 3 and m > 0

JNDm+3 − 1 if m≡1 mod 3

JNDm+2 if m≡2 mod 3

= 0, 1, 2, 9, 17, 18, 73, 145, 146, 585, 1169, 1170, . . .

= binary 0, 1, 10, 1001, 10001, 10010, 1001001, 10010001, 10010010, . . .
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The n which is each DOne depth follows from the bit pattern necessary to
give TAdepth in theorem 97 as sum of RQ at (397).

RQk gap RQk−3 gap RQk−6 gap . . .TAdepth(n) =

1 01 0 10 1 01n = binary

The bit pattern is alternating 1, 0. m ≡ 2 mod 3 is sum down to RQ1 = 2.
Its immediately preceding depth DOne(m) = JAm+3−1 atm≡1 is by changing
that to RQ0 = 1 by extending its gap above. The n for that is either 1 bigger
or 1 smaller depending whether it is an 01 or 10 type gap.

The necessary bit length and ±1 for m ≡ 1 mod 3 can be written

DOneN (m) =


0 if m=0

1
3 (2m+2 − [1, 2]) if m≡0 mod 3 and m > 0
1
3 (2m+2 + [2,−5]) if m≡1 mod 3
1
3 (2m+1 − [2, 1]) if m≡2 mod 3

= 0, 1, 2, 10, 22, 21, 85, 169, 170, 682, 1366, 1365, . . .

= binary 0, 1, 10, 1010, 10110, 10101, 1010101, 10101001, 10101010, . . .

TAdepth
(
DOneN (m)

)
= DOne(m)

15.3.3 Twindragon Area Tree Independence and Domination

An independent edge set in a graph is a set of edges with no end vertices in
common, also called a matching since it is vertices in pairs with edge between.
A perfect matching is all vertices in such pairs.

The twindragon area tree has a perfect matching by horizontal pairs of
vertices (for k≥1). This is the expansion of each k−1 vertex to 2 adjacent
vertices in k, or low bit toggle in the base i+1 numbering. Or top-down since k
is two copies of k−1 starting from perfect matching of the 2 vertices in k=1.

An independent set in a graph is a set of vertices which have no edges
between them. The independence number is the maximum number of vertices
in any independent set of the graph. The independence ratio is the proportion
of this to the number of vertices.

Any tree with a perfect matching has independence ratio 1
2 . An independent

set can have at most one vertex of each pair, and such a set can be constructed
working outwards from any pair by choosing one in the set and one not, then
letting that determine the same in neighbouring pairs. So for twindragon area
tree k,

TAindnumk =

{
1 if k=0

2k−1 if k≥1
TAindRatiok =

{
1 if k=0
1
2 if k≥1

Taking each neighbour opposite present/absent is unique up to complement,
but there are various other sets attaining TAindnumk too. At each vertex absent
from the set its neighbouring pairs can be either way around one present and
one absent.
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A dominating set in a graph is a set of vertices which has every vertex of the
graph either in the set or adjacent to one or more of the set. The domination
number is the size of the smallest set which dominates in a graph.

Theorem 99. The domination number of twindragon area tree k is

TAdomnumk =

{
1, 1, 2, 4, 7 if k = 0 to 4

13.2k−5 + 1 if k ≥ 5

= 1, 1, 2, 4, 7, 14, 27, 53, 105, 209, 417, . . . k≥5 A168596

Proof. The domination number for k≤ 5 can be verified explicitly. In k=5, it
can be further verified that the start, end and connection vertices are all like C
in the following diagram. This is so of k > 5 too since further levels are joined
copies of the preceding.

. . .

C T

M L

In the manner of Cockayne, Goodman, and Hedetniemi[10], the domination
number of a tree is obtained by requiring the vertex adjacent to a leaf in the
set, and removing it and the leaf from the tree. So leaf L means require M and
remove L,M. This gives T dominated, and vertices C--T disconnected from the
rest of the tree.

The connection between two k−1 trees forming k is C--T pairs

T1

C1 C2

T2

T1 and T2 are dominated by their respective M. So just one of C1 or C2

suffices, not a vertex from each C--T as when the k−1 are separate. The rest
of the trees halves are dominated the same as in k−1. So

TAdomnumk = 2TAdomnumk−1 − 1 k ≥ 6

The domination ratio is the ratio of domination number to number of vertices
in a graph. For the twin alternate area tree this is

TAdomRatiok =
TAdomnumk

2k
=

{
1, 1

2 ,
1
2 ,

1
2 ,

7
16 if k = 0 to 4

13
32 + 1

2k
if k ≥ 5

→ 13

32
= 0.40625

An independent dominating set in a graph is a set of vertices which is both
independent and dominating. This is equivalent to being a maximal independent
set. A maximal independent set is an independent set to which no further vertex
can be added and still be an independent set. This means dominating since any
undominated vertex would have no neighbour and so could be added and still
be independent.

The independent domination number of a graph is the size of the smallest
independent dominating set. Or equivalently, the size of the smallest maximal
independent set and as such also called the lower independence number.
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Theorem 100. The independent domination number of twindragon area tree k
is the same as the domination number.

TAindomnumk = TAdomnumk

Proof. Independent dominating sets are a subset of all the dominating sets,
so TAindomnumk ≥ TAdomnumk. For k≤ 5, it can be verified explicitly there
exist independent dominating sets equal to TAdomnumk. The following diagram
shows such a set for k=5 (black vertices in the set).

T

M L

S

E

C

A

Figure 77:

k=5
twindragon area tree

TAindomnum5 = 14

twice dominated T

This can be used with the construction of theorem 99 to make independent
dominating sets k≥ 6. On joining at C, vertex T is dominated by M so one of
C1, C2 can be omitted. S and A which become new E and C have the same M,T
pattern.

A total dominating set in a graph is a set of vertices for which all vertices are
adjacent to one or more in the set. This differs from an ordinary dominating set
in that a vertex in the set does not dominate itself, it must have some neighbour.
The total domination number is the size of the smallest total dominating set of
a graph.

Theorem 101. The total domination number of twindragon area tree k is

TAtotdomnumk =


none if k=0

2 if k=1

2k−1 if k ≥ 2

= 2, 2, 4, 8, 16, . . . k≥1

The number of sets of this size is

TAtotdomnumCountk =

0, 1, 1, 1, 1, 9 if k = 0 to 5

1
4 .302k−5

if k ≥ 6

= 0, 1, 1, 1, 1, 9, 225, 202500, 164025000000, . . .

k=0 is a single isolated vertex so it cannot be total dominated, hence no
value for TAtotdomnum0 and count TAtotdomnumCount0 = 0.

Proof. The theorem can be verified explicitly for k≤6. The sets in k=5 can be
illustrated
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27 22 23 10

21 8 9 4

13

M L

6

1

2

5

S

E

C

Figure 78:

k=5
twindragon area tree

TAtotdomnum5 = 16

Black vertices are in the set. The configuration shown is two copies of the
sole k=4 set attaining TAtotdomnum4 = 4. Any total dominating set includes
all vertices with a leaf attached to them, since that is the only way to total
dominate those leaves. For example in k=3 this means vertices 1, 2, 5, 6 must
be present. For k ≤ 3, such vertices with leaves suffice to mutually dominate
the rest. For k=4, two copies of those is still smallest.

For k=5, in figure 78, there are further sets. Vertex 9 can move to 23 where
it still dominates 8, and 10 is still dominated by 13. Similarly 22 can move to
8, for 4 combinations.

When 22 moves to 8, vertex 9 is dominated by 8 allowing 10 to move to 4.
Similarly when 9→ 23 can move 21→ 27. These are a further 5 combinations
for total TAtotdomnumCount5 = 9.

For k ≥ 6, the connection vertices C meet as

L1 M1

T1

C1 C2

T2

M2 L2

If no cross-domination across the join then the new set size is simply the two
halves. M1 and M2 must be present to dominate leaves L1, L2. They dominate
T1, T2 too, but all combinations of T1, C1, C2, T2 present or absent are still at
least 2 vertices, and so no reduction in set size through cross-domination.

TAtotdomnumk = 2 TAtotdomnumk−1 k ≥ 6

For k=6 number of sets, in the k=5 half sets from figure 78, vertex M1 is
dominated by vertex 21 above it only in some sets, so T1 can move only in
some combinations. Working through the possibilities is TAtotdomnumCount6

= 225.
For k≥7 number of sets, in figure 78 the S start vertex has its M=2 dom-

inated by 5, and both are present in all TAtotdomnum5 sets. Likewise by
symmetry end E. On joining, those ends become S,A,C,E of k=6. So for k≥7
by joining k=6, always have M dominated from above so 4 combinations C1, C2

moves,

TAtotdomnumCountk = 4TAtotdomnumCount 2
k−1 k ≥ 7
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A semi-total dominating set in a graph is a set of vertices where each not
in the set has a neighbour in the set, and each in the set has a neighbour or a
distance 2 away in the set (or both).

Semi-total is similar to total domination, but relaxes to allow set members
dominated from up to distance 2 away. It is still a plain dominating set and so
falls between the conditions of total and plain dominating.

The semi-total domination number of a graph is the size of the smallest
semi-total dominating set.

Theorem 102. The semi-total domination number of twindragon area tree k
is the same as the domination number for k≥ 2,

TAsemitotdomnumk =


none if k = 0

2 if k = 1

TAdomnumk if k ≥ 2

Proof. The theorem can be verified explicitly for k ≤ 4. For k ≥ 5, the indepen-
dent dominating sets constructed in theorem 100 are also semi-total dominating.
In figure 77, vertex M has a vertex in the set 2 above so on joining and removing
one of C1, C2 still have M semi-total dominated.

The disjoint domination number of a graph is the smallest combined size of
two disjoint dominating sets. For the twindragon area tree, the two sets can
both be the minimum dominating set size TAdomnum.

Theorem 103. The disjoint domination number of twindragon area tree k is

TAdisdomnumk =

{
none if k=0

2TAdomnumk if k ≥ 1

= 2, 4, 8, 14, 28, 54, 106, . . . k≥1 k≥5 2×A168596

The number of pairs of such sets is

TAdisdomnumCountk =

{
0, 1, 2, 8, 36 if k = 0 to 4

4 .53322k−5

if k ≥ 5

= 0, 1, 2, 8, 36, 21328, 113720896, . . .

Proof. For k≤ 5, the theorem can be verified explicitly. The following diagram
shows a disjoint pair of sets in k=5.

T

M L

S

E

C

Figure 79:

k=5
twindragon area tree

TAdisdomnum5 = 28

set A black

set B grey
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For k=6 comprising two k=5 halves, at the connection take sets A and B
the opposite ways around,

L1 M1

T1

C1 C2

T2

M2 L2

omit omit

k from

two k−1 halves

T1 can be omitted from its set since it and its neighbour C1 are already
dominated byM1 and C2 respectively. Likewise by symmetry T2 can be omitted
from its set. So 1 vertex each set dropped across the join as per TAdomnum in
theorem 99.

The start, end and connection vertices of figure 79 are all of this C,T,M,L
form so the same construction and omitted vertices apply for k > 6 too.

For the count of set pairs, TAdisdomnumCount can be verified explicitly up
to k=5. At any leaf, that leaf and its attachment must go one each to the two
disjoint sets. For M,L assigned to the sets, C,T can go either way around. But
at a connection that is not so. Fixing M1 = A and L1 = B, must have C1 = B
to dominate T1, then C2 = A to dominate C1, and then M2 = B to dominate
T2. So no choice for C,T and no independent choice for M2 second half relative
to the first. Thus

TAdisdomnumCountk =
(

1
2 TAdisdomnumCountk−1

)
2 k ≥ 6

15.4 Twindragon Turn Tree

For any non-crossing closed curve or curve continuing infinitely and not encir-
cling its start on a square grid, the turn at revisited points is the same on each
visit. An opposite turn would either enclose either the end or the start.

R

L

opposite turns would
enclose curve end

R

L

opposite turns would
enclose curve start

The twindragon is a closed curve of this type. Some of its points are right
turns. Those points and the segments between them form a tree.

start

end

c

Twindragon k=4,

right turn points

and segments between

This is twindragon area tree k−1 with an extra vertex inserted in each edge.
This follows from the same sort of connection arguments used in that tree. Point
c is the connection between the two twindragon halves. It is single-visited in
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those halves so a boundary point and so a left turn. When a connection it swaps
to a right turn.

The extra vertices are also the connections between unit squares in the area
tree. On expansion each such unit square vertices gives a right turn in its
middle, making the turns tree.

start

end

Twindragon k=3,

interior unit squares

and right turn points

Two twindragons at the origin form an interlocking pattern
...

...

twindragon turn trees

The same pattern holds for 4 dragon curve arms filling the plane if left turns
in the north and south arms 1,3 are taken. In the twindragon, the north and
south verticals at the origin are traversed in reverse direction, from their end
to start. For 4-arm plane filling, those arms are traversed in forward direction
and that swaps the turns right↔ left.

The gaps between the trees are rotated copies of the trees (and the origin not
in any tree). The gaps are left turns in the twindragons. Rotating the pattern
puts the reverse north, south arms horizontal. Their left turns correspond to
right turns of forward direction, and similarly the horizontal arms turning to
vertical.

As from (2), the turn at odd n is alternately L and R at n ≡ 1, 3 mod 4
respectively. Since the curve turns either left or right at every point, this gives
the odd turns at every second point in a 2×2 grid.

R R R R R

L L L L L L

R R R R R

L L L L L L

R R R R R

L L L L L L

R R R R R

turns

at odd locations

The R turns are at z ≡ i mod b in the pattern. The remaining points are
filled by the same 2×2 pattern turned 45◦ and scaled by factor b, and then
further powers of b similarly. The base pattern is a simple R in a 2×2 block
but repeatedly applying factors of b forms the tree structure.
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16 Multiple Arms

16.1 Two Arms

2 arms 90◦

start

end 1

end 2 k=8 two arms

B2 8 = 364 boundary

W8 = 120

A2 8 = 165 area

Theorem 104. The boundary length between the endpoints of two dragon curves
k directed outward at right angles is

Wk =

{
2, 4 if k = 0, 1

2Lk−1 if k ≥ 2
boundary segments

= 2, 4, 4, 8, 16, 24, 40, 72, 120, 200, 344, . . . k≥1 4×A203175

Generating function gW (x) = 2
x+ 1

1− x− 2x3

And boundary squares,

WQk = 1
2Wk =

{
1, 2 if k = 0, 1

Lk−1 if k ≥ 2

Proof. AWk curve part expands twice as follows. In k+2 is seenWk+2 = 2Lk+1.

O

Wk

O

Wk+1

O

Wk+2

Lk+1

Lk+1

Figure 80: W endpoint expansion

Boundary squares WQ likewise, with WQk+2 = 2 LQk+1 and LQk = 2Lk
from (104), for k ≥ 1.

Notice that Wk and Lk+1 are not the same configurations. Lk+1 is two
dragons ending at a common point. Wk is two dragons starting from a common
point.

In a square of dragons,Wk is boundary across the opposite diagonal and Lk+1

is boundary across the leading diagonal. Such a square traverses all segments
and so ways mesh perfectly.
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O

Wk

opposite diagonal
shorter

O

Lk+1

leading diagonal,
longer

The square is identical in 180◦ rotation so WQ squares are symmetric in
180◦ rotation the same as LQ from theorem 14.

Lk+1 is the longer direction,

Lk+1 = Wk for k = 0, 1

Lk+1 > Wk for k ≥ 2

This can be seen explicitly for k≤ 6 and then the L recurrence (100) applied
repeatedly gives identities

Lk+1 = 2Lk−1 + Lk−2 + 4Lk−6 for k ≥ 7

Lk+1 = Wk + Lk−2 + 4Lk−6 > Wk

Just numerically, working through the recurrences shows difference of squares
is left 2-side squares (theorem 15),

LQk+1 −WQk = LQ2 k+2

A limit for ratioWk to Lk+1 follows fromW as L in theorem 104. The result
is the same as L over R from (115).

Wk

Lk+1
=

2Lk−1

Lk+1
→ 2

r2
= r − 1 = 0.695620 . . .

Two arms outward boundary length is then a left and right (so B) on the
outer side, and W on the inner. For area, the join between two outward curves
is JAk+1 as shown in figure 27.

B2 k = Bk +Wk

= 4, 8, 12, 24, 44, 72, 124, 216, 364, 616, 1052, . . . 4×A003479

A2 k = 2Ak + JAk+1

= 0, 0, 1, 2, 5, 14, 33, 74, 165, 358, 761, . . .

Two arms at 180◦ do not touch but they do come to within a unit distance
of each other. These close approaches are at the bridges of the absent vertical
curves in between.

2 arms 180◦
k=8

end 1

end 2
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end 1

end 2

16.2 Three Arms

3 arms
end 1

end 2

end 3

k=8 three arms

B3 8 = 484

A3 8 = 120

The boundary length is a left and right for B on the straight sides, and
two W between. For the area, the two outward joins are JAk+1 each, as from
figure 27.

B3 k = Bk + 2Wk

= 6, 12, 16, 32, 60, 96, 164, 288, 484, 816, 1396, . . .

A3 k = 3Ak + 2JAk+1

= 0, 0, 2, 4, 9, 24, 55, 120, 263, 564, 1187, . . .

16.3 Four Arms

Four arms has a 4-way rotational symmetry. Dekking [14] calls this a carousel.
Each of the four sides are two copies of Lk−1, as from the W expansion in
figure 80.

4 arms end 1 end 2

end 3end 4

k=5
four arms

L4 L4

The boundary is simply 4W . The area is the 4 curves plus 4 outward joins
which are JAk+1 each, as from figure 27.
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B4 k = 4Wk

= 8, 16, 16, 32, 64, 96, 160, 288, 480, 800, . . . k≥ 1 16×A203175

A4 k = 4Ak + 4JAk+1

= 0, 0, 4, 8, 16, 40, 88, 184, 392, 824, . . .

In the sample values, the initial B3 k and B4 k are quite close. They are
equal at B3 7 = B4 7 = 288. But B3 k becomes bigger as k increases. Some
recurrence manipulations gives an identity for the difference using BlobL so as
to see positive.

B3 k − B4 k = −2,−4, 0, 0,−4, 0, 4, 0, 4, 16, 20, 32, 68, 112, . . .

= 8BlobLk−6 + [20, 24, 20, 8] for k≥ 10

A limit for ratio of these lengths follows from their growth as powers of the
root r. Limit L/B → 2/r3 from (126) and Wk = 2Lk−1 give ratio > 1 so that
eventually B3 > B4 .

B3 k
B4 k

=
Bk + 2Wk

4Wk
→ 1

16r
4 + 1

2

= 1 +
1

4r5 + 4
> 1 (398)

= 1.016648 . . .

(398) was found by a computer search for an attractive form for the small
amount bigger than 1.

But 4-arm area A4 k ≥ A3 k always, so 3-arms is longer boundary but smaller
area. 4-arms is in that sense more compact.

16.4 Two Arms Inward

Two arms pointing inward at 90◦ is simply curve k+1.
Two arms pointing inward at 180◦ do not touch but as per the two arms

outward (section 16.1) they come to within a unit distance of each other. These
close approaches are the bridges of the absent vertical curves in between.

2 inward
k=8

start

start
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start 1

start 2

16.5 Three Arms Inward

3 inward

k=8

start

start

start

B3I k = 2Lk+1 +Rk + Lk

= 6, 12, 24, 40, 68, 120, 204, 344, 588, 1000, 1692, 2872, . . .

BQ3I k = 2LQk+1 + RQk + LQk = BQk+1 + LQk+1

= 4, 7, 13, 21, 35, 61, 103, 173, 295, 501, 847, 1437, . . .

A3I k = 3Ak + 2JAk

= 0, 0, 0, 2, 7, 18, 45, 106, 237, 518, 1113, 2354, . . .

16.6 Four Arms Inward

Four arms pointing inward make a symmetric shape.
The centre blob is a little smaller than the corresponding centre in the 4

outward arms of section 16.3, essentially because inward arms meet as join
areas JAk whereas outward arms are the next bigger JAk+1 (per figure 27).
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4 inward

k=8

Another way to think of this shape is starting from two opposing right sides
across a square. Opposing right sides touch and this is that right-side touching.

opposing right sides
of a square

=⇒

The boundary is 4 left sides of k+1. The area is the 4 component curves
with 4 join areas in between, or equivalently 4 left side k+1 areas.

B4I k = 4Lk+1

= 8, 16, 32, 48, 80, 144, 240, 400, 688, 1168, 1968, 3344, . . . 8×A203175

BQ4I k = 4LQk+1

= 4, 8, 16, 24, 40, 72, 120, 200, 344, 584, 984, 1672, . . . 4×A203175

A4I k = 4Ak + 4JAk = 4ALk+1

= 0, 0, 0, 4, 12, 28, 68, 156, 340, 732, 1556, 3260, . . . 4×A003478

Benedek and Panzone [7] call this shape a mill wheel and draw a 12 vertex
convex hull around the fractal using the convex hull of the component dragon
fractals. The hull around finite iterations is likewise 12 vertices for k≥ 4. There
are 3 vertices in each of 4 directions(

bk − P2(k)
)
id, for d = 0 to 3(

bk − P3(k)
)
id,(

bk − P4(k)
)
id

For k=0, the hull is just a diamond around the 4 segments. These are just
4 distinct vertices. The three in each direction coincide b0−P2(0) = b0−P3(0)
= b0−P4(0) = 1.

For k = 1, 2, 3, there are just 8 distinct vertices since P3(k) = P4(k) for
k = 1, 3 and P2(2) = P3(2) for k=2.

For k=4 and k=5, the hull has 12 vertices and can be verified explicitly.
For k ≥ 6, the 10 hull points around the component curves are
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P2

P3

P4

P5

P2′

P3′ P4′

P5′

P2′′

P3′′

P4′′

P5′′

P2′′′

P3′′′P4′′′
P5′′′

four arms inward

convex hull from

four dragon hulls

Adjacent curves are at 90◦ which is the same as the dragon hull unfolding
from figure 38. As from there the hull goes P4 to P2′ on each side, since P5 is
inside that line.

The area of the hull, from the triangular regions delimited by P2, P3, P4 is

H4IAk = 1
3

(
14.2k − [10, 18, 10, 14] .2bk/2c + [2, 2, 0, 0]

)
= 2, 4, 12, 28, 62, 126, 272, 560, 1142, . . .

The maximum distance between points in this pattern is opposite P3 vertices
by considering vertices pairwise like Hdiam intheorem 39. The distance is

H4IDk =
2√ 1

9

(
68.2k − [40, 80, 56, 40].2bk/2c + [8, 16, 20, 4]

)
=

2√
4, 8, 20, 52, 104, 208, 436, 932, 1864, 3728, . . .

H4ID0 = 2 is straight across the k=0 star. Thereafter H4IDk is irrational,
per the approach of THdiam (theorem 57). One leg is a power of 2 when k odd
and neither is a multiple of 4 when k even.

16.7 Four Cycle

Four dragons can be arranged in a square cycle, each head to tail around in the
same direction (and therefore not the same as the twindragon).
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4 cycle

k=8

Expanding one level shows this cycle has sub-part directions per the grid of
figure 2, so it is non-crossing etc.

4 cycle

=⇒

The four cycle sides do not touch each other since in this expansion their
ends (the dot locations) are at 180◦, per two arms outward 180◦ in section 16.1.

The segments inside the cycle are the sub-parts shown in grey. They are 4
arms inward (section 16.6).

The boundary length is 4Rk. The area enclosed can be calculated from the
expansion. The 2×2 square divides the plane so the area inside the curve is
4.2k. The area enclosed by the outside is 4 right sides and 4 left sides so

Acyclek =

{
1 if k=0

2k+1 + 4Ak−1 if k ≥ 1

= 1, 4, 8, 16, 32, 68, 144, 300, 624, 1292, . . .

17 Fractional Locations

A fractional point 0 ≤ f ≤ 1 along the dragon curve fractal is located at limit

fpoint(f) = lim
k→∞

point(bf .2kc)
bk

fractional point

n = bf.2kc is the first k bits below the binary point of f . Stopping there
means a point somewhere in a sub-curve of length 1/

√
2k. The extent of that

sub-curve is a constant factor of that length so the limit converges to some z.
The location is a change from bits of f to powers ±1/bj with sign change

below each 01 bit pair as per (64).
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1 1 1 0 0 1 1 1 00 .f = . . . binary

+
1

b1
fpoint(f) = − 1

b2
− 1

b3
− 1

b6
+

1

b7
+

1

b8

01
pair

01
pair

−
negate

−
negate Figure 81:

fpoint negations

For the 01 pairs rule, the first fractional bit of f is considered to have a
high 0 above it (at what would the least significant integer bit), the same as
for point at (64) above the top of n. For example 3

4 = 0.11 binary has a sign
change for the second 1 giving

fpoint( 3
4 ) =

1

b1
− 1

b2
= 1

2

0
1
2 1

f = 3
4

(399)

When f is rational, its bits are an initial fixed part then a repeating periodic
part (of length at most denominator − 1). The b powers and sign changes are
then likewise periodic and give a location as some x+iy with rational x, y. Davis
and Knuth give an example 1

3 = .010101... which is alternating terms in their
general unfolding ζ, and for b is alternating

fpoint( 1
3 ) =

1

b2
− 1

b4
+

1

b6
− 1

b8
+ · · · = b−2 − b−4

1− b−4
= 1

5 −
2
5 i (400)

If the periodic part of f has an odd number of 01 bit pairs then that is a net
negative on the resulting b powers. This can be accounted for in the calculation,
or taking the periodic part twice ensures an even number of sign changes.

An exact binary fraction f = n/2k has two binary representations, one
ending 1 000... and the other 0 111.... These give the same result in fpoint
under the 01 pairs since the latter is

1/bk+1 − 1/bk+2 − 1/bk+3 − · · · = 1/bk+1 − 1/bk+2/(1− 1/b) = 1/bk

If f is irrational then it may still have a rational real or imaginary part. The
simplest is when all 1-bits of f are at positions k ≡ 0 mod 4. All 1/bk terms
are then imaginary part 0 so entirely real. A finite number of initial other 1-
bits are a rational imaginary part /2k (at most). Conversely if all 1-bits are at
k ≡ 2 mod 4 then the real part is 0 so entirely imaginary.

The Kempner-Mahler number KM from (23) is an example of entirely real.

fpoint(KM ) = 1
2 +

∞∑
j=0

(−1)j

22j
entirely real (401)

= 0.808609... 1
2 +A275975

= 0.110011110... binary .1 then A030300

fpoint(KM ) has initial 1/b1−1/b2 whose imaginary parts cancel (as at (399)),
then all 1-bits are at k ≡ 0 mod 4. Each 1-bit like this is an 01 sign change for
terms below, giving alternating signs ±1/2k/2. For KM , the result (401) is 1

2
plus another sum of powers of powers of 2 also of a type Kempner [28] showed
is transcendental.
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Sum (401) is also considered by Shallit [48] who shows its continued frac-
tion terms arise from an ``unfolding'' with alternating middle. These terms
correspond to turn run lengths of the alternate paperfolding curve (see the au-
thor's alternate paperfolding curve write-up) in a similar way to KM continued
fraction corresponding to dragon curve turn run lengths.

In denser binary fractions, adjacent real or imaginary parts can cancel. An
example of this is when bits at positions k ≡ 1, 3 mod 4 alternate 0,1 giving a
rational real part from irrational f . This happens in PaperConst (8).

fpoint(PaperConst) = 2
3 +

(
PaperConst − 2

3

)
i (402)

= 0.666666...+ 0.184069...i

= 0.101010...+ 0.001011110...i binary

The low 2 bits of n determine Paper(n) at odd n, giving a 4-long pattern
with alternating 1, 0 at n ≡ 1, 3 mod 4

1 p2 0 p4 1 p6 0 p8 1 p10 0 p12 1 . . . pj=Paper(j).

1 4 8 12 etc

− − − −

Each 0 p 1 is either 001 or 011 so is a sign change for the b powers below it.
Suppose all p=0, then bits 1000 repeat giving 8

15 and fpoint( 8
15 ) = 2

3−
2
3 i.

Each pj=1 then adds imaginary part 1/2j/2. At j≡2 mod 4 positions p2,
p6 etc, the b powers are purely imaginary 1/b2 = − 1

2 i, 1/b6 = + 1
8 i, etc with

alternating signs. The negations due to 01 pairs turn them all positive.
Then j≡0 mod 4 positions are 0 pj 1. If pj=1 then it is 1/bj and also the b

at the 1 changes from positive to negative so net 1/bj − 2/bj+1 = i.1/bj . At p4

this is − 1
4 i, at p8 it is + 1

16 i, etc, with alternating signs. Again the alternating
negations by 01s turn them all positive.

The sequence of values p2, p4, p6 etc are the paperfolding sequence itself
again, Paper(2n) = Paper(n), since bit above lowest 1 skips the low 0-bit of 2n.
So these p terms add powers of 1

2 to the imaginary part at powers according to
the paperfolding sequence, and that is PaperConst .

In point by unfolding (59) of Davis and Knuth, the fraction f might be in
the first or second half of the curve. When in the second half the position is
measured back from the end. The resulting fraction in the respective half after
expansion is then a mapping

f →

{
2f if f ≤ 1

2

2(1−f) if f ≥ 1
2

(403)

When taking successive bits of f written in binary, this is the fractional
position within a sub-fractal. For rational f , the denominator is unchanged
(hence eventually repeating).

Integer points in finite iterations of the curve are terminating binary fractions
n/2k. These are all still single or double visited in the fractal since at every
expansion level their entering and leaving sub-fractals surround the location.
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Locations with non-terminating binary fractions can give triple-visited points.
Bridge points and each side of them are 15ths triple-visited points (with the
bridges themselves being 5ths among the 15ths). The join end is a 7th where
three curves meet. These are in fact the only triple-visited points (ahead at
theorem 113). Gosper [23] in the OEIS considers the 5ths and 15ths. The 7ths
are a little simpler, so take them first.

17.1 7ths Fractional Triples

In figure 29, three sides of a square of sub-curves have a common unit square at
the end of the join. As per JN and JNother limits (160), this is a point f = 3/7
and f = 5/7 in the fractal. The locations of all 7ths in the fractal are

start end

1

2

3,5

4

6

Figure 82:

fpoint
(p
7

)
fractional

locations

1

7
to

6

7

1
5 i

0

− 1
5 i

− 2
5 i

− 3
5 i

− 1
5 0 1

5
2
5

3
5

4
5 1

The following configurations are all curve arrangements which give triple-
visited fractional 7th locations

1
3 5 2

6

4
Figure 83:

7ths

con�gurations

i.fpoint( 1
7 ) = fpoint( 3

7 ) = fpoint( 5
7 ) = 2

5−
1
5 i

i.fpoint( 2
7 ) = b− i.fpoint( 4

7 ) = fpoint( 6
7 ) = 3

5+ 1
5 i

Location 2
5−

1
5 i of 1,3,5 is shown below its 3,5 segment, but the spiralling

down means it is actually on the left side as in figure 82. The right side of
1 is the other visit. For finding triples, it's enough just to know necessary
configurations.

Configurations of sub-curves like this are segments in finite iterations. Each
such is a triple-visited fractional point of the form

fpoint
( s

7.2k
)

= fpoint
( t

7.2k
)

= fpoint
( u

7.2k
)

0 ≤ s, t, u ≤ 7.2k

integers
(404)

3 and 5 are in the same segment so are always a difference 2 among two of
s, t, u written in least terms (smallest k).

Configuration 1,3,5 expands to configuration 2,4,6. 3 doubles to 6. 5 is 2
back from the end 7 so doubles to 4 from the end, which is forward since that
new sub-curve is reverse. This is the f mapping (403). Each fraction expands
under that map as
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1

2

3

4

5

6

Figure 84:

7ths fractions

expansion

The first triple occurs in k=2. This is a 1,3,5 configuration at n=2 (turned
180◦ from figure 83).

n=2

start

end

1

35k=2

7ths 1,3,5
con�guration

1 is directed back along the curve from n=2 so it is 2.7−1 = 13. 3 is directed
forward so it is 2.7 + 3 = 17, and 5 similarly for 19, giving triple 13, 17, 19.

fpoint
(

13
7.22

)
= fpoint

(
17

7.22

)
= fpoint

(
19

7.22

)
= 3

5−
3
10 i

k=2 has a U shape but its segment directions are not configuration 2,4,6.
The first 2,4,6 is in k=3

n=4

n=6

2
4

6

k=3

7ths 2,4,6
con�guration

4.7− 2 = 26

4.7 + 6 = 34

6.7− 4 = 38

fractions over
7.23 = 56

This is simply the first triple 13,17,19 doubled, as for segment expansion
of the 1,3,5 configuration. In general, any triple in k doubles to a new triple
in k+1. This is numerator doubled corresponding to denominator doubled to
7.2k+1, and so the same fpoint location in the fractal.

Level k triples such as 13,17,19 are still present in next level k+1. They are
locations in the first half of the curve. Level k triples are also in the second half
of k+1 by unfolding. The values in that case measure back from the curve end
7.2k+1.

Additional configurations can be formed across the join of the curve halves.
The triples of the first half preceding that join are unchanged and each such
join is bigger with bigger k, so triples can be treated as an infinite sequence.

There are total 4 triples in k=3,

start

end

13,17,19

26,34,38

27,31,33

37,39,43

k=3

denominator 7.23 = 56

13, 17, 19

26, 34, 38

27, 31, 33

37, 39, 43

SeventhTriples3 = 4
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13,17,19 is from k=2 unchanged. 37,39,43 is its unfold to measure from
the end. 26,34,38 and 27,31,33 are both new across the join. As noted above,
26,34,38 is also a doubling of 13,17,19.

Configuration 2,4,6 has two segments meeting at ends. Its 7th location is
the join end JEQf relative to segment 6. Segment 2 can be absent when on the
curve boundary. An example of 2 absent is the right boundary half-way point
fRQhalf . As from figure 31, it is a sub-curve join end. The absent segment 2
would be above it.

fpoint( 9
28 ) = fpoint( 11

28 ) = fRQhalf = 3
10 −

4
10 i

The two f here are RQhalf point number limits RQhalfNSk/2
k → 9

28 and
RQhalfNEk/2

k → 11
28 from (132).

Theorem 105. The number of 7ths fractional triple points (404) in curve k is
equal to the area of k+2.

SeventhTriplesk = Ak+2

Proof. The line segments of configurations in figure 83 expanded twice are

even

1,3,5

square
adjacent
to even
point

even

odd

2,4,6

square
adjacent
to odd
point

The unit squares shown in grey are enclosed. The 1,3,5 configuration encloses
a unit square. The 2,4,6 configuration encloses an additional unit square over
the 1,3,5. So each configuration is net 1 unit square in k+2.

Conversely, k+2 is a 2×2 grid of squares between points from k. Each
enclosed unit square in k+2 has a corner at either an odd or even point of k,
those being (x+iy)b2 with x+y odd or even. An enclosed unit square adjacent to
an even must have arisen from segments of a 1,3,5 configuration in k suitably
rotated. Likewise when adjacent to an odd point it must have arisen from
segments of a 2,4,6 configuration suitably rotated.

Second Proof of Theorem 105. Configurations can also be counted directly.
1,3,5 is at an even point so each even n = 2 to 2k−2 inclusive gives a 1,3,5.

The turn at n determines whether the 1 part or the 3,5 part is in the first or
second segment. At a double-visited even point, there are 2 additional cross
pairs of segments. Some recurrence manipulation shows the total is left-side
area ALk+2 from section 4.1.

Sevenths135 k = 2Devenk +

{
0 if k=0

2k−1−1 if k ≥ 1
= ALk+2

Configuration 2,4,6 occurs as an expansion of previous level 1,3,5 and 2,4,6.

1,3,5 2,4,6
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This is per figure 84 and can also be seen by considering whether segment
2 is first or second in the expansion of the previous level. Determining one
segment that way determines the others as firsts or seconds too. When 2 is a
first segment the 2,4,6 is an expansion of 1,3,5. When 2 is a second segment the
2,4,6 is an expansion of a previous 2,4,6.

2

6

4
2 as �rst
segment

2 as second
segment

2

6

4

Figure 85

So Sevenths246 is cumulative Sevenths135 which is AL and that cumulative
gives AR as by repeated unfoldings from theorem 24 and (147).

Sevenths246 k = Sevenths246 k−1 + Sevenths135 k−1 =

k+1∑
j=0

ALj = ARk+2

Or alternatively, 2,4,6 is BQ3e as from (127) and a fully enclosed unit square
Ak has two such configurations. This is total Ak+1 as from (142).

Sevenths246 k = BQ3ek + 2Ak = Ak+1 = ARk+2

Total triples 1,3,5 plus 2,4,6 is then left plus right side areas of k+2.

Four triple locations occur in a unit square when there is a 1,3,5 on each
vertical and a 2,4,6 upwards and upside-down.

2,3

4,5

6

6

1

1

2,3

4,5

E

E

O

O

segment arrangement

4 triples in each square,

4 double-visited corners

The two even corners E are double-visited. The two odd corners O might be
single or double, though when single there must be some additional segments as
otherwise it would be 2-side boundary squares with even middle E, but that does
not occur. (2-side boundary is odd middle per figure 20.) Additional segments
below and right etc make 3e or 3o squares instead.

The triple locations within the square are symmetric in 90◦ rotations. When
such squares are adjacent they form the following grid. The locations are in
groups of 4 along 2:1 slopes. The integer points of the grid are skipped, being
only double-visited, not triple-visited.
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grid of 7ths

fractional locations

Taking the union of all triples gives numerators which are part of some triple
(similar to what Gosper does for 15ths in OEIS A260747),

13,

4

17, 19, 26, 27, 31, 33, 34, 37, 38, 39, 43, 52, 54, ... numerators

2 7 1 4 2 1 3 1 1 4 9 2 ... di�erences

Theorem 106. The di�erences between successive numerators of 7th fractional
triples are 1, 2, 3, 4, 7, 9. These di�erences all occur in�nitely often.

Proof. Every segment contains some numerator since configuration 1,3,5 puts
1 and 3,5 respectively in the segments each side of every even point (which way
around according as left or right turn). So it suffices to consider differences
within a segment and across a point.

Taking each segment of figure 83 as middle m gives the following set of
segments. Arrows are shown in direction of expansion, so all expand on the
right. Knowing these present or absent suffices to determine which 7ths triples
are in m.

m

Figure 86:

7th triples

con�gurations union,

m as each segment

For a difference going across a point, it's necessary also to know 7ths in the
next segment after m, in curve start to end direction.

m

a

b

c

d

Figure 87:

next segment

If m is forward along the curve (an even segment) then the next is c or d.
If m is backward along the curve (an odd segment) then the next is a or b. If
m is last in the curve then it has no next.

Take a further union with m of figure 86 also at each a, b, c, d position. This
gives a set of segments determining which 7ths are in the next segment too.

m
7th triples

union and next
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On expansion, the first and second segment of m has a corresponding set of
surrounding segments. Beginning from a single segment, and making successive
expansions, including noting which of a, b, c, d is next in curve order, gives total
105 configurations. Triples occurring within m, and the first triple in next
segment, show the only differences are per the theorem.

Mutual recurrences on the configurations, and the differences they contain,
gives how many of each difference occur in given k. All grow without bound.

It's possible instead to explicitly work through cases of a segment and the
triples it can contain due to its surrounds, and next triple across an odd or even
point. Doing so is quite tedious. An attraction of the mechanical approach is
that it gives a state machine which can count how many of each difference, and
which n has how many triples.

From the state machine, the number of times difference 7 occurs is

SeventhsDiff7 k =

{
0 if k ≤ 2

k − 2 if k ≥ 2
(405)

= 0, 0, 0, 1, 2, 3, 4, 5, 6, . . .

It is 2 to 5 across an odd point (7−2 + 7−5 = 7) of the form

OR

A B

ER

S

5

2 7ths

2 to 5

di�erence 7

2 is from the U above and 5 is from the L below. Single-visited A means no
6 after 5, nor 4 after 2. Single-visited B means no 3,5,6 after 2.

Such a configuration is at curve start for k ≥ 3 (point S is the curve start),
and corresponding unfold at curve end for k ≥ 4, and then each ER--OR bridge.
Bridges alternate so there is 1 new such in each expansion, giving count (405).

From the state machine, the number of times difference 9 occurs is

SeventhsDiff9 k =

{
0 if k ≤ 3

k − 3 if k ≥ 3
(406)

= 0, 0, 0, 0, 1, 2, 3, 4, 5, . . .

It is 1 to 4 across an odd point (7−1 + 7−4 = 9) of the form
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1

4

EL

OL

A
B

7ths

1 to 4

di�erence 9

4 is from the U above and 1 is the L at B. Single-visited A means no 2,4
after 1, nor 5,6 after 4. Single-visited B means no 3,5,6 after 1.

Such a configuration is in k=4 with OL as the sole double-visited point
there (curve start being towards EL), and each EL--OL bridge. Again, bridges
alternate so there is 1 new such in each expansion, for count (406).

A full set of triples 1 to 6 in a segment occurs when it has all 5 neighbours
from figure 86, so configurations 1,3,5 and 2,4,6 all put their fractions into m.

1 2 3 4 5 6

segments for 7ths

full set of triples 1 to 6

This is an enclosed unit square below, and above it either BQ3o boundary
square or another enclosed unit square (further segment at the top).

Boundary segments grow only as rk so fully enclosed segments are eventu-
ally the majority and occur in ever longer consecutive runs. In the numerator
differences, this means runs of 1, 1, 1, 1, 1, 2.

Working through the state machine gives counts of segments with all, or not
all, of 1...6 as triples. SeventhsNotAllk is the cubic recurrence, plus linear term.

SeventhsAllk = 2k − SeventhsNotAllk

= 0, 0, 0, 0, 0, 1, 4, 17, 56, 157, . . .

SeventhsNotAllk = SeventhsNotAllk−1 + 2SeventhsNotAllk−3 k≥7 (407)
+ 8k − 37

= 1, 2, 4, 8, 16, 31, 60, 111, 200, 355, . . .

For the twindragon, the same argument as theorem 105 gives the number
of triples TSeventhTriplesk = TAk+2 twindragon area.
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start

end

k=3
twindragon 7ths
triple points

TSeventhTriples3

= TA3+2 = 40

A union of all 7ths numerators occurring eventually in some triple in the
twindragon can be taken.

3,
2

5, 6, 10, 12, 13, 17, 19, 20, 24, 26, 27, 31, 33, 34, 37, ... numerators
1 4 2 1 4 2 1 4 2 1 4 2 1 3 ... differences

Twindragon numerators are a superset of the dragon numerators. In the
twindragon, the second copy of the curve completes some triples on the dragon
left side. For example 3 and 5 are numerators since the twindragon has a vertical
segment at the start to complete a 1,3,5 configuration there. The 1 part is in
the second copy of the curve.

Numerator differences 7 and 9 from theorem 106 do not occur in the twin-
dragon since it has no bridges, but the others do, for differences 1, 2, 3, 4 all
occurring infinitely.

Gilbert [20] considers triple-visited points in complex base i−1 (and other
i−n). The triple-visited fractional points in i−1 correspond to dragon curve
7ths on the right boundary. This is where three i−1 sub-tiles meet.

0

3
5 i

1
5 i

0

− 2
5 i

− 4
5 i

− 4
5−

3
5 − 1

5 0 1
5

2
5

base i−1
triples

3
5 i
2
5 i

0

− 2
5 i

− 3
5 i

− 1
5 0 1

5
4
5

6
51

twindragon,
dragon right 7ths

The base i−1 triples are 7ths 1, 2, 4, or 3, 5, 6 in its f fractionals.

Theorem 107. A 7th location is visited only by the 7ths of �gure 83.

Proof. A 7th location can be taken as a 2,4,6 triple by increasing k as necessary
so fractions /2k are not in lowest terms. The location is 3

5+ 1
5 i relative to the

middle 6 segment of the U. Convex hulls around other (non-U) surrounding
segments are
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6

2
4

Figure 88:

hulls of other

segments surrounding

7th location
3
5
+ 1

5
i

These other segments are all whose convex hulls extend into the U square.
None touch or contain the 7th location.

So any additional visits to this location could only be from within one of
the segments 2,4,6. But in the manner of figure 85, a 2,4,6 expands in k+1
to a corresponding 3 smaller segments around the location. They are then the
same as figure 88. Anything except the new 3 smaller segments do not touch
or contain the location.

17.2 15ths Fractional Triples

Gosper [23] in the OEIS considers triple points in the dragon curve fractal with
denominators 15.2k, so a same location

fpoint
( s

15.2k

)
= fpoint

( t

15.2k

)
= fpoint

( u

15.2k

)
0 ≤ s, t, u ≤ 15.2k

integers
(408)

Such 15ths are the curve bridges, and the boundary points of left and right
adjacent sub-curves which touch those bridges. This can be seen in the limits
for the bridge point numbers from theorem 63, scaled to middle curve length 1,

BridgeLotherk
2k

→ 2

15

BlobN k

2k
→2

5
=

6

15

BridgeRotherk
2k

→22

15
=2− 8

15
(409)

The locations of all 15ths in the fractal are

1
3 i

0

− 1
3 i

− 2
3 i

− 1
3 0 1

3
2
3 1

start end1

2 3

4

5

6
7,9

8

10

11 12

13 14

Figure 89:

fpoint
( p
15

)
fractional
locations
1
15

to 14
15

6 is before the middle biggest blob per BlobN limit (409), which is location
c0 of Ngai and Nguyen[38]. 12 is after this middle biggest blob. 3 is before the
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second biggest blob. 7 and 9 are at the same location and are on the boundary
of the middle biggest blob. In the second half of the curve, 9 is the bridge after
biggest blob in that half since 2(1− 9

15 ) = 12
15 .

3, 6, 9, 12 are bridge points (including 9 as bridge in the second sub-curve).
They reduce to fifths 1/5 through 4/5 (ahead in section 17.2.1).

1, 2, 4, 8, 14 are in fact vertices of the convex hull P4, P3, P2, P1, P7 respec-
tively, per locations given by Benedek and Panzone[7], and limits P1N (k)/2k →
8/15 etc from section 7.

Similar to the 7ths above, factor 2k in the denominator (408) can be taken as
an expansion level in finite iterations of the curve. The fractions 1/15 to 14/15
are then offsets into a segment of curve k along the direction of expansion for
that segment.

Locations are multiples of 1
3 and 1

3 i, except for 5 and 10. The following
configurations are all arrangements of segments which give 15th triple locations.

=⇒ ⇐⇒ ⇐=

1

3

11

1,3,11 at z=− 1
3
i

before second
biggest blob

2
6

8

2,6,8 at z= 1
3
− 1

3
i

before
biggest blob

4 12

14

4,12,14 at z= 2
3

after
biggest blob

7 9

13

7,9,13 at z= 2
3
− 1

3
i

end half,
after biggest

Figure 90: 15ths sub-curve configurations

The middle segment 3, 6, 9, 12 in each case is the one with the bridge point
(for 9, a bridge in the second half). The curling and spiralling of the curves
means this is not on the straight line from its start to end, except for 12.

Configuration 2,6,8 is the curve arms of theorem 63, with the first sub-curve
of the right side arm −90◦ omitted (that segment doesn't need to be present to
form a triple). Configurations expand to each other per the ⇒ arrows shown.

Under the f mapping (403) each fraction expands

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Fractions f= 5
15= 1

3 and f= 10
15= 2

3 are at

fpoint( 1
3 ) = 1

5−
2
5 i fpoint( 2

3 ) = 3
5−

1
5 i (410)

and each expands to 10 again. There are no adjacent sub-curves which repeat
those points. This is essentially since they are not on the fractal boundary.
That is clear enough in figure 89 or can be seen by considering locations in
big enough k that the points have sub-curve crossing lines or hulls entirely
surrounding. k=5 suffices for f= 2

3 . It is at fpoint( 2
3 ).b5 = −3− 1

5 + (−1− 3
5 )i
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which is in an enclosed unit square, and the blob crossing lines of the sides
surround the point. k=6 has f= 1

3 at the same location. Dragon curves touch
only at their boundaries so 5, 10 are not repeated in 15ths.

Similar to the 7ths, solutions for numerators s, t, u in (408) are configurations
from figure 90 which occur in a curve level k.

The first triple occurs in the two segments of k=1 as configuration 7,9,13
(rotated −90◦). Fractions 7 and 9 measure back from the end of the second
segment at n=2 so become 2.15− 7 = 23 and 2.15− 9 = 21. 13 measures from
the start of the first segment which is n=0. So triple 13, 21, 23.

fpoint
(

13
30

)
= fpoint

(
21
30

)
= fpoint

(
23
30

)
= 1

2−
1
6 i

Every odd n is a configuration 7,9,13 like this. The turn left or right at n
determines whether the 7,9 part or the 13 part is the first in the curve. turn(n)
is bit above lowest 1 (section 1.2) so with n odd it is left or right according as
n = 4m+1 or n = 4m+3. These become sets of triples for m ≥ 0

15 (4m+1− 1) + 13 and 15 (4m+1 + 1)− 7, 9 = 60m + 13, 21, 23

15 (4m+3− 1) + 7, 9 and 15 (4m+3 + 1)− 13 = 60m + 37, 39, 47

Configuration 4,12,14 is the last three segments of k=2, rotated 180◦.

14

12 4

n=4

n=2m

start

end

k=2 sub-curves

left and right curves

adjacent to middle m

The offsets from those segment numbers n=2 and n=4 gives triple

2.15−4 = 26 2.15+12 = 42 4.15−14 = 46

This is simply 13,21,23 doubled, splitting 7,9 into separate sub-curves. This
triple is the midpoint of the biggest blob as illustrated in figure 67 and limits

MidSN k

2k
→ 13

30

MidMNsk
2k

→ MidMNek
2k

→ 21

30

MidEN k

2k
→ 23

30

Like the 7ths, any triple can be doubled to make another at the same location
in k+1 expanded curve. Original triples remain in the first half of the curve
and unfolded in the second half, plus possible further configurations crossing
the join between those halves.

Gosper takes A260748 as the smallest member of each 15th triple and sorts
triples by that smallest member, so A260748 is each s which will make a triple
in combination with some subsequent segments, possibly across a join.

Configurations can be made by any segments, consecutive or not. Con-
figuration 1,3,11 is three segments around one point so two of them must be
consecutive for the curve arriving at and then leaving that point.

Theorem 108. The number of 15th fractional triple points in dragon curve k
is
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FifteenthTriplesk = 2k − 1 + 2Dk + 4

k−1∑
j=0

Dj (411)

= 4.2k −
(
2Bk − 2dJAk−1 − 2k + 1

)
k ≥ 1 (412)

= 0, 1, 3, 7, 17, 43, 105, 247, 565, 1259, 2745, . . .

gFifteenthTriples(x) =
1

1−x
+

2

(1−x)2
+

4

1−2x
− 7+5x+8x2

1−x−2x3

Proof. Configuration 2,6,8 is an expansion of 1,3,11 or 4,12,14. It arises only as
such an expansion, as seen by considering the middle segment as either first or
second of a segment from the previous level. The two cases determine the other
segments of that level and are 1,3,11 or 4,12,14.

Similarly 4,12,14 arises as an expansion of 7,9,13 or 2,6,8 and only from
them.

So the number of 2,6,8 and 4,12,14 in k are the previous FifteenthTriplesk−1.
The number of 1,3,11 configurations in k is 4 at each even double-visited

point, by taking all 4 rotations of 3 segments there.
The number of 7,9,13 configurations is all the odd points, and 2 extras at

each double-visited odd point.

FifteenthTriplesk = FifteenthTriplesk−1 + 4Devenk + 2Doddk + 2k−1

= FifteenthTriplesk−1 + 2Dk + 2Dk−1 + 2k−1 (413)

For (413), two of the odds and evens combine to two Dk, then Devenk =
Dk−1 (second proof of theorem 32), for sum (411).

Each D contains 1
2 2k and splitting out those powers gives 4.2k per (412).

Roughly speaking, surrounded segments have all 12 possible 15ths going into
some triple, for 12/3 = 4 triples. Surrounded segments grow as 2k, then less
some near the boundary which lack necessary nearby segments to complete.

Configurations 1,3,11 and 7,9,13 at double-visited even and odd points re-
spectively could (in principle) have their bit patterns determined by n and
other(n) per section 1.5.

Gosper notes in A260747 (union of all numerators) differences between suc-
cessive numerators 1, 2, 3, 4, 5, 8, 11, 20, 21.

13,

4

21, 23, 26, 37, 39, 42, 46, 47, 52, 73, 74, 78, ... numerators A260747

2 3 11 2 3 4 1 5 21 1 4 ... differences

Difference 20 first occurs from 113 to 133.

Theorem 109. The di�erences between successive numerators which are in
some 15th fractional triple are 1, 2, 3, 4, 5, 8, 11, 20, 21. Di�erence 21 occurs
once, the others occur in�nitely often.

Proof. Proceed in a similar manner to 7ths differences theorem 106. Every
segment contains some numerator since configuration 7,9,13 puts 7,9 and 13
respectively in segments each side of every odd point. So it suffices to consider
differences within a segment and across a point.

Take each segment of the figure 90 configurations as a middle m for union
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m

Figure 91:

15th triples

con�gurations union,

m as each segment

Then this union also at the next segment a, b, c, d as in figure 87 is

m 15th triples

union and nexts

With the two additional segments shown dashed, these segments on expan-
sion determine a corresponding set for the first or second half of m.

Beginning from a single segment, and making successive expansions, includ-
ing noting which of a, b, c, d (figure 87) is next, gives a total 335 configurations.
Triples occurring within m, and next triple in next segment, show the only
differences are per the theorem.

Mutual recurrences on the configurations, and the differences they contain,
gives how many of each difference occur in given k. All grow without bound
except 21 which is only

FifteenthsDiff21 k =


0 if k ≤ 2

1 if k = 3 or 4

2 if k ≥ 5

= 0, 0, 0, 1, 1, 2, 2, 2, 2, . . .

This is at curve start, and an unfolded copy at curve end. For triples
continued infinitely (k unbounded) there is only the 1 occurrence at curve start.

Like the 7ths, it's possible instead to explicitly work through cases of a
segment and its surrounds. Doing so is a little tedious, though taking possible
differences in increasing order helps. Differences 1 to 4 occur variously and
then there are relatively few combinations able to keep a clear gap to make
bigger differences. The mechanical approach gives counts of how many of each
difference occur.

The number of times difference 2 occurs is related to TAwS (380) from twin-
dragon area tree Wiener index, but just numerically, without obvious geometric
etc relation,

FifteenthsDiff2 k = 3.2k + 1− TAwSk+1

2k−1

= 0, 1, 2, 5, 12, 33, 84, 197, 448, . . .

The number of times difference 5 occurs is
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FifteenthsDiff5 k =

{
0 if k ≤ 2

k − 2 if k ≥ 2
(414)

= 0, 0, 0, 1, 2, 3, 4, 5, 6, . . .

It is 8 to 13 within m in configurations of the form

OR

A
m

B

ER
S

7
9

13 8

6
2

15ths

8 to 13 di�erence 5

Single-visited A means no 9 or 12 in m. Single-visited B means no 11 in m.
Two single-visited points turning different ways means either a bridge or curve
start or end. There is one such configuration at curve start, beingm as k=3, n=3
directed towards curve start (point S is the curve start). Corresponding unfold
at curve end is k=4, n=12. Thereafter it is ER--OR bridges, with the further
segments shown dashed.

Bridge types alternate so each k expansion gains 1 new ER--OR bridge and
hence count (414). For triples in k continued infinitely, those before the join
are unchanged by expansion.

A segment with all of figure 91 has all 15ths triples except the 0, 5, 10 which
are never triples. Differences in and between such segments are a repeating
sequence 1, 1, 1, 2. These are the majority since the number of segments within
distance 2 of the boundary are at most a multiple of the boundary length B and
so grow only as rk whereas total segments grow as 2k. So (like the 7ths) these
full differences 1, 1, 1, 2 become the majority and form ever longer consecutive
runs.

Theorem 110. A 15th location is visited only by the 15ths of �gure 90.

Proof. A 15th location can be taken as 2,6,8 by expanding (increasing k) as
necessary. The arrows =⇒ in figure 90 show how one expands to another.
Expanding either 1 or 2 times reaches 2,6,8. The location of 2,6,8 is 1

3−
1
3 i

relative to its 6 segment. Convex hulls of surrounding non-15th segments are
shown in figure 92 below.

These hulls are those which extend into the square below 6. None of them
touch or contain the 15th location. The hull to the left of the point is close, but
does not touch. Its vertex below is P6 rotated to 1

3−
2
3 i and the hull side goes

up and leftward to P5 at 1
6+ 1

6 i.
So other visits to the location can only be from within one of the 2,6,8

segments.
But 2 expansions returns to 2,6,8 again and a corresponding 3 smaller seg-

ments around the location. Other halves of the originals are some of the sur-
rounding segments of figure 92 and so are too far away.
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2

6

8

Figure 92:

hulls of other

segments surrounding

15th location

1

3
− 1

3
i

17.2.1 5ths Di�erences

As noted above, 5ths fractions are the bridge points in 15th triples. They are
the multiples of 3 among the 15ths, and that 3 can be divided out to consider
them in 5ths.

1 2 4 3 Figure 93:

5ths

con�gurations

Gosper notes in A260482 (union of all 5ths numerators) differences between
successive numerators 1, 2, 3, 4, 5, 6, 9, 10 (and there is an initial 12).

7,

6

5ths numerators

differences

13, 14, 26, 27, 28, 33, 37, 47, 52, 53, 54, 56, 57, 66, 67, 69, 71, 73, 74, 77, ...
A260482

1 12 1 1 5 4 10 5 1 1 2 1 9 1 2 2 2 1 3 ...

Theorem 111. The di�erences between successive numerators which are a 5th
in some fractional triple are 1, 2, 3, 4, 5, 6, 9, 10, 12. Di�erence 12 occurs once,
the others occur in�nitely often.

Proof. In a similar manner to theorem 106 and theorem 109, take the union of
the 5ths configurations figure 93. These segments present or absent determines
all 5ths in m.

m
Figure 94:

5ths union
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At the last triple in a segment, difference is to the first triple of the next
segment which has a triple. The 3 configuration in figure 93 is a 3 before an
odd point right turn and after an odd point left turn. As from section 1.2, the
turns at odd points alternate L,R so

R E L E R E L E R

3 3 3 3 3

... endstart ...

Each E is an even point. It can turn left or right so R to L in two forms

3

3

start end
R

E L

3

3

start

end

R

EL

Figure 95:

5ths R to L

At any segment, it suffices to go forward by 1, 2 or 3 segments to reach a 3.
The worst case is segment preceding an R which must go forward 3 segments
to after an L. If m is each segment in figure 95 then the union of segments for
steps forward to after L is

m

Then to know all 5ths in each such segment is figure 94 at each position

m

With the two additional segments shown dashed, these segments on ex-
pansion determine a corresponding set. Successive expansions, and tracking 3
following segments, gives total 356 configurations. Triples within m and to
the first of a following segment show the only differences occurring are per the
theorem.

Mutual recurrences on the configurations, and the differences they contain,
gives how many of each occur in given k. All grow without bound except 12
which is only

FifthsDiff12 k =


0 if k ≤ 2

1 if k = 3 or 4

2 if k ≥ 5
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= 0, 0, 0, 1, 1, 2, 2, 2, 2, . . .

This is one 12 at curve start and another at curve end (like 21 in 15ths).
For k unbounded there is just the one at curve start.

Like the 7ths and 15ths, it's possible instead to explicitly work through cases
of a segment and its surrounds but doing so is a little tedious. There are only 4
possible 5ths in each segment, but it's necessary to consider next segments with
no 5ths to find differences 10 and 12, and to show no other big differences.

In the configurations for the proof, the location and 7ths in 3 segments
following is more than necessary when there is a 7th in the 1st or 2nd following.
There might be opportunity to reduce distance or unify some configurations,
but 356 is already manageable for computer calculation.

Or going bigger instead, configurations could be formed ignoring the possible
turns of figure 95, just know a triple 3 occurs at most distance 3 ahead so put
the 5ths union (figure 94) at all positions up to 3 away. The resulting diamond
(and tracking 3 following segments) has 1034 configurations occurring and gives
the same results.

17.3 Fractional Boundary

An f can be identified as boundary or non-boundary from its bits high to low us-
ing the Rpred state machine from theorem 21 figure 23 plus additional boundary
cases at certain 15ths.

Theorem 112. Fractional f on the boundary of the dragon fractal are

fRpred(f) = 1 i� Rpred(bf.2kc) = 1 for all k

or SpredLeftk(2n) if f = (2n− 1
15 or 2n+ 11

15 )/2k (415)

or SpredLeftk(2n+1) if f = (2n+ 7
15 )/2k (416)

or f = 7
15 (417)

fLpred(f) = 1 i� Lpred(bf.2kc) = 1 for all k

or SpredRightk(2n) if f = (2n+ 1
15 or 2n− 11

15 )/2k (418)

or SpredRightk(2n−1) if f = (2n− 7
15 )/2k

fBpred(f) = fRpred(f) or fLpred(f)

where single visited n with left or right turn are

SpredLeftk(n) = 0<n<2k and Spredk(n) and turn(n) = 1 (left)

SpredRightk(n) = 0<n<2k and Spredk(n) and turn(n) = −1 (right)

SpredLeft and SpredRight are for a turn within level k. There is no turn at
curve start n=0 nor at end n=2k so false there.

Case (417) f= 7
15 would be in (416) as n=0, k=0 if SpredLeft0(1) was reck-

oned true, being 2n+1 = 2k end of its level k=0. The curve continued infinitely
does turn left there, but k=0 is the only level where 2k end is odd so that it
matters.
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Proof. Rpred and Lpred are 3 enclosing segments for non-boundary on their
respective sides. But in the fractal, those enclosing segments have bridge points
per Ngai and Nguyen [38]. Points of a segment m which is otherwise enclosed
can be at those bridges and so on the boundary beyond. These points and
bridges are the 15th triples from section 17.2,

m

u
1

3

11

1,3,11

11

3

1

2

6
8

2,6,8

8

6 2

7

9

13

7,9,13

13

9

7
4

12

14 4,12,14

14

12

4

In 1,3,11 with 1 in m, that 1/15 is on the right of m and at the location of
the bridge 3. If segment 3 is present then the other side of it is the left of the
curve. If 11 is present too then it encloses the point. So 1/15 is left boundary
when 3 present but 11 absent. The start of m is an even point 2n. To have
11 absent requires single-visited. To then have 3 present requires a right turn,
hence SpredRight in (418).

11 in m similarly, it being the left of the sub-curve and the other side of the
bridge 3 is the right of the curve, hence (415).

In 7,9,13, an absent 13 ensures point 7 is on the right boundary. Start of m
is an even n and its end is 2n+1. So at 2n+1 single-visited and left turn away
from 13, hence (416). 7,9 are in the same segment so always occur together, so
there is no 13 across bridge 9 to absent 7.

2,6,8 and 4,12,14 arise only as expansions of a previous 1,3,11 or 7,9,13 per
theorem 108, and with the bridge part remaining a bridge and the two sides
remaining separate. So relevant presence or absence in the 1,3,11 and 7,9,13
forms determines that in 2,6,8 or 4,12,14.

It can be noted for 7,9,13 that Rpred is already true when 13 is absent, since
that 13 is among the right side segments considered by Rpred . Also the 1,3,11
case has Lpred true since single-visited and 3 present means top segment u is
absent. This is Rpred and Lpred giving the right answer for f at that many
bits. But further bits of f expand to 2,6,8 and 4,12,14 and for them the absent
segment is further away and its absence does not imply Lpred or Rpred true.
It can, and does, happen that those become false so that the 15ths cases are
necessary.

m is shown in direction of expansion. When this is back along the curve,
the sides right and left swap, hence the opposite −1,−11,−7 cases. For 7,9,13
reverse, 2n is the start of m and its arrow end is 2n−1 which is to be single-
visited right turn to avoid 13.
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Second Proof of Theorem 112. A sub-curve m has its convex hull touched or
overlapped by the hulls of the following surrounding segments

m e

Figure 96:

surrounding segments

whose hulls touch

or overlap,

hull of m

It can be noted this is 15ths union figure 91 with additional end segment e.
The 15ths are a subset since of course another sub-curve making a 15th triple
with m is a touch of m.

If m has all segments of figure 96 surrounding it then it is non-boundary
since, by construction, it is does not touch or overlap the hull of any absent
outside. Conversely, if m has one or more of the segments of figure 96 absent,
then that is some part of the hull of m which is outside the curve and therefore
some of m possibly on the boundary.

Hulls beyond figure 96, so not touching m, can be illustrated

m

Figure 97:

non-touching

hulls

When m is surrounded by all segments of figure 96, the grey area here is a
minimum amount of filled region surrounding m. The closest approach of an
absent outside is 1

6 at the right, and the same downwards from m start.
The non-touching hulls in figure 97 are just those close enough to delimit

the grey filled region. Actually that region will be bigger than shown, since the
two 3-segment points in the lower row of figure 96 will have their 4th segment
present too so the curve can both enter and leave, but knowing that is not
necessary.

As a remark, the triangle at the bottom touches the rest at a point, and
has another much smaller triangle at its bottom right also touching at a point.
Another small triangle is at top right from corresponding relative hulls.

Similar to theorem 106, a given m has some of the segments of figure 96 here
surrounding it. Initially at k=0 there are none. On expansion there are new
segments around the first and second half sub-curves. The segments of figure 96
suffice to determine a corresponding set around both new halves. The result is
a finite set of configurations for a state machine traversed by bits of f .

m and the other segments have arrows shown in the direction of expansion.
A configuration can be m forward or reverse along the direction of the curve.
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On expansion in a forward segment, the first half is for bit=0 and the second
for bit=1. In a reverse segment, the other way around. For both cases, the
direction in the new configuration is forward if bit=0 or reverse if bit=1.

A fully surrounded configuration expands to fully surrounded for next bit 0
or 1. So if the bits of f ever reach fully surrounded then it remains so always.
If f never reaches fully surrounded then that is an absent sub-curve at distance
≤ 1/

√
2k for ever increasing k, so m an arbitrarily small distance from the

outside, and so a boundary point.

fBpred(f) =

{
0 if ever reach fully surrounded

1 if never fully surrounded

To distinguish right and left boundary, segments of the curve always turn
left or right and so divide the plane into alternating left or right side squares
(eg. as for area in figure 24).

R L R

L R L

L

m
Figure 98:

possible boundary squares,

left and right sides

(swap when m reverse

along the curve)

The actual sub-curves are curling spiralling shapes, but they divide the plane
into logical squares. If going from m to some absent sub-curve requires crossing
another sub-curve then that goes to the other side of the curve.

In figure 98, squares are shown with just the touching hull segments of
figure 96. If a square has at least 1 of its sides segments shown, but not all of
them, then this is some of its R or L as boundary for m.

Figure 98 is shown with R and L on the side of expansion. If m is reverse
along the curve then the sides R and L along the curve swap. If a configuration
has no R in the direction of the curve then on expansion it has no R again, for
next bit either 0 or 1. Similarly L.

fRpred(f) =

{
1 if always an part-sided R square

0 if ever reach all complete sides R squares

fLpred(f) =

{
1 if always a part-sided L square

0 if ever reach all complete sides L squares

Total 92 configurations arise. There are 26 with R fully enclosed, and 26
with L fully enclosed. 2 are common to them, being the full set of segments
with m forward or reverse along the curve. The state machine reduces to a
slightly complicated 30 states for R, or 32 states for L. Their union for B is 91
states (forward and reverse fully enclosed can merge).

The conditions of the theorem can be expressed as state machines too.
Rpredk and Lpredk high to low each have state 3eB which is ``eventually en-
closed'' in the sense that more bits from f , no matter what 0, 1 values, will reach
enclosed. This state is reckoned enclosed since f always has further bits (low
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0s or low 1s if an exact fraction /2k). This is necessary for comparing to the
hulls state machine. The hulls state machine itself does not have any eventually
enclosed states (any state not enclosed is able, by some bits of f , to remain not
enclosed).

The 15ths cases are extras over the Rpredk or Lpredk conditions. An f of
the Spred and given 15th form should be reckoned as boundary. SpredRightk
and SpredLeftk are intersection of Spredk with turn bit above lowest 1 forms.

Then for fRpred , intersect SpredLeftk with low bit 0 so even 2n, and to that
concatenate 1011 repeating for + 11

15 . Similarly fLpred with SpredRightk and
0001 for + 1

15 .
The subtraction cases are conveniently reckoned as addition from preceding

integer. fRpred case − 1
15 is 2n−1 + 14

15 so concatenate 1110 repeating to a 2n−1
which has 2n as an SpredRightk. Such subtract from all strings of a DFA is
formed in usual ways, reckoning a borrow propagating up as far as necessary
(as noted for consecutive enclosures in section 6). Here a borrow propagates
only as far as the lowest 1-bit, above which is the turn bit (another 1-bit for
right). Similarly fLpred case − 11

15 .
fRpred case + 7

15 is also such a DFA decrement. It is 2n concatenate 0111
repeat, where 2n+1 is SpredLeftk, so decrement all odd strings in SpredLeftk.

fLpred case− 7
15 is not this way. Its f is 2n−1+ 8

15 where 2n−1 is SpredRightk,
so just concatenate 1000 repeating onto an odd SpredRightk.

In all cases any bit-prefix of these patterns is accepted too as still potentially
these forms.

State machine manipulations show that Rpred eventually-enclosed and union
the 15ths cases gives fRpred by hulls touch, and that none of the 15ths cases
stated can be omitted. Similarly fLpred .

For fRpred , the 15ths bit patterns are all 0111 repeating, but with −1,+11
or +7 starting at a different position in the pattern (and different SpredLeft of
even or odd above the repeats). Similarly fLpred is 1000 repeating for its +1,
−11 or−7, which is bit flip opposite.

The surrounding segments at figure 97 can also be chosen further out, such
as an upper bound for the convex hull, or using blob crossing lines to delimit
the closest any outside can be. In the following diagram, if the segments with
crossing lines shown are present then any outside is a non-zero distance away
from m.

m
blob crossing lines

surrounding hull of m

The result of a bigger set of surrounding segments is more configurations,
and some possibly ``eventually enclosed'' in the sense (from the proof) that more
bits of f , no matter what 0,1, will lead to enclosed. The f bit patterns matched
are the same.
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Any f is an infinite bit string. After some bits, a state machine does not
know whether the rest of f is good, but it does know when the bits so far are
not good, ie. f is certainly non-boundary, no matter what might follow. This is
an enclosed (or eventually enclosed) sub-curve m.

The first prefixes of f recognised as non-boundary by fNonBpred are

.101100 6 bit prefix of fNonBpred (419)

.0101100 .1010011 .1010110 7 bit prefixes

.1011000 .1011001 (420)

The 7-bit .0101100 is an initial 0 then the 6-bit .101100. This is since if f
is enclosed then so is 1

2f in the first half of the curve. .1010011 is the same
but 0↔1 bit flipped. It is the 6-bit in the second half back from the curve end
1− 1

2f (subtracting from 1 represented as .111...). A 0 or 1 can be appended to
the 6-bit too which is (420). The remaining 7-bit is new (the third shown).

Their locations are illustrated in the following diagram. The segments are
all and only those with all the surrounding segments of figure 96. There are
only a few in the first few curve levels but soon they become the majority.

6-bit n= 101100 is on the boundary but is a 3eB type square which, as
noted in the proof, is ``eventually enclosed'' so not fBpred . Likewise unfold of
the 6-bit.

start

...

... end

blob k=6
blob k=7n = 101100

6-bit

n = 1011000,
1011001

pair

n = 1010011

unfold

n = 1010110
new

fNonBpred

of 6 and 7 bits

The number of non-boundary f recognised in initial k bits can be found by
counting states which occur. The state machine transitions are mutual recur-
rences on these counts. Some recurrence or generating function manipulation
gives totals

fNonRk = 2k − fRk non-right-boundary in k bits

= 0, 0, 0, 0, 1, 4, 12, 34, 90, 222, 522, 1186, . . .

fRk =

{
1, 2, 4, 8, 15, 28 if k ≤ 5

Rk + SixBk−3 − 2k + 8 if k ≥ 6
(421)

= 1, 2, 4, 8, 15, 28, 52, 94, 166, 290, 502, 862, . . .

fNonLk = 2k − fLk non-left-boundary in k bits

= 0, 0, 0, 1, 3, 9, 25, 61, 139, 309, 675, 1449, . . .
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fLk =

{
1, 2, 4, 7, 13, 23, 39, 67 if k ≤ 7

Lk + 2SixBk−5 − 2k + 17 if k ≥ 8

= 2fRk−2 + 2k − 3 for k≥ 3 (422)

= 1, 2, 4, 7, 13, 23, 39, 67, 117, 203, 349, 599, . . .

fNonBk = 2k − fBk non-boundary in k bits

= 0, 0, 0, 0, 0, 0, 1, 5, 23, 81, 247, 673, . . .

fBk =

{
1, 2, 4, 8, 16, 32, 63 if k ≤ 6

Bk + SixBk−2 − 16k + 61 if k ≥ 7

= 1, 2, 4, 8, 16, 32, 63, 123, 233, 431, 777, 1375, . . .

fR is how many strings of k bits are still candidates to be boundary f , ie.
at least one f with those initial bits is on the boundary. fRk is written using
finite right boundary segments Rk since such segments, other than some of 3eB,
are in fR. The additional segments in fR are counted by SixB from (272). But
SixB is used only as a convenient cubic. (It is complex base i+1 close to the
boundary and so twindragon and so two dragon right sides.)

fL and fB are written similarly. fB is the union of fR and fL, ie. segments
which still have some point on either R or L boundary. Some segments near
bridges and curve start and end are both fR and fL. They are counted just once
by fB , so fB is smaller than fR + fL. The number of boths is difference

fRk + fLk − fBk =

{
1, 2, 4, 7, 12, 19, 28 if k ≤ 6

12k − 46 if k ≥ 7
(423)

In the SixB forms (421) etc, fR + fL is SixBk−3 + 2SixBk−5 and since SixB
is the cubic recurrence this is equal to SixBk−2 in fB , leaving (423) just linear
in k after initial exceptions.

fL form (422) is essentially left boundary as two right boundaries size −2 as
in theorem 18.

Rk is in fRk since an Rk even segment has its R square below with < 3
sides so fRpred . An Rk odd segment is reverse so the L square above is right
boundary. It is < 2 sides except for 3eB (see figure 22). Rk counts 3eB as
boundary, but for fR it is not, unless one of the other L squares is boundary.

There are RQ3ek many 3eB segments. Some recurrence manipulations gives
an identity with all 3eB subtracted. The extras (other L squares being bound-
ary) are then, just numerically, a delayed SeventhsNotAll from (407).

fRk = Rk − RQ3ek + SeventhsNotAllk−3 + 2k − 14

fNonB6,7 =1, 5 are the prefixes shown at (419). As noted there, a 0 or 1 can
be appended to each preceding bit string since all of that string is non-boundary.
Counts of new non-boundary, meaning those not extending a previous, can be
found by subtracting twice the k−1 counts. These counts of new grow as the
cubic rk.

fNonRnewk =

{
0 if k = 0

fNonRk − 2fNonRk−1 if k ≥ 1
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= 0, 0, 0, 0, 1, 2, 4, 10, 22, 42, 78, 142, 250, . . .

fNonLnewk =

{
0 if k = 0

fNonLk − 2fNonLk−1 if k ≥ 1

= 0, 0, 0, 1, 1, 3, 7, 11, 17, 31, 57, 99, 173, . . .

fNonBnewk =

{
0 if k = 0

fNonBk − 2fNonBk−1 if k ≥ 1

= 0, 0, 0, 0, 0, 0, 1, 3, 13, 35, 85, 179, 349, . . .

The number of f which are fNonRpred is uncountably infinite, since once
reaching ``non'', further bits of f can be an arbitrary real.

The number of f which are boundary fRpred is uncountably infinite too.
That can be seen in the Rpred state machine (figure 23) where there are various
different ways bits of f can loop back so as to always stay away from ``non''. For
example 100 is 1e,1o,2eA returning to 1e, and 1101000 is 1e,1o,2eB,... returning
to 1e. The bits of an arbitrary real can be coded as 0→ 100, 1→ 1101000 so
there are at least as many fRpred as reals. The same holds for fLpred , and then
their union is fBpred .

Per the topology shown by Ngai and Nguyen [38], the only points on both
left and right boundary are curve start and end and the bridges, which is

fRpred(f)=1 and fLpred(f)=1

iff f = 0, 1,
2

5.2k
, 1− 2

5.2k
integer k

= 0, ... 1
20 ,

1
10 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

9
10 ,

19
20 , ..., 1

= binary .00...00 0110 0110... k leading 0s (424)

.11...11 1001 1001... k leading 1s (425)

In the state machines for fRpred and fLpred , the intersection of their bit
patterns is these 5ths (424),(425). Roughly speaking, in the boundary squares
figure 98, the only m able to be near both left and right boundary squares are
those on or beside a bridge. Then expansion of bridges takes anything except
the relevant 5th too far away eventually.

When considering whether a given f is on the boundary, it can often be
known or proved f is not a 15th and so not subject to the extra cases of the-
orem 112. For example any irrational is not a 15th. A boundary point is then
an f which never reaches enclosed in the Rpred or Lpred state machines.

The initial states of Rpred accept binary fractions where each 1-bit has 2 or
more 0-bits below so 100...1000... etc. If this pattern of runs is periodic then it
is rational, or if not then irrational. Various sparse binary irrational constants
have this form. The Kempner-Mahler number KM from (23) is an example. Its
initial bits take a deeper excursion, then it is sparse so on the right boundary,

fRpred(KM ) = 1 (426)

Theorem 113. The number of visits to the location of a given f in the dragon
fractal is
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fVisits(f) =



Visitsk(n) if f = n
2k

for integer n, k

1, 2, 3 of 7ths if f = n
7.2k

integer n, k and n 6≡ 0 mod 7

1, 2, 3 of 15ths if f = n
15.2k

integer n, k and n 6≡ 0 mod 3

and otherwise

2 if fNonBpred but sub-bits fBpred

1 otherwise

(427)

Sub-bits fBpred means the bits of f at and below some position are fBpred ,
so f is on the boundary of the sub-curve there.

Proof. An exact fraction f = n/2k is a vertex of curve k and is visited there
the same as Visitsk from (174). By plane filling, those visits enclose the point
so no other sub-curves touch it. There are no additional visits from within
those k sub-curves either since on repeated expansion there is an ever smaller 4
surrounding sub-curves.

The claimed cases of whole curve fBpred boundary or not, and sub-curve
eventually or never fBpred , are

fBpred fNonBpred

whole curve

1 2

no such 1

sub-curve eventually fBpred

sub-curve never fBpred

Per Ngai and Nguyen [38], each blob is a topological disc and the blobs of
the whole curve touch only at the bridge points.

An f which is on the boundary of some sub-curve is on the boundary of a
blob. There are countably infinite blobs in a sub-curve and which one has f is
determined by where f falls between the bridge points.

f may have an adjacent blob from another sub-curve too, or perhaps more
then one such.

blob

adjacent blob

f on blob boundary

and adjacent other blob

Boundaries between blobs can be seen by considering how a blob is comprised
of smaller blobs. On expanding down to level k+1 sub-curves, the biggest blob
of each k sub-curve breaks into smaller blobs in the manner of section 12.4.1
new biggest blob from smaller blobs,

Draft 23 page 342 of 391



blob

start

blob

end

−2

−3

−4

−1

−2

−3

−4

join J

middle biggest blob 0

comprised of smaller
blobs −1,−2 etc

boundaries are between

15ths bridges, 7th join

Within the k+1 half sub-curves, the now smaller blobs of the first touch each
other at bridge points, the same as the whole. Likewise the second. Between the
halves, the bridge points of each do not coincide, so the boundaries are between
bridge points. Blobs −2 and −1 touch at the join point J too. So common
boundary between blobs always splits at the bridge points and at the join J.

An f which is not a 7th (join) or 15th (bridge) is now on the boundary of a
smaller blob, and possible adjacent smaller blob. But only one adjacent, since
such an adjacent splits only at 7ths and 15ths too.

By repeated expansions, an f not a 7th or 15th remains on the boundary of
an ever smaller blob, so only 1 visit in its own sub-curve. And when the location
is on the boundary of an adjacent blob, there likewise ever smaller and so only
1 visit. When f is on the whole-curve boundary there is no such adjacent, so
no 2nd visit.

By 7ths visits theorem 107 and 15ths visits theorem 110, an f which is a
7th or 15th has 1,2,3 visits according to the presence or absence of relevant
surrounding sub-curves.

(427) has 15ths cases excluding n≡ 0 mod 3, so not 0,5,10 mod 15. 0 mod 15
is the exact n/2k. 5, 10 are non-boundary as noted with the 15ths expansion, or
by putting them through fBpred , and consequently are single-visited the same
as other points never on a sub-curve boundary.

Roughly speaking, the curve can be thought of as a patchwork of blobs of
various sizes. Common boundary between any two is only ever between 7th or
15th locations, but a countably infinite grid of those locations.

Second Proof of Theorem 113. A mechanical approach can be made based on
ways another f ′ might be at the same location as a given f . The two f and f ′

differ at some bit position. The bits of f down to there are f in sub-curve m,
and f ′ in a different but nearby sub-curve.
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f = . some bits m subcurve

f ′ = . di�erent bits s subcurve

f ′ must be in one of the segments s of figure 96 since they are all which are
close enough for their convex hull to overlap the hull of m and therefore could
have a point in common with m.

m

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

Figure 99:

surrounding segments

whose hulls touch

or overlap,

hull of m

An f visited ≥ 2 times must have some part of an adjacent s remaining
close enough to m on all subsequent expansions. For example, suppose f ′ is in
segment s10. On expansion s10 becomes new segments A and B,

m
m.0 m.1

s10.0

s10.1

Bit 0 of f is the first expanded segment m.0. s10.0 and s10.1 are both too
far away, ie. they are not among the segments of figure 99.

Bit 1 of f is the second expanded segment m.1. Relative to it, s10.0 and
s10.1 are respectively s5 and s4. So a 1-bit (in f) goes to require either s4 or s5
close enough. It doesn't matter which of s4 or s5, since both have some part of
the f ′ which is different from f .

A requirement for a given s to remain close enough to m is reckoned as a
state. On expansion, a bit (0 or 1) of f goes to none, one or either of two new
required s which are the destination states for that bit.

If there are no new states then that is non-accepting. For these bits of f ,
the original s is too far away to have a point in common with f .

If there are two new states then either satisfies the s requirement. This can
be expressed by an NFA where any among multiple transitions can be taken
by a given bit of f . The equivalent in a DFA, and the usual way an NFA is
converted to a DFA, is to reckon a state as a set of s, at least one of which
must remain close enough.

When m is forward along the curve, bit 1 goes to m reverse along the curve,
the same as in the fBpred state machine. In figure 100, the s states are m
forward along the curve and the r states are the same relative segments but m
reverse along the curve.
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When reverse, the expanded segments of m are bits 1, 0 instead of 0, 1. In
both cases bit 0 goes to new state forward (s) and bit 1 goes to new state reverse
(r). The starting state is likewise s when the initial ``some bits'' of f end with
a 0, or r where they end with a 1.

s1

s2s3

s4

s5

s6

s7

s8

s9

s10

s11

r1

r2 r3

r4

r5

r6

r7

r8

r9

r10

r11

Figure 100: NFA

s segment required,

r when reverse

0

1

0

1

0
0 1

0 1
1

0

0

0

0

0
01

1

0
01

1

1

0

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

2 other f ′, f ′′ at the same location as f is constructed by considering enough
bits that all three are in different sub-curves, so f inm and f ′, f ′′ in two s. Both
of those 2 must remain close enough to m. This is state machine intersection
of starting at each of those two s. Or two r when m is reverse along the curve.
Any pair of two others suit, so union all combinations.

3 or more f ′, f ′′, f ′′′ etc others at the same location as f is a similar state
machine intersection (any 3 of s, or any 3 of r). The conditions of the theorem
can be compared to various intersections.

The theorem is no fVisits(f)≥5, which is no 4 other s continuing infinitely.
Working through the state machine shows the intersection of any 4 starting s,
or 4 starting r, give only finite bit strings. Some are up to 5 bits long, but none
continue infinitely (which bits of f must do).

The theorem is exact f =n/2k at double-visited points n. Such an exact f
has two representations in binary, one ending infinite zeros 000... and the other
ending infinite ones 111.... So the theorem is for 3 other s continuing infinitely
to be only s1,s2,s5 by 0s or s8,s9,s10 by 1s (and vice-versa r). Working through
the state machine shows this is so, and therefore no fVisits(f)≥ 4.

Dpred(n) 000 . . ..

Dpred(n+1) 111 . . ..

The theorem for fVisits(f) = 3, which is 2 other s, is the 7ths and 15ths
fractions of respective segment arrangements from figure 83 and figure 90. One
of their segments is m and the other 2 segments are other s. 15th triple 7,9,13
has only one other and so does not apply. The fraction in m is a repeating bit
pattern.
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In the state machine, 2 other s combinations will include the 3 other s
combinations too, so these bit patterns for 2 other are in addition to the exact
0s and 1s of 3 other. Working through the state machine shows all and only 2
other s combinations and their bits are 7ths, 15ths, and exacts.

The states are conceived as representing an s required to be present, but
they apply also to an s required to be absent. So the ``2 other'' combinations
are also those with one s present and one s absent, or 2 both absent. These are
the theorem 7ths and 15ths cases fVisits = 1, 2.

An f is boundary if and only if m as the initial segment has at least 1 other s
remaining absent. This can be any s, so s1 to s11 as multiple starts in the NFA.
Working through the state machine shows the result is the same as fBpred .

The remaining theorem fVisits = 2 is when sub-curve boundary but whole
curve non-boundary. This is sub-curve 1 other s required present, but not a
2nd required absent. A 2nd requirement means the 2 other 7ths and 15ths cases
as above, hence ``otherwise'' in the theorem.

The remaining theorem fVisits = 1 is in three ways. Firstly 7ths and 15ths
per above. Secondly by whole curve boundary, which is 1 other s required
absent, after the ``otherwise'' of the 7ths and 15ths. And finally 0 other s ever
remaining, which means never sub-curve boundary.

As noted in the proof, the DFA equivalent of the NFA is to form states as a
set of s where at least one is required to remain present. On expansion, a 0-bit
or 1-bit goes to a new set. These sets are precisely the segment configurations
occurring in the fBpred state machine.

In the NFA diagram (figure 100), the cycles s3,s4,s7,r1 and r3,r4,r7,s11 at
the left and right are the 15ths. Notice there is no way out from them. Once
reached, no other bit patterns are possible. Geometrically, this is since the hulls
of s3, s4, s7, s11 touch m at only one point each (a hull vertex). The single
sequence of bits in the state machine shows there is only one f in m at each of
these locations, which is per theorem 110.

m

s3

s4

s7

s11

P1P2

P3

P7
Figure 101:

s3, s4, s7, s11

hulls touch m at a

single point each,

being m hull vertices

P1,P2,P3,P7

7ths bit patterns 001 and 110 are in the 3-state loops drawn at top and
bottom in the NFA. The most direct is starting s10 where 110 repeating is 6

7
limit of JN k/2

k from (156).
These loops allow other bit patterns too. The self-loops such as 0 at s1 can

be used to make a 15th. Roughly speaking, these are nearby segments which
can be part of a 15th if desired, but not forced like the far away ones are.
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Initial bits of f do not determine fVisits. Such bits are a sub-curve, and
within any sub-curve there are all possible fVisits = 1, 2, 3.

fVisits = 1 is at rational 1
3 , or irrational by any non-periodic sequence of two

fNonBpred bit strings.
fVisits = 2 is at 7ths and 15ths cases when whole curve boundary, and also

occurs when not. Any exact double-visited finite point /2k is a rational 2 visits.
Or construct an irrational by fNonBpred prefix so not whole curve boundary,
then stay in fBpred states by a non-repeating pattern (of two types of loop say).

fVisits = 3 are never on the whole curve boundary, and within the curve they
are always solely the rational 7ths and 15ths. Consequently they are countably
infinite, whereas both fVisits = 1, 2 are uncountable.

In the proof, the state machine shows no 4 other s are possible to make an
fVisits≥5. Geometrically, this is as simple as no set of 4 other surrounding hulls
having an area or point which is common to all and to m. The state machine
finds a gap between any combination after a few bits expansion.

Regions of m with 0 to 3 other hulls touching or overlapping can be illus-
trated

start end

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

3 3

other hull overlaps

The blank (white) triangle regions in the middle are where no other hulls
overlap m. Hull boundaries are inclusive, so the lines between regions are the
bigger number of overlaps. The dots shown are isolated points with more overlap
than their region. They are hull vertices P1,P2,P3,P7 (figure 101) and two
similar type meetings inside. The insides points are since the regions each side
which touch are inclusive of their boundary.

The regions of 3 other at curve start and end would be candidates for
fVisits = 4, but per the proof they are not, essentially since they are always
consecutive sub-curves arriving at then leaving the /2k start and end points.

The curve extends into all these regions, though for the top left and right-
most 2s regions the curve only touches.
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start

end

2

2

touched only

touched only

17.4 Fixed Point

Fractional f on the centreline (line passing through curve start and end) are
characterized by the segment state machine from section 5.5. Any sub-curve
without at least one end on the centreline is, per its convex hull, too far away
to put any point on the centreline.

fCentrelinePred(f) = f bits high to low
never reach ``non'' in CentrelineSegmentPred state machine figure 32

The CentrelineSegmentPred state machine can be simplified by taking 4 bits
at a time. For finite iterations, this would be k a multiple of 4. For fractional f
this is just a convenient grouping, since f has bits continuing infinitely. (2-bits
at a time is also a simplification, to 6 states.)

h

a2 d2

start
Figure 102:

f hexadecimal

fractional digits,

high to low

0,C

B,F 1,D

B,F C

D

0 1

These states are the orientations shown in figure 33. On expanding 4 times,
from the respective orientation, these 3 suffice for the resulting new states
(turned 180◦ if necessary as that does not change the centreline).

h

d2

a2

expand 4

start

end

Fractional f on other lines relative to curve start or end are by starting the
full binary CentrelineSegmentsPred state machine in the various states shown
in figure 34, the same as finite iterations.
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The biggest f on lines at 45◦ angles through curve start follow by taking a
1-bit if possible at each state. From state s3 this is s3,s2,s1,d2 and back to s3
for repeating bit pattern 0, 0, 1, 0 which is f = 2

15 . From states s2 or s1 similarly
for 4

15 and 8
15 . These are convex hull vertices too.

The smallest f on lines through curve end is by taking bit 0 if possible if
possible at each state. From state e3 this is e3,e2,e1,a2 and back to e3 for
repeating bit pattern 0, 1, 1, 1 which is f = 7

15 . From states e2 or e1 similarly
for 14

15 and 13
15 . The latter two are convex hull vertices.

z = − 1
3
− 1

3
i

f = 2
15

f = 4
15
, z = − 2

3
i f = 8

15
, z = 2

3
− 2

3
i

f = 7
15
, z = 2

3
− 1

3
i

f = 14
15
, z = 1+ 1

3
if = 13

15
, z = 2

3
+ 1

3
i

f= 1
2

min/max f
on axis lines

f = 7
15 is the smallest on the line South-West from the curve end. This is in

the first half of the curve and in that half the South-West line is perpendicular
to the centreline so that 7

15 is half of f = 14
15 from the whole curve.

Visually, the South-West line passes through more curve below f = 7
15 and

it might be wondered that some of this could be smaller f , but it's not. All
that's there is either second half curling back up from f= 1

2 , or bigger parts of
the first half working their way to f= 1

2 . Location
2
3−

1
3 i is a bridge point in the

second half of the curve (a 7,9,13 type 15th, with absent 13), so that 7
15 is on

the right boundary.

Points on the centreline are fpoint(f) entirely real, which allows the possi-
bility of ``fixed points'' fpoint(f) = f . f=0 and f=1 are simple such f , and
there is another too.

Theorem 114. The dragon fractal has a �xed point fpoint(ffixed) = ffixed at

ffixed =

∞∑
j=0

runj where runj =
1

2sj
− 3

2ej

= 1− 3

24
+

1

28
− 3

216
+

1

228
− 3

232
+

1

256
− 3

260
+ · · ·

= 0.11010000111111010000... binary

= 0.816360476...

where the run starts s and ends e are given by �3 from 2� mutual recurrences

s3h = 2s2h s3h+1 = 2e2h s3h+2 = 2e2h+1 − 4 (428)

e3h = 2e2h − 4 e3h+1 = 2s2h+1 e3h+2 = 2e2h+1

starting s0, e0 = 0, 4
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sj = 0, 8, 28, 56, 64, 116, 128, 224, 236, 256, 440, . . .

ej = 4, 16, 32, 60, 112, 120, 220, 232, 240, 436, 448, . . .

Proof. Each run is bits of the following form (hexadecimal ``FF...FFD'')

. . . 0 0 1111...1111 1101 0 0 . . .

s e

run =

Per fpoint figure 81, the b powers and negate below 01 bit pairs for such a
run are

fpoint(run) =
1

bs+1
− 1

bs+2
− 1

bs+3
− · · · − 1

ee−2
− 1

be

=
1

bs+1
−
( 1

bs+1
− 1

be−2

)
/(b−1) − 1

be

=
1

bs
+

1

be
(429)

s, e are multiples of 4 since the initial values are multiples of 4 and the
recurrences maintain that. Then with b4 = −1 have

fpoint(run) =
(−1)s/4

2s/2
+

(−1)e/4

2e/2
(430)

The s numerator is +1 when s≡ 0 mod 8 or −1 when s≡ 4 mod 8. Likewise
e. So forms,

10...00 01

01...11 11

±
±

fpoint(run) =

s/2 e/2

The bits of run have two 01 bit pairs, including high 0s reckoned above the
first run in f , so there's no net sign change to consider when taking combinations
of them in fpoint .

2 runs in ffixed are built using fpoint of 3 runs.

1111 . . . 11 0 1

1111 . . . 11= 1 00 . . . 00 1

0 1111 . . . 11 01

− 11

run2h run2h+1

fpoint
(run3h)

fpoint
(run3h+1)

fpoint
(run3h+2)

run2h + run2h+1 = fpoint(run3h) + fpoint(run3h+1) + fpoint(run3h+2) (431)

Recurrences (428) for s3h etc give these bit combinations. s3h = 2s2h so it
is a multiple of 8 and so +1/2s2h in (430). e3h = 2e2h − 4 which is 4 mod 8
so −1/2e2h−2. Together they are the 1s shown fpoint(run3h) and which are the
initial 1s of run2h. s3h+1 is +1 at e2h which is the final bit of run2h.

e3h+1 is +1 at s2h+1. Then s3h+2 =2e2h+1− 4 gives −1/2e2h+1−2. It borrows
down from s2h+1 to produce the initial 1s of run2h+1. Then e3h+2 = 2e2h+1 is
+1/2e2h+1 for the final bit of run2h+1.
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fpoint(run3h+2) = −4 + 1 = −3 = binary −11 at that position. This is the
−3/2e part of run2h+1. The same in run2h is the combination end of 3h and
start of 3h+1.

Runs do not touch or overlap since the initial j = 0, 1 are runs ej − sj ≥ 4
and gap ej+1 − sj ≥ 4. Given such lengths and gaps ≥ 4, the doubling and
possible −4 in the recurrences are likewise runs and gaps ≥ 4. This and no net
negations for fpoint between runs allow them to be combined

run2h + run2h+1 = fpoint(run3h + run3h+1 + run3h+2 ) (432)

and similarly any number of pairs of runs formed by fpoint of triplets.

The first two runs j = 0, 1 are made by fpoint of themselves and run j=2,

fpoint( .0000 0000 1111 1101) = .0001 0001

fpoint( .1101) = .11

fpoint( .0000 . . . 0000 1101) = −.0000 0000 0000 0011

28 zero bits .1101 1111 1101

Folded representation (60) can be used for a run too. The 2 blocks of 1s
become 4 folded terms

run =
1

2s
− 1

2e−2
+

1

2e−1
− 1

2e
folded

fpoint(run) =
1

bs
+ (−i) 1

be−2
+ (−i)2 1

be−1
+ (−i)3 1

be
revolving

=
1

bs
+
(

+(−i)b2 + (−i)2b+ (−i)3
) 1

be

=
1

bs
+

1

be
per (429)

A pair of runs 2h, 2h+1 can be thought of as ``expanding'' to a triplet
3h, 3h+1, 3h+2. The s, e recurrences are

s3h e3h s3h+1 e3h+1 s3h+2 e3h+2

s2h e2h s2h+1 s2h+1

Figure 103

For constructing a list of runs, it suffices to take successive pairs s, e like
this and append to the list their respective resulting expansion, after the initial
runs which are their own expansions. See u ahead at page 355 for similar with
s, e taken together.

ffixed satisfies fCentrelinePred by its construction of fpoint(ffixed) entirely
real. ffixed in hexadecimal is runs FF ...FFD which satisfy the hexadecimal
state machine figure 102 (and no matter what run lengths in fact).

ffixed satisfies fRpred too, since in Rpred state machine figure 23, each run
and following gap ≥ 4 zero bits returns to state 1e, so never reaching ``non''.
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Theorem 115. The only �xed points fpoint(f) = f in the dragon fractal are
f = 0, 1, ffixed .

Proof. 0 and 1 are clearly fixed points, and ffixed is by theorem 114. To show
these are the only fixed points, consider an x of k many fractional bits which is
a segment of the centreline from x to x+1/2k,

start end

centreline f1

f2

f3

f4

x+ 1
2k

x

sub-curves

touching

x to x+1/2k

f1, f1−1/22k,
f2, f2−1/22k, etc

Visits to x or x+1/2k are f with 2k many bits. The aim is to have high
parts equal

aaaax = .

aaaa . . .f = .

f1,2 are sub-curves leaving location x. f3,4 are sub-curves leaving location
x+1/2k. The turns shown are examples and can be either left or right. Each
f−1/22k is a sub-curve preceding f . Altogether there are up to 7 sub-curves
traversing or surrounding the x segment. These are all the sub-curves close
enough that their convex hull touches the x segment.

If at least one touching segment has f high bits matching x then x might
contain a fixed point. If none of the f has high bits matching x then there is no
fixed point within segment x, since irrespective what lower bits might follow in
such an f , the high bits are still x 6= f .

The x ``segment'' might not be a sub-curve (ie. not traversed). It may be
that x extends from inside to outside the curve. Or x+1/2k inside and x outside.
If neither end is visited then there are no surrounding sub-curves at all and no
fpoint in the segment.

These bit match tests can be done in integers with an x location of curve
level 2k, and x directed ik so towards curve end. unpoint(x) and unpoint(x+1)
are then n in 2k bits. Ignore any n bigger than 22k since that is not in level 2k,
and ignore any in an adjacent curve arm too.

A search for candidate x segments can begin at x=0, k=0 for the whole
fractal. At k bits, extend to k+1 by trying new low 0 or 1 bit on each x
candidate. Doing so down to k=4 shows 3 segments are x candidates,

start end

.0000 .1101

.1111

k=4 bits of x

Figure 104
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For curve start, segments of each possible orientation which intersect an
x=0 to 1/2k are

0
1
2k

F0, k ≡ 0 mod 4

F1, k ≡ 1 mod 4
F2

k≡2

F3k≡3

m

Figure 105:

sub-curves

around x=0 to 1/2k

The segment leaving the origin is in one of the 4 directions and the others
are absent (where other arms would go). Case k=4 shown in figure 104 is
k ≡ 0 mod 4. Its intersection with m extends to point F0 which is 2 sub-curves
so f ≤ 2/22k which for k=4 is f ≤ 1/27. This constrains x ≤ 1/27 too so as to
be equal.

The greatest f intersecting m is case k≡ 1 which is 4 segments ending at F1
so f ≤ 4/22k = 1/22k−2. Starting from k=7, repeated k→ 2k−2 grows without
bound so that the x range able to contain a fixed point becomes arbitrarily
small and so the only fixed point there is f=0.

At curve end, the same applies. The second half of the curve is the same as
the first half but directed towards the start so x ≥ 1− 1/2k is f ≥ 1− 1/22k−2

at least. Starting from x ≥ 1 − 1/24 as in figure 104 and repeatedly applying
the k → 2k−2 constraint shows f arbitrarily close to curve end 1 and so the
only fixed point there is f=1.

Segment x = .1101 contains ffixed . Continue working down through x can-
didates and surrounding f until k=112 bits. There is just one x candidate there.
This x is ffixed runs to j=4 inclusive. It and its f = funpoint(x) are

x = . 1101 0000 11...1101 00...00 1101 0...0 1101 0...0 11...1101

4 8 16 28 32 56 60 64 112

j=0 j=1 j=2 j=3 j=4

f = . 1101 0000 11...1101 00...00 1101 0...0 1101 0...0 11...1101

0000 1101 0...0 11...1101 0001

116 120 128 220 224

j=5 j=6 extra

x+ 1
2k

xx− 1
2k

f− 1
22k

f

f+ 1
22k Figure 106:

k = 112 bits

candidate x
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Any x comprising runs to an even j has its f in corresponding form of
runs and extra 1 bit. That follows from the ffixed construction through to the
11...11 of the j in x, and extra 1 in f for the lowest 1 in x. This extra 1 in f
is immediately above the 3h+1 second new run. That second new makes this 1
and also a further lower 1, but in x here do not have the further lower.

x is single-visited in its level 2k = 224 curve, by putting f through Spred ,
or rather through the other bit pattern of figure 13 which defines Spred . For
any even j, the runs are a non-terminating other so only single-visited.

0 .11...11 0 100...00 0 011...11 0 100 0 1f =

t t t t

runrun extra

other pattern
non-terminating

so single-visited

unpoint on the x+1/2k bits, which ends 1101 + 1 = 1110, shows x+1/2k

is not visited at all. This also follows from Spred of f+1/22k which has the
low 1-bit of f moved up one place then the same pattern of other runs so it
too is single-visited. The bits of f show direction North and turn left at x, as
illustrated in figure 106, for any x of even runs. If x+1/2k was visited then it
would be a 1-wide gap where an adjacent curve could not both enter and leave
for non-crossing plane filling of the absent segments at f+1/22k. Hence x+1/2k

is not visited.
The only f 's around segment x to consider are thus its f and f−1/22k. In

the latter, −1/22k subtracts away the extra low 1 on f . Both have the same
bits down to j=6 inclusive, and so constrain x to equal those bits.

For even j≥ 4, there are always at least 2 more runs in f than in x like this,
because the ffixed construction of even j (in x) is a run at 3j/2 which is ≥ j+2
(in f) when j≥ 4.

This constraint on x takes it to a bigger even j where the same argument
applies and so, by repeating, the sole fixed point is ffixed .

Runs down to even j are convenient in the proof since their x is single-visited,
has nothing at x+1/2k, and its f form is easily reduced for f−1/22k. Other
k, after some initial small values, seem to have just one candidate x too, but
sometimes both x and x+1/2k are visited, and sometimes double-visited. This
is more fs, and only bits common to all would constrain (and thus progress)
the x bits.

The fixed point solutions can be illustrated by plotting x−f and y against
f .

0
f

1

1
3

− 2
3

x−f = Re fpoint(f)− f
y = Im fpoint(f)

f = ffixed = 0.816...
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x−f = 0 axis touches are where Re fpoint(f) = f . y=0 axis touches (the
grey line) are fCentrelinePred points and are Im fpoint(f) = 0. Both occur in
various places, but simultaneously only at f = 0, 1,ffixed .

The minimum and maximum y shown are the hull extents − 2
3 and + 1

3 .
The minimum and maximum x−f are − 7

15 and + 4
15 . These follow by con-

sidering sub-curves in each direction, and forward or reverse, and how they
expand. Once the f increments become small enough, there is a unique square
of sub-curves with maximum x−f , giving a 15th. Similarly the minimum. The
minimum occurs at hull vertex P3 (which happens to be the minimum x too).
The maximum occurs at hull vertex P10.

s, e at (428) are mutual recurrences. They could be expressed as individual
recurrences by noting that say s goes to e but comes back later to s when certain
ternary digits. Or e goes to s and then stays there only for the 3h case which
is low ternary 0s.

But a more convenient single recurrence is to unite s, e in a single u sequence.
ffixed is then alternating coefficients +1 or −3.

um =

{
sm/2 if m even

e(m−1)/2 if m odd
starting m=0

= s0, e0, s1, e2, s3, e3, . . .

= 0, 4, 8, 16, 28, 32, 56, 60, 64, 112, . . .

ffixed =

∞∑
m=0

[1,−3]m
2um

s, e cases jmod 3 at (428) would be m mod 6 for u. But 0, 1, 2 are the same
as 3, 4, 5 so m mod 3 suffices,

u3h = 2u2h u3h+1 = 2u2h+1 − 4 u3h+2 = 2u2h+1 (433)

starting u0 = 0, u1 = 4

um =

{
0, 4 if m = 0, 1

2u⌊2m+1
3

⌋ − (4 if m ≡ 1 mod 3) if m ≥ 2
(434)

Recurrences (433) show the generating function for u satisfies

gu(x2) =
(
1+

1

x
+x
)

gu(x3) +
(
1− 1

x
−x
)

gu(−x3) − 4x2

1− x6
(435)

This is a usual 1
2 (gu(x) + gu(−x)) to select even terms 2h, then substitute

x3 to spread them to 0 mod 6, then 2× per the recurrence cancels 1
2 . Similarly

odds 2h+1 but to both 2, 4 mod 6, and fixed −4 at 2 mod 6. The result is the
whole sequence spread by x2.

The equivalent of run from fpoint at (431) using u is

runj =
1

2u2j
− 3

2u2j+1
= fpoint

(
1

2u3j
− 3

2u3j+1
+

1

2u3j+2

)
(436)

Two runs like (431) would be two of (436) here, but the combined fpoint at
(432) is more subtle in u since 3 terms of u are a net negate in fpoint , which
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causes the next triplet of u to be coefficients −3, 1,−3.
The recurrence cases are an ``expansion'' of even m to one new term and

odd m to two new terms. This is each of the two expansions in figure 103.

3h 3h+1 3h+2

2h 2h+1

Successive expansions of a list of values can be illustrated in a tree, or rather
a path and a tree,

0

0 4

0 4 8

0 4 8 16

0 4 8 16 28 32

0 4 8 16 28 32 56 60 64

0 4 8 16 28 32 56 60 64 112 116 120 128

m=0 m=12

Figure 107:

ffixed
u expansions

The terms in each row repeat the previous row, then some more. For parent
u, a single child is 2u. Two children are left child 2u−4, and right child 2u.
Whether 1 or 2 children goes according to even or odd position across the row.
m=0 is left-most and is single child 0 each time, hence the path of 0s down.

The last m in each row is repeated d3m/2e, since it is 2h → 3h when m
there even, or 2h+1→ 3h+2 when m odd,

wk =
⌈

3
2wk−1

⌉
starting w0 = 1 last m in row (437)

= 1, 2, 3, 5, 8, 12, 18, 27, 41, 62, 93, . . . A061419

The two cases 2h and second of 2h+1 are both 2u so the last um in each
row is a power of 2 starting 4 at the top of the tree (k=0).

uwk = 2k+2 (438)

uwk is start s or end e of a run according to parity wk mod 2. Wolfram[50]
notes the apparent randomness in this sequence (and various similar).

wparityk = 0, 1 ≡ wk mod 2 (439)

= 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, . . . A205083

Theorem 116. wparityk is not periodic nor eventually periodic.

Proof. The effect of d 3
2we is to add a copy of w shifted down one bit and its

low bit L brought up to apply the ceiling,
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. . . w . . . L

. . . w . . . L

L

+

+

=
⌈

3
2w
⌉

(440)

So successive steps move bits of w down to influence the least significant
bit. If two w,w′ have lowest bit difference at bit position p then after p steps
they differ mod 2.

If wparity has period t ≥ 1 from some k onwards then wparityk onwards
and wparityk+t onwards are the same sequences. But wk 6= wk+t, since w is
strictly increasing and different values are eventually different subsequent mod
2 sequences.

At (440), to know the lowest bit of d 3
2we requires knowing the low 2 bits

of w. In general, knowing the low t bits requires low t+1 bits of the previous
w. This allows wparityk to be calculated from successive wj truncated to low
k−j+1 bits. When j is small, wj is already smaller than this many bits, but
nearing the target k doesn't need full wj .

0 k = 50

wj terms truncated

su�cing for wk mod 2

w grows by about log2
3
2 = 0.584962... bits each step. Truncate begins where

j log2
3
2 ∼ k−j+1 which is proportion j/k ∼ log3 2 = 0.630929... (A102525). The

peak size in bits there, as a proportion of what the full w would be, is the same
(log2 wj)/(log2 wk) ∼ log3 2, so peak space reduced to about 2

3 the full value.

The tree of figure 107 can be restricted to just new u values in each row, as
illustrated in figure 108.

u0 = 0 u1 = 1

u2 = 1−0

u3 = 1−00

u4 = 1−001 u5 = 1−000

u6 = 1−0010 u7 = 1−0001 u8 = 1−0000

u9 = 1−00100 u10 = 1−00011 1−00010 = u11 u12 = 1−00000

1−001001
u13

1−001000
u14

1−000110
u15

1−000101
u16

1−000100
u17

1−000000
u18

×4

Figure 108:

ffixed
u descents
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When calculating u for given m, each application of recurrence (433) is a
step up to the parent u. Recurrence (433) is 2× and possible −4 until reaching
u1 = 4. Taking the factor 4 out means a high 1-bit and subtractions −1 at
various bit positions below it. The vertex labels in figure 108 are a high 1 then
bits subtracted.

For example,

u13 = 1−001001 = 4.
(
binary(1000000)− binary(001001)

)
= 220

The tree pattern is um of even m has a single child with additional low 0
bit, and um of odd m has two children, with additional low 1 bit or 0 bit. The
1 bit is subtracted so is the smaller value. Or equivalently, m ≡ 0, 2 mod 3 has
low 0 on whatever value its parent, and m ≡ 1 mod 3 has low −1 (becomes −4)
on whatever value its parent.

The depth of m, being how many steps of (433) up to reach u1 = 4, follows
from the common index reduction in (434). Depth is how many b(2m+1)/3c,
which is round( 2

3m), until reaching m=1.

uDepth(m) =

{
0 if m=1

uDepth
(
b(2m+1)/3c

)
+ 1 if m ≥ 2

= 0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, . . . A061420

The last um in each row is all 0 bits, being successive 0 as the only child of
even m parent or second child of odd m parent. This is m=wk for u power-of-2
at (438). The row widths in figure 108 are w increments, and are how many u of
given bit length. The last of each row is the first of each bit length. Reckoning
the row containing u2 as k=0, row width is

dwk = wk+1 − wk = dwk/2e
= 1, 1, 2, 3, 4, 6, 9, 14, 21, 31, . . . A005428

The first u of a row is m= wk+1. It gains a low 0 when it is the only child
of an even m parent, or it gains a low 1 when it is the first child of an odd m
parent. The subtracted part is therefore k many successive wparity , from high
to low and with 0↔1 flips

uwk+1 = 2k+3 − 4 . binary
(
1−wparity0, ..., 1−wparityk−1

)
(441)

= 2k+2 + 4 + 4.wbink (442)

= 8, 16, 28, 56, 112, 220, 436, 868, 1736, . . .

wk+1 = 2, 3, 4, 6, 9, 13, 19, 28, 42, . . . A061418

wbink = binary wparity0, ...wparityk−1 high to low

=

k−1∑
j=0

wparityj . 2
k−1−j

= binary 0, 1, 10, 101, 1011, 10110, 101100, . . .

= 0, 1, 2, 5, 11, 22, 44, 88, 177, . . .

(442) is since (441) is a subtract of a ones-complement negative. The low
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+4 changes some low bits of wbin. For a limit fraction, that +4 becomes ever
smaller so integer 1 then wparity fractional bits,

uwk+1

2k+2
→ 1 +

∞∑
j=0

wparityj
2j+1

(443)

= 1.1011000110 . . . binary

= 1.693949 . . .

Theorem 117. The proportion of 1-bits to 0-bits up to bit position n in ffixed
oscillates (does not converge).

Proof. Let

ones(n) = number of 1s in the first n many bits of ffixed

= 0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, . . . n≥ 0

onesk = ones(2k+2) number of 1s in the first 2k+2 bits

=

dwk/2e−1∑
j=0

u2j+1 − u2j − 1

= 3, 3, 10, 13, 16, 66, 167, 390, 443, 533, . . .

At (442), the second highest bit of uwk+1 is wparity0 = 1 so that

uwk+1 ≥ 3
2 2k+2 + 4 for k≥ 1 (444)

This means the step from uwk =2k+2 to uwk+1 is at least 1
2 of its bit position

2k+2. Suppose limit ones(n)/n→ Q, so that for any ε there exists a k with

Q− ε < ones(n)

n
< Q+ ε for all n ≥ 2k+2

If wk odd, so that uwk to uwk+1 is 0-bits gap, then the number of 1s at n=
3
2 2k+2 is the same as at n = 2k+2. But this pushes the ratio ones(n)/n down
below Q−ε when ε is small enough relative to the supposed limit Q,

onesk
3
22k+2

= 2
3

onesk
2k+2

< 2
3 (Q+ ε) < Q− ε when ε < 1

5Q (445)

If wk even, so that uwk to uwk+1 is a run of 1-bits, then they increase the ratio
ones(n)/n at 3

22k+2 up above ε when ε small enough relative to the supposed
limit Q. The run ends at least +4 after half way (444), for k≥ 1, so it is all 1s
to half way.

onesk + 1
22k+2

3
22k+2

= 1
3 + 2

3

onesk
2k+2

> 1
3 + 2

3 (Q− ε)>Q+ ε when ε< 1
5 (1−Q) (446)

If limit Q=0 then more 0s at (445) do not push the proportion out of bounds,
but (446) still does. Or conversely if limit Q=1 then (446) does not but (445)
does.

From theorem 116, w mod 2 is not periodic, and in particular therefore not
eventually always even or always odd. So there is always both another block of
1s and another block of 0s.
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That w is not eventually always even is noted by Washburn[42] and follows
simply since w is non-zero and 3

2w successively strips its factors of 2 until odd.
ones(n)/n convergence fails because uwk to uwk+1 is a block of 1s or 0s with

length which is a constant factor of its position. Factor 1
2 is used in the proof, or

the actual factor approaches 0.693... as at (443). A smaller factor would cause
oscillation similarly. For example 1

4 would be 1+ 1
4 = 5

4 instead of 3
2 at (445),

etc.
Oscillation of ones(n)/n can be illustrated in a plot. Each block of 2k ≤

n < 2k+1 is scaled to the same width, and linear scale within those blocks.

ones(n)/n
1

3
4

1
2

1
4

0
244

n

Each gap of 0s in ffixed is a falling hyperbola where ones(n) is unchanged as
n increases. Each run of 1s is a rising hyperbola where ones(n) increases with
n and so increases the mean. The run or gap uwk to uwk+1 from the proof is
the hyperbola part at the start of block 2k.

wk grows only as ( 3
2 )k, since each ceiling is

wk+1 ≤ 3
2wk + 1

2

which applied repeatedly from w0 = 1 is an upper bound

wk ≤ 2.( 3
2 )k − 1

2k+2 bits in wk many runs or gaps is therefore either mean run length or
mean gap length, or both, diverging as ( 4

3 )k. In fact both diverge since the step
at uwk alone, ignoring all other steps which would be part of total runs or total
gaps, is bigger than ( 3

2 )k. Then as in theorem 117, the step at wk is infinitely
either a run or a gap.

mean step ≥ uwk+1 − uwk
1 + bwk/2c

≥
1
2 2k+2

2 ( 3
2 )k

= ( 4
3 )k

A simple consequence of unbounded runs and gaps is that the bit pattern in
ffixed is not eventually periodic and therefore ffixed is irrational.

17.4.1 Fractional Base 3
2

The recurrence for um can be expressed by writing indexm in a type of fractional
base 3

2 . A fractional base has digits ak . . . a0 and they are coefficients of powers
of the base. In this case,

m = ak ( 3
2 )k + · · ·+ a2( 3

2 )2 + a1( 3
2 ) + a0

high digit ak = 1 always, other digits 0,− 1
2 , or + 1

2
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An integer m≥ 1 has a unique representation in this digits form if ``integer
prefixes'' are demanded. Integer prefixes mean that if one or more low digits are
discarded then the rest (with powers decreased accordingly) is still an integer.
This occurs when the low digit is chosen so the rest is a multiple of the base 3

2 ,

a0 =


0 if m ≡ 0 mod 3

− 1
2 if m ≡ 1 mod 3

1
2 if m ≡ 2 mod 3

(447)

Such a low digit is removed by subtracting then dividing out the base. Then
repeat for further digits, ending at high 1. That high m=1 would be digit − 1

2
and then 1 in the place above, which repeats endlessly, hence the rule to stop
at high digit 1.

above = (m− a0)/( 3
2 ) = (2m− 2a0)/3 = integer (448)

1 = 1

2 = 1, 1
2 base 3

2

3 = 1, 1
2 , 0 digits 0,− 1

2 ,+
1
2

4 = 1, 1
2 , 0, − 1

2 and high 1

5 = 1, 1
2 , 0, 1

2

6 = 1, 1
2 , 0, − 1

2 , 0

7 = 1, 1
2 , 0, 1

2 , − 1
2

8 = 1, 1
2 , 0, 1

2 ,
1
2

9 = 1, 1
2 , 0, − 1

2 , 0, 0

10 = 1, 1
2 , 0, 1

2 , − 1
2 , − 1

2

Digits 0,− 1
2 ,+

1
2 are chosen because they make (448) the same as the new

index in u recurrence (433). u is then given by m in base 3
2 converted to binary

with −4 where digit − 1
2 . Or rather, with −1 as a bit then multiply throughout

by 4.

um = 4 .


digits of m in base 3

2 as above

change digits − 1
2 →−1 and 1

2 → 0

interpret as binary (``bits'' 0, 1,−1)

(449)

The converse, finding m from u, follows by considering bits of u high to low.
Taking −u makes the −1 ``bits'' from the conversion into ordinary 1 bits. A
1-bit is digit − 1

2 . A 0-bit is either 0 or + 1
2 and the two are distinguished by the

parity m mod 2, since even m descends to 0 and odd m descends to ± 1
2 .

Similar works to determine the bit of ffixed at a particular position n. Find
the smallest m with n ≤ um by working down taking the 1-bit subtraction
whenever doing so preserves n ≤ um, at each relevant bit position in n. Then
m odd means n in a run, or m even means n in a gap,

ffixed bit n =

{
1 if m odd and n 6= um−1

0 otherwise

where m smallest m≥ 1 with n≤um
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At (438), it can be noted that u at the end of each row is all zero bits. They
are from m=wk in base 3

2 having all digits 0 or 1
2 (and high 1). These wk are all

and only m which can be made without digit − 1
2 , since integer prefixing means

only one choice of 0 or 1
2 for an additional low digit.

Whether wk digits are 0 or 1
2 goes as the parity (439) of successive previous

w. If wk−1 is even then new low digit 0. If wk−1 is odd then new low digit 1
2 to

go up for the ceiling in (437). So wk in base 3
2 is its own preceding w0 through

to wk−1 mod 2, and w0 at the high end.

wk = 1, 1
2wparity0,

1
2wparity1, . . . ,

1
2wparityk−1 base 3

2 digits (450)

= ( 3
2 )k +

k−1∑
j=0

1
2 wparityj . 2

k−1−j

AMM problem E2604 [42] posed by Wang and answered by Washburn forms
wk using a special constant c

wk =
⌊
c .( 3

2 )k
⌋

(451)

This c is the digits from (450) with radix point immediately below the high
1. Then ( 3

2 )k is a base 3
2 shift up, and floor chops digits below the radix point.

c = 1. 12 0 1
2

1
2 000 1

2
1
2 0 1

2 0 . . . base 3
2 digits

= 1.622270 . . . A083286

Odlyzko and Wilf [39] reach the same c in connection with the Josephus
filter problem. Finch [17, section 2.30.1] notes that computationally (451) is
not useful unless c is already known to sufficient precision. Effectively c simply
codes all digits and (451) takes k many from it. Various sequences growing by
factor and small digit quantities can be treated similarly. Those with periodic
repeating digits give a rational constant.

m in base 3
2 can be incremented by propagating a carry up through digits.

um can be iterated by keeping m in that form

increment digit 0 → − 1
2 , carry to above

− 1
2 →

1
2 , stop

1
2 → 0, carry to above

1 → 1, 1
2 , at top, stop

Each increment sends a digit to the low of m+1 as in (447) and wrap-around
1
2 back to 0. Carry propagates as +1 to the next higher digit position, according
as the digit change. Digit − 1

2 →
1
2 is the desired increment +1 so no further

carry.
0→− 1

2 is low − 1
2 +1 = + 3

2 , and so +1 in the next higher position. Similarly
1
2→0. In an integer base, a carry +1 propagates only through the biggest digit,
but here carry +1 propagates both from biggest 1

2 and from 0.
Digits could be represented by any 3 distinct values. Putting a factor 2

through everything makes integers, being effectively 2m in base 3
2 with digits

0,−1,+1 and high 2.
Carry stops immediately when m≡1 mod 3. This is since it is the first child
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of an odd parent and increment steps to second child and nothing changed
above. In general, the number of digits changed when incrementing m to m+1
is

uProp(m) =

{
1 if m ≡ 1 mod 3

1 + uProp
(⌊

(2m+1)/3
⌋)

if m ≡ 0, 2 mod 3

= 1, 2, 3, 1, 4, 2, 1, 5, 3, 1, 2, 6, 1, 4, 2, 1, 3, 7, 1, . . . m≥ 1 A087088

New highs in uProp are at m = wk since that is the last of a given length
and so carry propagates through all digits to increase the length.

A rough calculation for mean carry propagation distance can be made as
follows. 1

3 of all m are 1 mod 3 which change just 1 digit. Remaining 2
3 of all m

change the low digit plus the mean of what's above, and above is all integers. So
P = 1

3 .1+ 2
3 (P+1) which has solution P = 3 mean digits changed. Incrementing

in base 3
2 is thus ``constant amortized time'' on average, like ordinary integer

bases, and likewise so is incrementing um to next by keeping base 3
2 digits.

Theorem 118. For computer calculation, an iteration um to um+1 can be im-
plemented by bit-twiddling with an auxiliary quantity uBm,

um+1 = um + 4 + (uBm AND mask) (452)

uBm+1 = high +
(
uBm AND NOT(mask)

)
(453)

mask = um XOR um−1 (454)

high = um AND −um (455)

where

uBm = 4.


digits of m in base 3

2 as described above

binary bit 1 for digit 1
2

binary bit 0 otherwise

= 0, 0, 4, 8, 16, 20, 32, 40, 44, 64, 80, 84, 88, 128, . . .

uB3h = 2uB2h uB3h+1 = 2uB2h+1 uB3h+2 = 2uB2h+1 + 4 (456)

starting uB0 = 0, uB1 = 4

Proof. Per (449), u is bit 0 for base 3
2 digits 0,+ 1

2 . Those both propagate
carry, but to different new digit. The auxiliary quantity uB is maintained to
distinguish those which are + 1

2 . uB has the same factor 4 as u so its bits are
aligned to u.

mask at (454) is 1-bits at and below the lowest 1-bit of u. These bits change
in u, uB .

high at (455) is the highest 1-bit of mask , which is the lowest 1-bit of u. If
u=0 (which is the initial u0 = 0) then high = 0.

u at (452) gains the mask low bits from uB , and +4. This follows from what
a base 3

2 increment does to the conversion in (449). Carry extends up to the
lowest digit − 1

2 , which is lowest −1 in bits (449). This is the lowest 1-bit in u
(the −1 negative doesn't change that). It is located for mask by u−1 borrowing
up to there (similar to what MaskAboveLowestOne at (7) does).
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Digit − 1
2 at high becomes + 1

2 , so changes from bit −1 to bit 0, so add high
to u. Low 0 bits of u which were digit + 1

2 remain 0 bits, but those which were
digit 0 become bit −1. The latter are where uB has 0 bits, so subtract NOT,
and subtract 3 more to leave the lowest 2 bits as zeros (multiple of 4). Thus,

um+1 = um + high −
((
NOT(uBm)− 3

)
AND RSHIFT(mask , 1)

)
But high subtract the ones-complement NOT of bits below it is the same as

add and +1, which with +3 becomes +4, hence (452).
uB at (453) has its low mask bits cleared (they moved to u), because digits

+ 1
2 they indicated have incremented to 0, and what had been digit 0s increment

to − 1
2 , both of which are not + 1

2 . The −
1
2 at high is now + 1

2 , so set it alone in
the low mask bits.

When m=wk, the increment increases the length of u and all bits of uB are
put to u so uB becomes the high alone,

uBwk+1 = 2k+2

For addition at (452), some CPUs have ``effective address'' instructions
which can, in one instruction, do such an add two quantities and extra con-
stant (+4). These instructions are usually designed for array indexing but can
be used for any purpose. u is 0 bits where the masked uB adds, so can instead
BITOR then +4 if desired. The +4 must add, not OR, since uB can have a
1-bit at that position.

In general, the low k many digits of base 3
2 can take all 3k combinations

of digit values, though this imposes some modulo restrictions on the possible
value above. Any low bit pattern in uB can therefore arise by low base 3

2 digits
corresponding to the uB bits in mask .

uB is, strictly speaking, redundant in that it can be derived from u in similar
way to the u to m inverse described after (449). But that works through all
bits of u whereas maintaining uB is a fixed number of operations acting just on
the low ends.

The recurrences for u at (433) and uB at (456) can be used for a starting pair
u, uB from which to iterate. The iteration does not use the index m as such.
The recurrences are the same round ( 2

3m) in their cases, but they accumulate
different −4 or +4.

Base 3
2 representations can be formed with various digit and rule variations.

Tanton[49] uses digits 0, 1, 2 and integer prefixing expressed as ``exploding dots''
for teaching bases and arithmetic in bases. There, n many dots start in the units
column and 3 dots ``explode'' to become 2 dots in the place above, and repeat
until everywhere reduced to 0, 1, 2.

The corresponding explode here for digits 0,− 1
2 ,+

1
2 would be 3

2 becom-
ing 1 in the place above and repeat until reaching high 1 and everywhere else
0,− 1

2 ,+
1
2 .

17.4.2 Fixed Point Lengths and Gaps

Successive increments of u are

Draft 23 page 364 of 391



dum = um+1 − um
= 4, 4, 8, 12, 4, 24, 4, 4, 48, 4, . . .

The bit-twiddling (452) has du in the low bits of uB . But uB has further
higher bits too, in general, so only there

uBm AND mask = dum − 4

mask is all bits of uB when incrementing from uwk so equality there

uBwk = duwk − 4

For du, the u recurrence (433) becomes

du3h = 2du2h − 4 du3h+1 = 4 du3h+2 = 2du2h+1 (457)

starting du0 = 4, du1 = 4

Recurrences (433) give the generating function of du satisfying, in a similar
way to gu at (435),

gdu(x2) =
(
1+x

)
gdu(x3) +

(
1−x

)
gdu(−x3) +

−4 + 4x2

1− x6

du increments which make up a block u = 2k+2 to 2.2k+2, starting k=0, can
be illustrated as follows. du0 = 4 is omitted. It would be from 0 to 4.

4 = du1

8

12 4

24 4 4

48 4 4 8

92 4 8 4 4 16

180 4 8 12 4 8 4 4 32

356 48 124 24 44 16 448 60 4

2k+2 2.2k+2

The total across a row is 2k+2. A given du descends to the next row as
either 2du−4 or 2du per (457). When −4, a new chain 4 starts immediately
after. Those starts are at each m ≡ 1 mod 3.

The left-most chain down is, starting k=0,

duwk = uwk+1 − uwk
= uwk+1 − 2k+2

= 4.wbink + 4 (458)

= 4, 8, 12, 24, 48, 92, 180, 356, 712, 1424, . . .

The du pattern of 2du − 4 or 2du goes according to wparityk at (439), with
−4 where even and no −4 when odd. This is (442) without the high 2k+2 and
hence (458).

du3h+1 = 4 is seen in (457). Other 4s also occur from du2h = 4.
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Theorem 119. Increments dum = 4 are characterized from index m by

du4pred(m) =


1 if m=0

TernaryLowestNon0 (m)
+ TernaryCountLow0s(m)

mod 2 if m ≥ 1

= 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, . . .

=1 at m = 0, 1, 4, 6, 7, 9, 10, 13, 15, 16, 19, 22, 24, 25, . . . m≥1 A189715

=0 at m = 2, 3, 5, 8, 11, 12, 14, 17, 18, 20, 21, 23, 26, . . . A189716

TernaryLowestNon0 (n) = 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, . . . n≥1 A060236

TernaryCountLow0s(n) = 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, . . . n≥1 A007949

Proof. Per (457), du3h+1 = 4 always, and from theorem 114 runs and gaps are
≥ 4 so du3h+2 =2du2h+1 6=4 always. These are the theorem with no low ternary
0s on m.

du3h = 2du2h−4 is 4 if and only if du2h=4, so it propagates the predicate.

propagate = 4 6= 4

even odd

du4pred(3h) = du4pred(2h)

If 2h ≡ 0 mod 3 then the same again, until (starting from h 6=0) after some
number t steps reach an s ≡ 1, 2 mod 3,

du4pred(3h) = du4pred(2t.s)

The low ternary digit of s is 1 or 2 and each of the t many factors of 2 flips
it 1↔ 2, thereby flipping which of those cases, hence TernaryLowestNon0 and
TernaryCountLow0s in du4pred .

Factor 2 leaving low ternary 0s unchanged and flipping the lowest 1, 2 is

du4pred(2h) = 1− du4pred(h) h≥ 1 (459)

This and m ≡ 1, 2 mod 3 cases could be a defining recurrence for du4pred ,
but expressing by ternary digits shows a ``morphism'' of flip first, fixed second
and third,

0→ 1, 1, 0 apply even number of times,
1→ 0, 1, 0 starting from single 1

Ternary also shows du4pred is the left turn predicate of the alternate ter-
dragon curve (Davis and Knuth[12, end of section 5]), except at m=0 which is
curve start and the curve has nothing preceding for it to turn relative to.

A consequence of this is that the number of du=4s and number of du 6=4s up
tom differ by the alternate terdragon net direction AltDir , which (my terdragon
write-up) is at most ±dlog9 me. So mean proportion of du=4s converges

lim
m→∞

num du=4s

m
→ 1

2
(460)
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The length of each ffixed bit run is the even du terms

lj = ej − sj = du2j run length (461)

= 4, 8, 4, 4, 48, 4, 92, 8, 4, 180, 8, 4, 4, 32, 4, . . .

(459) shows that lengths lj = 4 occur opposite to duj = 4, though the index
doubling (461) means they do not refer to the same u bit location.

l4pred(j) =

{
1 if j = 0

1− du4pred(j) if j ≥ 1

= 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, . . . j≥1 A156595

The gap of 0s after each ffixed run is the odd terms of du

gj = sj+1 − ej = du2j+1 gap length

= 4, 12, 24, 4, 4, 8, 4, 4, 16, 4, 12, 8, 4, 356, 8, . . .

Gaps gj = 4 are characterized from index j by lowest 0 or 2 and its position.

g4pred(j) = du4pred(2j+1)

=

{
1
2TernaryLowestNon1 (j)

+ 1 + TernaryCountLow1s(j)
mod 2 (462)

= 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, . . . 0↔1 �ip A189706

=1 at j = 0, 3, 4, 6, 7, 9, 12, 15, 16, 18, 21, 24, 25, 27, . . .

=0 at j = 1, 2, 5, 8, 10, 11, 13, 14, 17, 19, 20, 22, 23, 26, . . .

TernaryLowestNon1 (n) = 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, . . . 2×A116178

TernaryCountLow1s(n) = 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, . . . A253786

The ternary digits form (462) follow from what 2j+1 becomes in du4pred .
Low 1s ×2 become low 2s, then +1 is low 0s.

The low ternary digit pattern of g4pred is ``always, propagate, never'' so
morphism

g4pred = 0→ 1, 1, 0 starting from 1

1→ 1, 0, 0

The proportion of gaps g=4 and g 6=4 has limit 1
2 each, the same as the whole

du proportions (460). This is clear in blocks of 3k since g4pred is just a digit
flip 0↔1 over the du4pred conditions. To see it for all j, the ternary low 1s or
low 0s are an offset

g4pred(j) = 1− du4pred
(
j + 1

2 (3k+1)
)

for any k with 3k > 3j

g4pred goes by ternary low 1s. Adding all 1s by (3k−1)/2 sends them to 2s,
and then +1 more sends them to 0s ready for du4pred to answer.

This (3k+1)/2 offset means that in the alternate terdragon, g4pred is right
turn predicate for the part of the curve commencing after the middle bridge
of level k. Net turn is then bounded by direction log9 again (direction of the
middle bridge is 0 or 1).
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17.4.3 Rotated Fixed Point

Theorem 120. The −i rotated �xed points fpoint(f) = −i.f of the dragon
curve fractal are f=0 and f = 1−ffixed ,

fpoint(1−ffixed ) = −i .(1−ffixed )

1−ffixed = 0.00101111000000101111... binary

= 0.183639523...

Proof. 0 is clearly a fixed point of this type since fpoint(0)=0. To see 1−ffixed ,
consider a copy of the fractal directed up from −i and expanded to one level of
sub-curves.

upwards U

M

f

1−f
0 1

−i

1
2
− 1

2
i

f ≥ 1
2

Figure 109

M is the usual curve 0 to 1. U is the upwards copy. The first half of M
coincides with the second half of U. In these sub-curves, an f in U measures
towards 0 but M measures away from 0 so 1−f in M for identity

fpoint(1−f) = −i+ i . fpoint(f) for f ≥ 1
2

and at f = ffixed ,

fpoint(1−ffixed) = −i+ i . fpoint(ffixed)

= −i+ i .ffixed

= −i .(1−ffixed)

To see no other rotated fixed points, the convex hull around the second half
of M shows it does not touch or intersect the line 0 to −i. So −i rotated fixed
points can only be in the first half of M and therefore can only be plain fixed
points in the second half of U. From theorem 115, they are only 1 and ffixed in
U which are 0 and 1−ffixed in M.

Expanding figure 109 a second time illustrates 1−ffixed in the first quarter
sub-curve of M (last quarter of U). It is on the right boundary of U and so on
the left boundary of M.

0 1

−i

−i.(1−ffixed)

start

end

−i.(1−ffixed)

left boundary
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Theorem 121. The only i or −1 rotated �xed point fpoint(f) = i.f or fpoint(f)
= −f of the dragon fractal is f=0.

Proof. Expand to x segments 1
4 (with x directed i or −1),

F

0
start

1
end

1
4T

1
4

1
2

L

The only sub-curves whose convex hulls intersect the −1 direction towards
L or the i direction towards T are the two up to F, so f ≤ 2/24 = 1/23. (These
are the k≡ 0, 3 orientations in figure 105.)

In the same manner as theorem 115, x is likewise constrained to x≤ 1/23

and from there repeated constraints 2k−2 restrict the only possible x and f to
arbitrarily close to curve start 0.

18 Computer Graphics

Drawing the dragon curve has been used as a graphics exercise or demonstration
in various programming languages and computer systems. Often this is to
demonstrate recursion. Quite simple code either recursive or iterative produces
the intricate dragon curve shape.

Drawing extents follow from the convex hull in section 7. Relative to the
endpoints, rectangular extents are

start

end

left side 1
3

right side 2
3

1
3 1

1
6

These limits are approached from below in all cases, so finite iterations have
all segments entirely within these bounds.

If instead the first segment is held in a fixed direction, then the curve spirals
around anti-clockwise.

18.1 Drawing by Turn Sequence

The turn sequence of section 1.2 suits turtle drawing such as the Logo lan-
guage or pen based plotters. Even in a graphics system without a notion of
current direction it can be convenient to maintain a direction and follow the
turn sequence.
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for n = 1 to 2k

draw line segment forward
turn by turn(n)× 90◦

18.2 Recursion � Left and Right

The dragon curve can be drawn by mutually recursive routines which make
either a right or left turn in between the sub-curves. In both cases, the sub-
curves are a left-turning followed by a right-turning, they differ only in which
turn is between the sub-curves. The curve starts from DragonLeft.

start

end

right turn

left turn

DragonLeft(k)
if k = 0 then draw line segment forward
else DragonLeft(k−1)

turn left 90◦

DragonRight(k−1)

DragonRight(k)
if k = 0 then draw line segment forward
else DragonLeft(k−1)

turn right 90◦

DragonRight(k−1)

The turn can be a parameter instead of mutual recursion,

Dragon(k, turn) initial turn = +1

if k = 0 then draw line segment forward
else Dragon(k−1, +1)

turn by turn × 90◦

Dragon(k−1, −1)

The effect of either a turn parameter or mutual recursion is to record whether
drawing the first half or second half of the level above. The turn in the function
is made after drawing the 2k−1 segments of sub-curve k−1 so is at a vertex
number of the following form (with the origin reckoned n=0).

...bits... t 1 0...0n =

k

0 or 1 is turn = +1 or −1
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This means turn corresponds to BitAboveLowestOne(n) in the form turn =
+1 for 0-bit or −1 for 1-bit as per turn(n).

Each recursed call holds a turn which is the bit above so that the stack
holds all the bits of vertex number n. Any recursion can be transformed to
an iteration by holding parameters in an array instead of local variables. Here
doing so and running up and down setting +1, −1 has the effect of successively
incrementing n.

18.3 Recursion � Towards Midpoint

Dragon curve k comprises two k−1 directed to a common midpoint on the right
of the curve. This suits a recursion which draws k by drawing sub-curves k−1
from start and end inwards to that midpoint.

k−1 k−1

kstart end

middle

Dragon(k, start , end)
if k = 0 then draw line start to end

else middle = 1
2 (end + start)− i 1

2 (end − start)

Dragon(k−1, start , middle)
Dragon(k−1, end , middle)

The recursion has no parameters except endpoints and level k. This can suit
a graphics system with rotate, scaling and graphics object re-use but otherwise
limited programmability. The SVG graphics file format is like this and an SVG
dragon curve example by Kevin Reid at Rosetta Code uses this approach.

The effect of drawing towards the middle is to draw unit line segments
in order of their binary reflected Gray code. Segment n of the curve is in
the drawing sequence at position j = Gray(n), so segments are not drawn
sequentially. This is fine for off-line image creation but may look unusual if
drawing progressively on screen.

This recursion is not well suited to a pen plotter since it moves to the end of
each sub-curve to recurse back towards the middle. In the following diagram,
the dashed lines show the pen-up moves between each drawn segment.

start

curve

end

draw

end

Figure 110: k=3

plotter drawing
and moves

End3 = −1+2i
Move3 = 10

The amount of pen-up movement can be calculated. The end of recursions
in level k is given by the end of recursion in the second k−1 sub-curve, directed
inward back from the curve end,
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Endk = bk − iEndk−1 starting End0 = 1

= 3−i
5 bk + 2+i

5 (−i)k (463)

= 1, 1, i, −1+2i, −2+i, −3−2i, −2−5i, 3−6i, . . .

The point number n of the end is the Jacobsthal numbers and falls within
the middle biggest blob for k ≥ 4.

EndN k = 2k − EndN k−1 starting End0 = 1

= 2
3 2k + 1

3 (−1)k

= 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, . . . A001045

= binary 1010... ending 101 or 11 for k bits, k≥1

The move in level k is from the first half Endk−1 to the curve end bk ready
to draw the second half inwards, or for k=0 no move. This move is the same
as origin to Endk+1.

MoveEndk =

{
0 if k=0

bk−Endk−1 =Endk+1 if k ≥ 1

Assume the plotter moves the pen x and y independently and at the same
speed so time spent moving is the larger of x or y. On that measure, the total
time moving is

Movek = 2Movek−1 + MaxReIm(bk − Endk−1) starting Move0 = 0

where MaxReIm(z) = max (|Re z|, |Im z|)
= 33

17 2k − [2, 14
5 ].2bk/2c + 1

85 [5,−7, 20, 6, −5, 7,−20,−6] (464)

= 0, 1, 4, 10, 23, 51, 108, 226, 465, 949, 1924, 3886, 7823, . . .

So there is factor approaching 33
17 = 1.941... of movement on top of the 2k

drawing, so nearly twice as much moving as drawing.
Figure 110 shows arcs where the level k=1 move goes across the line segment

it is about to draw inwards. That duplication going along and back can be
avoided by stopping the recursion at k=1 and drawing an L shape. Movement
in the higher levels remains but reduces to factor approaching 45

34 = 1.323....

The pen-up moves are similar to PlusJump and MinusJump of complex
base i±1 from section 11.1 and section 11.2. If the moves here are measured by
straight line distance then the mean of the 2k−1 many total moves is

MoveDistk =

k−1∑
j=0

2j
∣∣MoveEndk−j

∣∣
= 0, 1, 2+

√
5, 4+3

√
5, 8+6

√
5+
√

13, . . .

MoveDistk
2k−1

=
2k

2k−1
·
k∑
j=1

∣∣∣∣ (4−2i)/5

bj
+

(1+2i)/5

(−2i)j

∣∣∣∣
=

2k

2k−1
· 2√

5

k∑
j=1

1√
2j

√
1 +

[0,−1,1,−1, 0,1,−1,1]

2dj/2e
+ 1

4

1

2j
(465)
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→ 2.109117 . . . as k→∞

This is bigger than base i+1 mean but smaller than base i−1 mean. The
limit is the same if taken over 2k (instead of 2k−1) to give fraction of the total
curve distance like MaxReIm above.

The limit is bigger than 33
17 from (464) since that is the longer leg of each

x, y move triangle whereas here the straight line is the hypotenuse.
The root part in the sum (465) is rational when j ≡ 2 mod 4, and otherwise

sometimes not.

18.4 Convex Hull Clip

The drawing methods above which recurse top-down can apply a clip region by
comparing it to the convex hull of the prospective level. If the hull is entirely
outside the desired clip then that curve sub-part can be skipped. If the hull is
entirely inside the clip then all of that sub-part is to be drawn with no further
clip testing.

Taking a rectangle around the curve may be easier to check against a clip
than the convex hull shape. Such a rectangle is a little bigger than the hull
and results in a little more recursing. In general, any shape enclosing the curve
could be compared to the clip and the choice is a complex shape fitting the
curve more closely but slower compare, versus a bigger simple shape with faster
compare but more recursing.

An example of a simple shape is to notice that for either start or end the
curve is at most 1+ 1

3 in any x or y direction. So at the start of a recursion if the
sub-curve x, y location is outside a clip by more than 1+ 1

3 in either coordinate
then that sub-part can be skipped. The effective shape is a square centred on
start or end, so is much bigger than the actual curve, but no attention is needed
to sub-curve orientation and direction forward/reverse.

If the curve might not be x, y aligned then its maximum from start or end
at any angle is the bigger of Sdist and Edist from (216) in section 7.

max(Sdistk,Edistk)√
2k

=
Edistk√

2k
→ 1

3

√
17 = 1.374368 . . .

The test at each recursion would be for either x or y coordinate more than this
far outside the clip. The effective shape is a circle of this radius centred at start
or end.

This sort of clipping can also be used in searches for some desired n in a
given region (for example the minimum and maximum n occurring). Take the
region as a ``clip'' and recurse down until a desired result is found. If a sub-
part is entirely outside the clip then back-track to a higher level and search the
second sub-part there.

18.5 Predicate

The unpoint of section 1.5 which determines n and arm at location x+iy can be
used as a predicate to decide whether to draw that point, and/or draw segments
before and after it.

This suits panning or zooming to draw a particular region, perhaps interac-
tively, without traversing or recursing through the whole curve. For example
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figure 106 was generated that way, being a few rows each side of a certain 112
bit x location.

The clip region methods above are likely to be faster overall, but the predi-
cate has flexibility to draw in any sequence. For example a dot-matrix printer
might require 8 or 16 dot columns across a row. Those dots can be tested and
sent in that sequence with no memory etc needed for a full image.

Rollins [47] gave disk paging code to create and print images bigger than
RAM on the TRS-80, including some dragon curve variations. Such a paging
scheme is necessary for fully general drawing, but for just the dragon curve the
predicate method can do direct printer output.

A predicate can also do progressive on-screen drawing, expanding out from
the centre so as to show the part in the user's eye-line first. A square or diamond
growing outwards is an easy loop. A diamond has the attraction of doing more
of the middle before the corners. An expanding octagon would be possible too.
In each case, on hitting the screen edge (or clip box) the loop can jump ahead
to its next side.

18.6 Lindenmayer System

A Lindenmayer system (L-system) is a set of rules for expanding a symbol string
which is then interpreted as instructions to go forward, turn left or right, etc.

The dragon curve can be expressed with two symbols. Both are draw forward
and the ``+'' or ``−'' in between are turns by +90◦ or −90◦ respectively (or
arbitrary turn angle). F is an even number segment and S is an odd number
segment.

starting F
F → F + S
S → F − S

Some computer programs for L-systems have only a single drawing sym-
bol and all others non-drawing. Non-drawing symbols are used to represent a
state or location type and expansions of those symbols produce necessary actual
drawing. The Fractint/Xfractint program is an example of this. Its included
dragon curve rule by Adrian Mariano has symbols X and Y to represent even
or odd locations in the curve (respectively).

starting X F
X → X − Y F −
Y → + F X + Y

F=draw forward, X,Y=noop

The curve boundary can be generated using the RQsides squares types of
figure 20. Here again F is the sole drawing symbol,

starting RF
R → R F + L type 1e
L → T F − F type 1o
T → R F + U F − type 2
U → V F − F − F + type 3o
V → T F − F + V types 3e,3o
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Each symbol is the start of its square type and has the drawing for its sides
following. V is two squares 3e followed by 3o. This is done since just 3e would
have to reduce to 2 sides on its next expansion, so instead together 3e,3o →
2,3e,3o which is a new 2 preceding.

Other starting strings for boundary forms include,

RF++LF whole curve boundary
RF+LF+RF+LF 4 sides for twindragon boundary
RF+RF back-to-back for twindragon

The Rpred segment expansions of theorem 21 give an L-system too, with
turns per the directions shown there. Like in Rpred , segment types 2eB and
3oC can be treated together for drawing, for 9 segment types. Segment 3eB is
removed entirely (becomes non-boundary) on expansion, so for a one drawing
symbol system it's necessary to F → (empty) to discard the drawing of the
previous level, and re-insert Fs as appropriate after each new symbol.

An L-system can also have symbols which are fixed drawing directions, in-
stead of making turns between. McWorter and Tazelaar[35] gave code in Basic
for such a system.

Their dragon curve rule has 4 symbols North, South, East, West. The curve
always turns left or right so every East or West segment is even and expands
on the right, and every North or South segment is odd and expands on the left.

Their ``dragon interior'' rule is one side of the twindragon area tree (here
section 15.3) and effectively works by following the dragon curve and draw-
ing between unit squares on the left of the curve. This is an implementation
of Mandelbrot's description of following the river bank upstream and around.
Their figure B is k=9 twindragon area tree.

Their ``dragon boundary'' rule is the complex base i+1 shape drawn in the
manner of Dekking[15, section 4.4]. The states are N,S,E,W segments of 3 types
each representing a configuration of neighbours for a total 12 states.

6 states of a, b and c unit sides from section 11.3 is also possible, starting
from a 2×1 block. But then the starting point rotates around whereas with 12
states the start is fixed and each expansion shares a prefix with its successor,
up to where the new second copy of the shape touches.

The length of that prefix can be calculated from how many boundary squares
there are up to the twindragon connection point. Each boundary square corre-
sponds to a complex base boundary corner and between each of those corners
is a unit side of a boundary block.

start

RQ

LQ RQ
JA

TconnRQk

TconnRQk = RQk + LQk + RQk − JAk

= BQk + JAk+2 + 1

= 3, 5, 8, 13, 22, 37, 62, 105, 178, 301, 510, . . .
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L-system evaluation is often described in terms of full expansion of a list of
symbols at each stage, producing potentially a very long string. But expansions
can be done recursively and drawing performed on reaching the desired level.
Any such recursion can be made iterative with an array of where and what
expansion is in progress at each level.

McWorter and Tazelaar also draw L-systems with little L shapes instead of
line segments. The effect is to push out the sides of squares giving an interlock-
ing appearance.

The sides can be pushed out from either odd or even squares (those with odd
or even lower left corner x+y). The dragon curve turns 90◦ at each segment
so the even squares are on the left of the curve and pushing them out gives a
smooth right side.

start

end

push out
even squares

start

end

twindragon,
even

squares
pushed out

start

end

twindragon,
odd

squares
pushed out

18.7 Twindragon Skin Drawing

The twindragon skin of Mandelbrot (as from page 170 here) can be used to draw
an approximation to the twindragon fractal.

DragonSkin(start , end)
if |start − end | ≤ resolution then draw start to end
else

left = start + 1
4 (1+i)(end − start)

right = end − 1
4 (1+i)(end − start)
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DragonSkin(start , left)
DragonSkin(left , right)
DragonSkin(right , end)

An expansion level parameter can limit the recursion instead of testing
lengths. Then for example level 10 starting DragonSkin(10, 0, 1).

DragonSkin(k, start , end)
if k ≤ 0 then draw start to end
else

left = start + 1
4 (1+i)(end − start)

right = end − 1
4 (1+i)(end − start)

DragonSkin(k− 3, start , left) (466)
DragonSkin(k− 1, left , right)
DragonSkin(k− 3, right , end) (467)

Notice the short lines start , left and right , end are reckoned as 3 levels down
since they are factor 1/(

√
2)3 shorter than start to end.

Both termination conditions result in up to 3 sizes of final lines, in ratios 1,
1/
√

2 and 1/2. The total number of lines goes as the dragon curve recurrence,
Ck = Ck−1 + 2Ck−3 starting C0 = C−1 = C−2 = 1 which is a single line when
k ≤ 0. This is Ck = dJAk+4 from (163).

Any line expansion where parts of the expansion are different sizes has a
choice whether to expand each to the same depth, or go in proportion to the
lengths. Here, if the smallest line is reckoned just 1 expansion level, so k−1 in
each recursion (466),(467), then the effect is to go to much smaller lines in some
parts of the skin. This can be seen in a Logo example by Mike Horney [26].

k−1
recursion

middle

k−3
recursion

37 lines

dJA6+4 = 37

middle

6 expansions
each

Notice the middle line is the same length in each form, but the end parts
of k−1 have gone down to much smaller lines. Chang and Zhang [9] do similar
(their DragonBorder2) for a boundary part corresponding to a join area section.
The effect is interesting, but the resulting line lengths are much smaller than
necessary for screen or printed resolution and a target minimum line length is
a more uniform appearance.

Each expansion alternates straight or diagonal lines so a net odd number
of expansions of a particular part is a diagonal line, as seen in the k−3 form
above. If those parts are taken one further level then the result is all horizontal
and vertical and final lengths in ratios 1, 1/2, 1/4. The effect is the same as
expanding a shape
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base �gure,
diagonals expanded

1
8

1
4

1
2 start

This is less smooth, but might suit a square grid of pixels or similar since
all lengths are a multiple of the smallest. Note that the expansions give some
consecutive line segments. For example on the right the line segment shown
at ``start'' in the expansion is actually 2 separate segments for the purposes
of subsequent expansion. It is the initial vertical 1

8 of the base figure, and
additional 1

32 vertical from expansion of the 1
4 horizontal.

19 Locations Summary

Various limit locations in the curve can be illustrated together,

start

0

end

11
2

fpoint(1
3)

unfold

1
2−

1
2 i

JEQf

fRQhalf

fBQhalf

Gf

GBf

HGf

GRf

P1P2

P3

P4

P5

P6 P7

P8

P9

P10

XYhullGf

BlobStart

blob
mid

2
3

Blob
End

BlobGSf

BlobHGf

BP2

BP3

BP5
1
3

BP6 BP7

BP9

fpoint
(

Paper
Const

)

ffixed,
fpoint(KM)

−i.(1−ffixed)

Endf

αmin

αmax

fRQhalf = right boundary half-way (130)
fBQhalf = whole boundary half-way (131)
JEQf = join end (167)
Gf = segments centroid (229) = JEQf /b halves join end
GBf = boundary segments centroid (239)
GRf = right boundary segments centroid (238)
αmin , αmax = inertia principal axes, (252)
P1 , ... = convex hull vertices, section 7
HGf = hull centroid (231)
XYhullGf = XY hull centroid (232)
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BlobStart ,BlobEnd = blob start/end locations (305),(306)
BP1 , ... = blob convex hull vertices, section 12.8
BlobGSf = blob segments centroid (353)
BlobHGf = blob hull centroid (355)
fpoint(PaperConst) at (402)
fpoint(KM ) at (401),(426)
ffixed = fixed point, theorem 114, close to fpoint(KM ) but not the same
1−ffixed = rotate −i fixed point, theorem 120
Endf = Gray code drawing end (463) = fpoint( 2

3 )
fpoint( 1

3 ) example (400) and 15ths (410)
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2 arms, 308
inward, 311

3 arms, 310
inward, 312

3 turns, 77
4 arms, 310

inward, 312
4 cycle, 314
5ths, 332
7ths, 318
15ths, 326

A area, 74, 107
a′, b′, c′ complex base side parts, 172
a, b, c complex base side parts, 168
A3 left consecutive turns, 77
A3right consecutive turns, 77

Acl area left of crossing, 235
Acr area right of crossing, 235
AL area left side, 76, 107
alternate paperfolding, 316--317
alternate terdragon, 366
alternating parity square-free word,

11--12
AR area right side, 76, 107
area, 74
area tree, 278
arms, 308
as complex top sides, 174
AunfIn area unfold crossing inside,

237
AunfOut area right of crossing, 237
automorphism, 285
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b base, 30
B boundary segments, 58
base 3

2 , 360
base i+1, 157
base i−1, 163
bicentral tree, 287--288
binary reflected Gray code, 26
binomial coefficients, 44
bit blocks, 38
bit twiddling, 7--8, 36, 281, 363
BitAboveLowestOne, 7
BitAboveLowestZero, 7
bitlength, 41
blob, 200

convex hull, 240
BlobA area, 221
BlobAcdiff area right left difference,

236
BlobAcl area left of crossing, 234
BlobAcr area right of crossing, 234
BlobAf area limit, 222
BlobAL left area, 223
BlobAR right area, 223
BlobB boundary length, 215
BlobBnohang boundary, 274
BlobBQ boundary squares, 219
BlobCount , 202
BlobD double-visited points, 238
BlobDB , 260
BlobDelta, 208
BlobDeltaLen, 209
BlobEnd location, 207
BlobGS segment centroid, 247
BlobGStotal segment total, 247
BlobHA blob hull area, 243
BlobHAf hull area limit, 243
BlobHB hull boundary length, 243
BlobHBf hull boundary limit, 244
BlobHdiam maximum distance, 244
BlobHG hull centroid, 249
BlobHGf hull centroid limit, 250
BlobHI convex hull inertia, 255
BlobHorizontals lines, 238
BlobI moment of inertia, 250
BlobL left boundary, 217
BlobLines, 239
BlobList , 202
BlobLnohang boundary, 274
BlobLQ boundary squares, 219
BlobN segment number, 203

BlobNend segment number, 204
BlobP distinct points, 238
BlobPartsTend twindragon end, 228
BlobPartsTmiddle of twindragon,

252
BlobPartsTstart twindragon start,

228
BlobPB boundary points, 259
BlobPE enclosed points, 259
BlobPrecedingP points, 275
BlobR right boundary, 217
BlobRnohang boundary, 274
BlobRQ boundary squares, 219
BlobS single-visited points, 238
BlobSegments count, 205
BlobStart location, 207
BlobVerticals lines, 238
boundary segment numbers

bridge, 203
left, 71
right, 59

boundary squares as joins, 85, 86
BoundaryPathLen shortest, 273
bounded repetition, 14
BP1 etc blob hull vertices, 240
BQ boundary squares, 58
BQhalf , 63
BridgeCount , 203
BridgeDelta, 208
BridgeLN point, 206
BridgeLother point, 206
BridgeRN point, 206
BridgeRother point, 206

C curve, 45
carousel, 6, 310
centre of gravity, see centroid
CentrelineD , 101
CentrelineH , 101
CentrelineLines, 102
CentrelineP , 101
CentrelinePointPred , 99
CentrelineS , 101
CentrelineSegmentPred , 99
CentrelineSegments, 101
CentrelineVisits, 101
centroid

blob, 247
boundary, 137
join, 143
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join end square, 136
segments, 133
vertices, 136

CHA complex base hull area, 194
Cheeger constant, 275
combinatorial, 67, 93, 174, 297
complex base i+1, 157
complex base i−1, 163
ComplexBoundary length, 169
compositions, 67, 181--183
constant amortized time, 363
continued fraction, 14
convex hull, 109

blob, 240
fractal, 117
twindragon, 189

coordinates, 30
countably infinite, 342
cubic, 47

D double-visited points, 90
DB double-visited boundary points,

260
dBitAboveLowest difference, 284
DBnH non-hanging double-visited

boundary, 260
dDiameter increment, 273
DegCount degree count, 268
depth, 295
Deven double-visited even points,

91
Diameter shortest path, 270
dir direction, 25
DirCumul , 38
direction cumulative, 38
DirPred , 46
DirRatio over bit length, 40
DirRatioCumul , 41
dJA join area increment, 82
dNextL, 22
dNextR, 22
dNonBlobSegments segments, 216
Dodd double-visited odd points, 91
dominating set, 302
domination number, 302
domination ratio, 302
DOne depths with 1 vertex, 298
DOneV vertices preceding, 300
dP points increment, 95
dpoint increment, 46

Dpred double-visited predicate, 93
DpredFirst visit, 103
DpredLeft double-visited, left turn,

93
DpredRight double-visited, right

turn, 93
DpredSecond visit, 103
DpredSecondL, 103
DpredSecondR, 104
dTurnLeft , 20
dTurnRight , 21
du fixed point, 365
du4pred , 366
DXhullA area, 132
DXhullB , 131

EdgeCount dragon graph, 268
Edist end maximum distance, 119
EightA enclosed, 177
EightB complex boundary, 177
EncNine enclosures, 106
EpredL enclosure, 105
Euler planar graph formula, 95, 263
exploding dots, 364

fB boundary count, 340
fCentrelinePred , 348
ffixed , 349
FifteenthsDiff2 , 330
FifteenthsDiff21 , 330
FifteenthsDiff5 , 331
FifteenthTriples points, 329
fixed point, 349

rotated, 368
fL boundary count, 340
FlipAt10 bit flips, 159
FlipBelow10 bit flips, 293
fNonB non-boundary count, 340
fNonBnew new non-boundary, 341
fNonL non-boundary count, 339
fNonLnew new non-boundary, 341
fNonR non-boundary count, 339
fNonRnew new non-boundary, 340
folded representation, 31, 35, 40,

351
four arms, 6
FourA complex enclosed, 175
FourB complex boundary, 175
fpoint location, 315

KM , 316--317, 341
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PaperConst , 317
fR boundary count, 339
fractal, 86
Fractint program, 374
fractional base 3

2 , 360
fractional locations, 315
fVisits, 342

g4pred , 367
GB centroid of boundary, 142
GBf boundary centroid limit, 142
GBQ centroid boundary squares,

141
generalized, 5, 12
GeomLength path, 211
Gf centroid limit, 135
GJA centroid of join area, 143
GJAf join centroid limit, 144
GL centroid of left boundary, 138
GLQ centroid of left boundary

squares, 137
golden ratio, 199
GR centroid of right boundary, 140
graphs, 267
Gray code, 26, 371
Gregory's series, 10
GRf right boundary centroid limit,

141
GRQ centroid of right boundary

squares, 139
GS centroid of segments, 133
GSFnum centroid scaled numerator,

135

H4IA four-arm inward hull area,
314

H4ID four-arm inward maximum
distance, 314

HA convex hull area, 116
Hamiltonian path, 267--268
hanging squares, 255
Hausdorff dimension, 48
HB hull boundary, 120
HBf hull boundary limit, 121
HBP hull boundary integers, 122
HBS hull curve segments, 123
HBV hull curve vertices, 123
HBVgaps hull vertex gaps, 124
Hdiam maximum distance, 117
Hdiamf hull limit, 119

height of tree, 288
hexagonal tilings, 172
HG hull centroid, 136
HGf hull centroid limit, 137
HI convex hull inertia, 150
HIP hull interior points, 122
Horizontals lines, 98
HP hull points, 122
HQ1 hanging squares, 256
HQ1L left hanging squares, 256
HQ1R right hanging squares, 256

I inertia, 145
If inertia limit, 148
independence number, 301
independent domination, 302
independent edge set, 301
independent set, 301
inertia, 144

blob, 250
twindragon, 197

Ipoint inertia, 146

JA join area, 78
JAblobRQ , 226
Jacobsthal numbers, 372
JEC join end corner, 87
JEQ join end square, 87
JN join vertex number, 81
JND join vertex offset, 81
JNother join other vertex number,

81
JPpred join predicate, 82

Kempner-Mahler number, 14--15,
316--317, 341

KM , Kempner-Mahler number, 15
Kronecker symbol, 8

L boundary segments, 50
L-system, 374
labyrinth, 152
Lévy C curve, 45
Lindenmayer system, 374
linear recurrence positivity, 92
Lines, 98
Lnext boundary segment, 73
Logo language, 369, 377
lower independence number, 302
Lpred left boundary predicate, 72
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Lprev boundary segment, 74
LQ left boundary squares, 51
LQ1 left boundary squares, 52
LQsides, 73
Lsides, 73

Manhattan distance, 162
MaskAboveLowestOne, 7
matching, 301
maximal independent set, see

independent domination
MaxReIm, 372
MB midpoint boundary, 152
MI midpoint inside segments, 152
MidEN , 232
MidMNe, 231
MidMNs, 231
midpoint curve, 150
midpoint of segment, 150
MidSN , 231
minimum area rectangle, 124

twindragon, 195
MinusDist total, 167
MinusDistManhattan total, 168
MinusDouble, 186
MinusDoubleA area, 187
MinusDoubleB boundary, 188
MinusDoublePred , 187
MinusInc, 179
MinusJump, 167
MinusNeg , 180
MinusNegA area, 182
MinusNegB boundary, 183
MinusNegNeighbourPred , 183
MinusNegPred , 182
MinusNegXbits, 181
MinusNegXdistinct , 181
MinusNegXpred , 181
MinusPoint location, 163
MinusRot , 184
MinusRotA area, 184
MinusRotB boundary, 185
MinusRotNeighbourPred , 185
MinusRotPred , 184
MinusUnpoint number, 163
MinusUnrot , 186
moment of inertia, see inertia
morphism, 11, 21, 30, 366--367
MR minimum area rectangle, 125

MRV minimum rectangle vertices,
128

MRVgaps minimum rectangle gaps,
129

MS midpoint total segments, 152
Mturn midpoint turns, 153
multiple arms, 308
multiplicative, 8
MW midpoint wall, 153
MWI midpoint inside wall, 153

NdragonToPlus correspondence, 159
non-crossing, 4
NonBlobBQ boundary squares, 219
NonBlobPoints count, 259
NonBlobSegments segments, 205

Oall differences, 96
OallX differences, 98
Odistinct differences, 95
OdistinctX differences, 97
Ω2,1, 12
OneRuns compositions, 68
Opred double-visit offset, 37
other(n) at location, 35
otherArm, 36
OXpred double-visit flip, 37

P distinct points, 94
p hull vertex term, 110
φ golden ratio, 199
P1 etc convex hull vertices, 109
Paper sequence, 8
PaperConst , 8, 317
paperfolding sequence, 8
parent, 292
PB boundary points, 259
PE enclosed points, 259
pen plotter, 371
perfect matching, 301
Peven points, 95
Pick's theorem, 122
plane filling, 6
PlusDist total, 162
PlusDistManhattan total, 163
PlusJump step, 161
PlusMean jump, 162
PlusOffsetH , 164
PlusOffsetJ , 164
PlusOffsetV , 164
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PlusPoint location, 157
PlusToDragon correspondence, 157
Podd points, 95
point , 33
PosPowers, 39
PQ hull vertices, 213
PreBlobBQ , 220
PreBlobLQ , 220
PreBlobRQ , 220
principal axes of inertia, 147

twindragon, 199
Pythagorean triple, 119, 148

quadratic residue, 8

R boundary segments, 54
r,r2,r3 cubic roots, 47
regular paperfolding sequence, 8
revDirCumul , 40
revolving representation, 31
revPoint , 32
revPointRot , 32
rivers, 279, 375
RJ , 70
Rn segment, 71
Rnear to middle, 212
Rnext boundary segment, 69
Rnon non-boundary segments, 67
roots, 47
rotated fixed point, 368
Rpred right boundary predicate, 64
Rprev boundary segment, 69
RQ right boundary squares, 55
RQ1e,1o,3e,3o boundary squares,

60
RQhalf , 61
RQsides, 58, 61
Rsides, 68
Rturn, 69

S single-visited points, 90
S(k, d) segments in direction, 44
sBitAboveLowest sum, 13
Sdist start maximum distance, 119
sea dragon, 4
semi-total domination, 304--305
Seven single-visited even points, 91
SeventhsDiff7 , 323
SeventhsDiff9 , 323
SeventhTriples points, 320

silver ratio, 211
SixA enclosed, 178
SixB boundary, 178
SN segments in direction, 46
Sodd single-visited odd points, 91
Spred single-visited predicate, 92
square-free word, 11--12
stair-step, 14
Stern-Brocot tree, 15
sturn, 12
SVG graphics format, 371
symmetry

left boundary squares, 51

TA twindragon area, 155
TADegCount area tree degrees, 282
TADegPred , 283
TADegree vertex degree, 284
TAdepth of vertex, 295
TAdiameter , 286
TAdisdomnum, 305
TAdisdomnumCount , 305
TAdomnum domination number,

302
TAdomRatio domination ratio, 302
TAEdgeCount area tree edges, 285
TAindnum independence number,

301
TAindRatio independence number,

301
TAparent vertex, 292
TAparentDir direction to parent,

292
TAsemitotdomnum semi-total, 305
TAspine vertex, 295
TAstepDir , 292
TAtospine vertex, 295
TAtospineDir direction down spine,

295
TAtotdomnum total domination

number, 303
TATW terminal Wiener index, 291
TAVertexToLower , 281
TAVertexToOther , 281
TAVertexToUpper , 281
TAW Wiener index, 288
TAWhoriz Wiener, 290
TAWvert Wiener, 290
TAWvhdiff Wiener, 290
TAZagrebM2 index, 286
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TB twindragon boundary, 155
TBQ twindragon boundary squares,

155
TconnRQ to connection, 375
TD twindragon double-visited

points, 156
TDB twindragon double-visited

boundary points, 262
TDXhullA area, 196
TEndLength of twindragon graph,

276
terdragon, alternate, 366
terminal Wiener index, 291
TernaryCountLow0s, 366
TernaryCountLow1s, 367
TernaryLowestNon0 , 366
TernaryLowestNon1 , 367
TGeomLength twindragon path, 278
THA twindragon hull area, 192
THBP twindragon hull boundary

points, 194
THdiam twindragon maximum

distance, 191
THI x,y,z twindragon hull inertia,

199
THIP hull interior points, 194
THP hull points, 195
TI x,y,z twindragon inertia, 197
TIf twindragon inertia limit, 199
tiling, 5--6
TMR twindragon minimum area

rectangle, 195
total dominating set, 303
total domination number, 303
TP twindragon distinct points, 156
TPB twindragon boundary points,

262
TPE twindragon enclosed points,

262
TR triangles in regions, 263
trees, 267
triangles in regions, 263
TS twindragon single-visited points,

156
TSeventhTriples points, 324
turn sequence, 7
TurnLeft , 16

TurnLeftOff , 20
TurnLeftRev , 17
TurnLpred , 8
TurnRight , 16
TurnRightOff , 20
TurnRightRev , 19
TurnRpred , 8
TurnRun, 12
TurnRunSpred start of run, 15
TurnRunStart , 16
TurnsL count, 27
TurnsR count, 27
TW twindragon wall, 158
twindragon, 154

area tree, 278
convex hull, 189
fractal, 156
minimum area rectangle, 195
skin, 170, 376

TwoRuns compositions, 67
TXYhullA area, 196

u fixed point, 355
uncountably infinite, 341
UnFlipBelow10 bit flips, 294
unpoint , 34

Verticals lines, 98
Vieta's formula, 48--49
Visits, 94

W boundary length, 308
w fixed point, 356
wbin, 358
width, 296
WidthS area tree, 296
Wiener index, 288
wparity , 356
WQ boundary squares, 308

Xfractint program, 374
XYhullA area, 129
XYhullB , 129
XYindentA indent area, 130
XYindentAf limit, 133

Zagreb index, 286
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OEIS A-Numbers

A000007 1 then 0s, 282
A000120 count 1-bits, 26
A000265 odd part, 11
A000749 sum binomials 3 mod 4, 44
A000975 bits 1010..., 26, 212, 234
A001045 Jacobsthals, 372
A001622 φ golden ratio, 199
A001787 n.2n−1, 38
A001792 (n+2).2n−1, 41
A003188 Gray code, 26
A003230 area A, 74, 76, 90, 153
A003476 RQ, 55, 58, 90
A003477 BlobA, 221
A003478 AL area, 76, 152, 313
A003479 JA join area, 60, 68, 78, 238,

309
A004277 1 and evens, 202
A005428 dw, 358
A005578 d 23 2ke, 27, 212
A005811 dir, 26
A007400 Kempner-Mahler contfrac, 14
A007404 Kempner-Mahler number, 15
A007910 round 4

5 2n, 135, 147, 197
A007949 TernaryCountLow0s, 366
A014176 silver mean 1+

√
2, 162, 211

A014577 paperfolding, TurnLpred, 8
A014985 (1− (−4)n)/5, 164
A016029 round 3

10 2n, 147
A020775 1

3/
√

2, 214
A020797

√
5
2 , 119

A020829 5
6

√
2, 119

A021039 2/7, 96
A021067 1/63, 196
A021913 second lowest bit, 13
A021949 1/945, 250
A023105 b 16 (2n+10)c, 278
A027383 3.2k−2 and 4.2k−2, 194
A029744 2n and 3.2n, 101
A029837 bit length, 41
A030300 runs 2k many 0, 1, 316
A034947 turn, 6, 8
A036987 Kempner-Mahler binary, 15
A038189 bit above lowest 1, 7
A038503 sum binomials 0 mod 4, 44
A038504 sum binomials 1 mod 4, 44
A038505 sum binomials 2 mod 4, 44
A043724 bit runs 0 mod 4, 30
A043725 bit runs 1 mod 4, 30

A043726 bit runs 2 mod 4, 30
A043727 bit runs 3 mod 4, 30
A046980 periodic 0, 1, 1, 1,

0,−1,−1,−1, 44
A047617 2, 5 mod 8, 283
A051032 dup 2n + 1, 101
A052537 LQ2 , 52, 68
A052953 Jacobsthal + 1, 278
A052955 2n−1 and 3.2n−1, 118
A056830 digits 1010..., 26, 234
A057744 d 67 2ne, 81
A060236 TernaryLowestNon0 , 366
A060833 TurnRight + 1, 17
A060961 1,3,5 compositions, 181
A061418 successive b 32nc, 358
A061419 successive d 32ne, 356
A061420 count d 23 (n−1)e, 358
A061776 6.2k−6 and 9.2k−6, 124
A062092 round 7

3 2n, 122
A063920 10.2k and 14.2k, 128
A066321 x axis base i−1, 165
A066323 sum digits base −4, 165
A070875 5.2k and 7.2k, 128, 129
A077870 Im PlusOffsetJ , 87, 165
A077949 dJA, 57, 68, 83
A077950 Re PlusOffsetJ , 165
A077957 2n and 0s, 101
A083286 w coded constant, 362
A083658 3n and 5.3n, 101
A086445 TurnLeftOffH + 1, 29
A087088 uProp, 363
A088431 TurnRun, 12
A088742 dTurnLeft, 21
A090678 TurnRunSpred, 15, 154
A091067 TurnRight, 16
A091072 TurnLeft, 16
A094214 golden ratio φ− 1, 199
A094874 1

2 (5−
√

5), 199
A102525 log3 2, 357
A105531 arctan 1

3 , 147
A106836 dTurnRight, 21
A106838 three right turns, 77
A106841 three left turns, 77
A112030 3,1,−3,−1 repeating, 222
A112658 Ω2,1, 12
A115451 round 8

15 2n, 115
A116178 1

2 ternary lowest non-1, 367

390
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http://oeis.org/A047617
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A118831 periodic 0, 1,−1,−1,

0,−1, 1, 1, 110
A122002 Carpi's word, 11
A123208 add 2 or double, 129
A125047 variation on Carpi, 12
A131056 n.2n−2 + 1, 38
A131078 periodic 1, 1, 1, 1,

0, 0, 0, 0, 194
A135318 round 1

2 2k and 2
3 2k, 192

A136013 PosPowers, 39
A136408 THP, 195
A137426 MinusJump parts, 167
A143347 paperfolding constant, 8
A146559 Re(1+i)n, 161
A154252 5.2n − 8, 286
A155803 binary 100100..., 81
A156595 alternate terdragon TurnRpred,

367
A164395 Lines, 98
A168596 13.2n + 1, 302, 305
A171476 2n (2n+1−1), 197
A171977 MaskAboveLowestOne, 7
A173318 DirCumul, 38
A177057 7/6, 117
A178420 TurnRightOffH , 29
A189706 ternary morphism, 367
A189715 alternate terdragon lefts, 366
A189716 alternate terdragon rights, 366
A195693 arctan 1/φ, 199
A195727 arctan 1

4 , 254

A203175 LQ, 50--52, 152, 155, 308,
311, 313

A205083 w parity, 356
A227036 boundary B, 54, 58, 155, 287
A228693 dDiameter, 273
A241892, 212
A246960 dir mod 4, 29
A253786 ternary count low 1s, 367
A255068 TurnRight − 1, 17, 28
A255070 TurnsR, 27
A256441 −x axis base i−1, 165
A260482 5ths numerators, 231, 332, 381
A260747 15ths numerators, 322, 329,

381
A260748 15ths smallest, 328, 381
A260749 15ths middle, 381
A260750 15ths biggest, 381
A268411 parity runs 1s, 33
A272031 Hausdor� dimension, 48
A289265 r root, 47
A290884 base i+1 Im, 157
A290885 base i+1 Re, 157
A293506 root of x5−x4−x2−1, 181
A318438 base i−1 Re, 163
A318439 base i−1 Im, 163
A332383 X coordinate, 31
A332384 Y coordinate, 31
A340669 MinusNeg, 180
A340670 MinusNegA, 182
A341029 2 .HA, 116
A341030 HBf , 121
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