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Abstract

Various properties of �nite iterations of the Lévy C curve, including
coordinates, boundary, area, squares, centroid, moment of inertia, and
weight in regions.
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Notation

A few formulas have terms going in a repeating pattern of say 4 values according
as an index k ≡ 0 to 3 mod 4. They are written like
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[5, 8, −5, 9] values according as k mod 4

meaning 5 when k ≡ 0 mod 4, or 8 when k ≡ 1 mod 4, etc. Likewise periodic
patterns of other lengths, usually at most 8.

Periodic patterns like this can be expressed by powers of −1 or i (or other
roots of unity), but except in simple cases that tends to be less clear than the
values.

1 C Curve

The C curve by Lévy [3] is de�ned as repeated copying of itself at 90◦ angles
beginning from a unit line segment. Or equivalently an expansion of each unit
segment to a pair of segments.

start

repeat
at +90◦

segment
expansion
on the right

Each segment expands on the right side. The usual expansion angle is 90◦

and with that the curve variously touches, overlaps and crosses itself. In the
following diagrams the segment overlaps in k=4 and k=5 are shown with a little
separation. The top of k=5 is a crossing.

k=0 k=1 k=2 k=3 k=4 k=5

start

start start startend

startend

Figure 1: C curve initial levels

The curve is drawn above with the start and end horizontal. It can also be
drawn with the �rst segment in a �xed direction. It that case it spirals around
anti-clockwise (the usual mathematical direction).

k=6 with the start in a �xed direction East shows the �C� shape. The middle
overlap is a combination overlap and crossing. The 2×2 square is traversed anti-
clockwise.

start

end

middle
overlap

Figure 2:

k=6

Theorem 1. The C curve traverses a given segment at most once forward and
once backward.
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Proof. Consider an in�nite square grid with line segments connecting the points,
once forward and once backward. Each line segment expands on the right as

=⇒

The expanded segments are the same grid pattern rotated 45◦.
Any subset of the full grid with at most one forward and one backward

expands to a new bigger set with the same property. The C curve begins as a
single line segment which is such a subset.

Line segments can also be considered as triangles extending on the right side
to �ll a quarter of the adjacent square. The grid of lines above is then a tiling
of the plane by triangles and their expansion is a new tiling.

end start

k=0
startend

k=1
startend

k=2
end start

k=3

Figure 3: C curve as triangles

Each triangle expands by dividing into two halves and �ipping outwards
across the sides. The total area is the same at all expansion levels but spreads
out.

The short sides of each triangle are where the line segment expands to in the
next level. Some of the triangle measures like counts of sides become functions
of segments in level k and k+1.

1.1 Direction

Theorem 2. Number segments of the C curve starting n=0 for the �rst and
take its direction to be d=0. The direction of segment number n is the number
of 1-bits of n written in binary.

dir(n) = CountOneBits(n)

= 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, . . . A000120

Proof. As described above, a level k curve is comprises level k−1 and a copy of
level k−1 turned +90◦,

k−1

k−1 at +90◦
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dir(n+ 2k) = dir(n) + 1 starting dir(0) = 0

For example n=11 is binary 1011 which is three 1-bits, so direction 3× 90◦

= 270◦, ie. to the south. n=2k has only a single 1-bit so dir(2k) = 1. This is
the �rst segment of the next replication and is simply the �rst segment East
rotated +90◦ to be North.

Direction can be taken mod4 for a net direction

dir(n) mod 4 = 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 0, 1, 2, 2, 3, . . . A179868

Or taken mod 2 is the Thue-Morse parity sequence. A horizontal segment is
dir(n) = 0 mod 2. A vertical segment is dir(n) = 1 mod 2.

dir(n) mod 2 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, . . . A010060

=

{
0 if segment horizontal

1 if segment vertical

0

1

2

3

direction
mod 4

0

1

0

1

direction
mod 2

1.2 Turn

At each vertex, the curve can turn in any direction: left, right, straight, or 180◦

back.

Theorem 3. Number the vertices of the C curve starting from n=0 for the
start, so the �rst turn is at n=1. The turn is given by the number of low 0-bits
when n is written in binary,

turn(n) = dir(n) − dir(n−1) n ≥ 1

= 1 − CountLowZeros(n)

= 1, 0, 1,−1, 1, 0, 1,−2, 1, 0, 1,−1, 1, 0, 1,−3, . . . n≥1 A088705

CountLowZeros(n) = 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . . A007814

Proof. A recurrence for turn follows by considering segment expansions. A given
point n becomes 2n on expansion and the segments before and after it are as
follows

2n

2n−1 2n+1

45◦ 45◦

now

Figure 4:

turn change
on segment expansion

The new segments are a left turn at every odd point, and whatever turn was
at n has been reduced by 45 + 45 = 90◦,

turn(2n) = turn(n)− 1 turn(2n+1) = 1 (1)

So turn =1 for odd n and −1 for each of CountLowZeros.
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Second Proof of Theorem 3. The directions dir(n) and dir(n−1) are their 1-bit
counts. n and n−1 di�er in their low bits as follows

· · · 0 1 · · · 1n−1

· · · 1 0 · · · 0n

From n−1 to n the number of 1 bits decreases by CountLowZeros(n) for the
1s which become 0s, and increases by one for the 0→ 1 above them.

The turn at the next point can be calculated in a similar way by low 1-bits.
For segments numbered starting n=0 for the �rst segment, this is the turn after
the segment.

turn(n+1) = dir(n+1) − dir(n) n ≥ 0

= 1 − CountLowOnes(n)

· · · 0 1 · · · 1n

· · · 1 0 · · · 0n+1

Successive values in the turn sequence are always di�erent since turn(n) = 1
for odd n but turn(n) < 1 for even n.

Turns can be taken mod 4,

turn4 (n) = 1, 0, 1, 3, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 1, 1, 0, 1, 3, 1, 0, . . .
which as 2,1,0,3 = A092412

1 left

0 straight

3 right

reverse 2 turn ≡ 0, 1, 2, 3
mod 4

In this form, there are 3 consecutive left turns at n−1, n, n+1 whenever
CountLowOnes(n) ≡ 0 mod 4. The �rst of these is at n = 15, 16, 17 which is
the diamond shape in �gure 1 case k=5.

A �morphism� generating turn4 is to simultaneously substitute in the se-
quence

0→ 1,3 1→ 1,0 2→ 1,1 3→ 1,2

The �rst of each pair is odd n (due to starting at n=1) and the second is
even n. The substitutions are simply a left turn 1 for every odd n and the
existing turn decreasing (mod 4) for even n for the new low 0-bit on 2n,

Applying the morphism 4 times brings it back to the existing turn un-
changed. So the turn4 sequence is itself with a �xed 15 turns added at the
start, end, and between each existing turn.

1

101310121013101 101310121013101

0

101310121013101

1

101310121013101 new turns
existing turns
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The expansion rule (1) also gives the locations of turns. An odd n is an
odd location z ≡ 1 mod b, meaning z=x+iy with x+y odd. Subsequent ex-
pansions are multiply by b so that after k expansions z ≡ bk mod bk+1 and this
k=CountLowZeros(n) is as in turn. When the curve variously overlaps, all the
n at a given point have the same turn because all reached there by expanding
by the same number of steps from an odd n.

The pattern of turns at mod b locations can be illustrated,

1
0
1
0
1
0
1
0
1

-1
1
-2
1
-1
1
-2
1
-1

1
0
1
0
1
0
1
0
1

-4
1
-1
1
-3
1
-1
1
-4

1
0
1
0
1
0
1
0
1

-1
1
-2
1
-1
1
-2
1
-1

1
0
1
0
1
0
1
0
1

-3
1
-1
1

1
-1
1
-3

1
0
1
0
1
0
1
0
1

-1
1
-2
1
-1
1
-2
1
-1

1
0
1
0
1
0
1
0
1

-4
1
-1
1
-3
1
-1
1
-4

1
0
1
0
1
0
1
0
1

-1
1
-2
1
-1
1
-2
1
-1

1
0
1
0
1
0
1
0
1

1

0

−1
−2
−3
−4
−5
−6

Or similarly with turn4 at location,

1 0 3 2

1.3 Coordinates

It's convenient to calculate C curve coordinates in complex numbers using a
base b which is the end of a segment expansion.

0 1

b = 1+i base

Number points along the curve starting from 0 at the origin. The location
of point n can be found by writing n in binary and using those bits in a sum of
b powers and directions.

n = 2kak + 2k−1ak−1 + · · ·+ 2a1 + a0 aj = 0or 1

= binary ak ak−1 . . . a1a0

point(n) = bk ak high bit (2)

+ bk−1 ak−1 i
dir(ak)

+ bk−2 ak−2 i
dir(ak ak−1)

· · ·
+ b1 a1 i dir(ak ak−1...a2)

+ b0 a0 i dir(ak ak−1 ...a2 a1) low bit

= 0, 1, 1+i, 1+2i, 2i, 3i, −1+3i, −2+3i, −2+2i, . . . ReA332251, ImA332252
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Each dir uses the bits above, so the direction function from section 1.1
applied to those bits. For any zero bit aj=0 there is no change to the direction
so the e�ect is an extra i power at each 1-bit.

n = 2k0 + 2k1 + · · ·+ 2kt k0 > k1 > · · · > kt ≥ 0

point(n) = i0bk0 + i1bk1 + · · ·+ itbkt (3)

Bits can be taken high to low, with nk−1 as the bits below the high ak. Here
iak is the extra i power.

point(2kak + nk−1) = bk ak + point(nk−1) . i
ak

Bits can be taken low to high,

point(2n1 + a0) = point(n1).b + i dir(n1).a0

a0 is the low bit and n1 the bits above it. dir(n1) depends on all the bits of
n1 but there's no need to calculate that in full. It's enough to form a direction
factor dir(a1), dir(a2) etc for each successive bit and apply to all lower terms,
as if evaluating outwards a nested expression like

point(n) =bk ak

+ i ak
(
bk−1 ak−1
· · ·
+ i a2

(
b1 a1

+ i a1
(
b0 a0

)))
point(n) can be reversed low to high to calculate n for a given segment.

Suppose a segment starts at z = point(n) and goes in direction d= dir(n) mod 4.

unpoint(z, d = 0, 1, 2, 3)
loop until z = 0or±1 or±i

bit = z mod b 0 or 1, bits of n low to high
if bit = 1 then

d← d−1 rotate −90 deg
z ← z − id move to multiple of b

end if

z ← z/b z is a multiple of b, divide out
end loop

if d=0 and z=0 then found n
if d=1 and z=1 then found n, with extra high 1-bit
otherwise no such segment z, d in curve

A given z = x+ iy is a multiple of b when x+y is even, since any (u+ iv)b =
(u−v) + (u+v)i has sum Re+ Im = 2u. So the low bit a0 is determined by z ≡
0 mod b or z ≡ 1 mod b which is x+y ≡ 0 or 1 mod 2.

The subtraction z − id removes the low term of the point formula (2). The
direction original d = dir(akak−1...a1a0) is changed to d = dir(akak−1...a1) by
subtracting 1 when low a0=1. Then dividing z/b leaves z, d as the bits above
and the procedure can be repeated.
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The loop reduces z by dividing b each time except for the −id o�set. Con-
sidering just magnitudes, |z| decreases when

|z| −
∣∣∣∣z − idb

∣∣∣∣ ≥ |z| − |z|+ 1√
2

=
(
1− 1

2

√
2
)
|z| − 1

2

√
2

> 0 when |z| > 1+
√
2

For |z| ≤ 1+
√
2 it can be veri�ed explicitly that all integer z reaches one of

the loop ends 0,±1,±i for any d. These loop ends are one of the �ve points

0

i

−i

1−1
z endings

It's not possible to wait for z=0 because some d directions will step in�nitely
in a cycle among the 4 non-zeros. There is a cycle of 4, and a cycle of 8 going
±1±i. All of these are no such segment, in that no �nite set of a bits will give
the original z. (The odd z in these cycles give bit=1 successively.)

1, d=2−1, d=0

i, d=3

−i, d=1

unpoint(n)
iteration
4-cycle

1, d=0

1, d=3

−1, d=1

−1, d=2

i, d=0

i, d=1

−i, d=2

−i, d=3

1+i, d=3

1−i, d=2

−1+i, d=0

−1−i, d=1

unpoint(n) iteration 8-cycle

The case z=1, d=1 goes to z=0 on one further iteration. This is bit=1 and
hence its extra high bit. That bit could be handled by letting the loop continue
when z=1, d=1. But z=1, d = 0, 2, 3 must terminate since they are in the cycles
shown above.

z=id−1, d=0, 2, 3 reach z=0 on one further iteration too, but with d6=0 so
no such segment.

The curve visits a given z location up to 4 times and the four d = 0, 1, 2, 3
give those n. d is the direction the segment leaves the point. So to �nd all
n at a given z each d direction should be attempted. Locations which are not
visited, or which are visited but a segment does not leave in direction d result
in �no such segment�.

Attempting d= 0, 1, 2, 3 gives n with CountOneBits ≡ d mod 4 but the mag-
nitudes of these n can be in any order. There are points in the curve with each
possible ordering and combination of no such d segment. First occurrences range
up to n=95583 (which is a 4-visit in k=18).
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For computer calculation, everything can be done in Cartesian coordinates
x+iy = z, without full complex number arithmetic. Each bit is x+y mod 2 and
the division is (x, y)← (x+y2 , y−x2 ) in the usual way.

An alternative is to calculate in terms of sum s = x+y and di�erence m =
y−x. The loop end condition becomes −1≤s≤1 and −1≤m≤1 which might
be more convenient than 5 speci�c x, y combinations.

0, 0

1, 1

1,−1

−1, 1

−1,−1

s,m in ranges

−1 ≤ s ≤ 1
−1 ≤ m ≤ 1

Each bit for s,m is then bit ≡ s mod 2 and the division is the same (s,m)←
( s+m2 , m−s2 ). The e�ect is to work with bz, ie. an extra factor of b throughout.

1.4 Segments in Direction

Theorem 4. Take the �rst segment of the C curve as direction d=0. The
number of segments in each direction d = 0, 1, 2, 3 mod 4 in level k is

S(k, d) = 1, 0, 0, 0 for d ≡ 0 to 3 for k = 0 (4)

= 1
4

(
2k + s(k−2d) .2bk/2c

)
for k ≥ 1 (5)

= 1
4

(
2k + bk(−i)d + bk(−i)d

)
for k ≥ 1 (6)

= 1
4

(∣∣bk + id
∣∣2 + 1

)
for k ≥ 1

s(m) = [2, 2, 0,−2,−2,−2, 0, 2] 2×A046980

S(k, 0) = 1, 1, 1, 1, 2, 6, 16, 36, 72, 136, 256, . . . A038503

S(k, 1) = 0, 1, 2, 3, 4, 6, 12, 28, 64, 136, 272, . . . A038504

S(k, 2) = 0, 0, 1, 3, 6, 10, 16, 28, 56, 120, 256, . . . A038505

S(k, 3) = 0, 0, 0, 1, 4, 10, 20, 36, 64, 120, 240, . . . A000749

Proof. The segments in direction d=0 are those n which have dir(n) ≡ 0 mod 4.
So a count 0, 4, 8, 12, etc many 1-bits among total k bits. Similarly other d.
The possible positions for d mod 4 many 1-bits are a binomial coe�cient.

S(k, 0) =
(
k
0

)
+
(
k
4

)
+
(
k
8

)
+
(
k
12

)
+ · · ·

S(k, 1) =
(
k
1

)
+
(
k
5

)
+
(
k
9

)
+
(
k
13

)
+ · · ·

S(k, 2) =
(
k
2

)
+
(
k
6

)
+
(
k
10

)
+
(
k
14

)
+ · · ·

S(k, 3) =
(
k
3

)
+
(
k
7

)
+
(
k
11

)
+
(
k
15

)
+ · · ·

S(k, d) =
∑

j=d,d+4,...

(
k
j

)
These sums are from Cournot [1] (and Ramus [4]). Form (5) is a half power

to emphasise the result is always an integer.
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These counts are the same in the Heighway/Harter dragon curve, but the
order of the segment directions and the resulting shape are not the same for
k≥2.

Theorem 5. Among the �rst n segments of the C curve, the number in direction
d mod 4 is

SN (n, d) = 1
4

(
n + 2 Re(−i)dpoint(n) −

(
(−1)d+dir(n) if n odd

))
(7)

SN (n, 0) = 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, . . .

SN (n, 1) = 0, 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, . . .

SN (n, 2) = 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 4, 5, 5, 6, 6, 6, 6, . . .

SN (n, 3) = 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 4, . . .

Proof. Each pair of segments 2j, 2j+1 is one horizontal and one vertical. This
follows from segment expansion making pairs horizontal and vertical, or from
one extra bit in 2j+1 making dir opposite parity. When n even the total
segments in directions 0 and 2 is therefore n/2. When n odd if the direction
dir(n) is odd then the segment after the �rst n is vertical so the one before is
horizontal.

SN (n, 0) + SN (n, 2) = n/2−
(

1
2 (−1)

dir(n) if n odd
)

total horizontal (8)

The di�erence between numbers of segments 0 and 2 is horizontal position,

SN (n, 0)− SN (n, 2) = Re point(j) net horizontal (9)

(8)+(9) and (8)−(9) give directions 0 and 2 separately. Similarly for the ver-
ticals, with Im and the dir(n) part + instead. In (7) the (−i)d selects ±Re, Im
and (−1)d selects ± of the dir part.

Second Proof of Theorem 5. SN can be written in terms of the whole level
counts S. Suppose the bits in n are

n = 2k0 + 2k2 + · · ·+ 2kt k0 > k1 > · · · > kt

The �rst 2k0 segments of n are S(k0, d). Then the rest of n is rotated +90◦

so desired direction d−1 for counts hence S(k1, d−1). An so on,

SN (n, d) = S(k0, d) + S(k1, d−1) + · · ·+ S(kt, d−t)

For d=0, the 2k part of S at (6) for each term sums to n. The bk parts and
successive d−1 down to d−t is the same as point at (3), for kt ≥ 1. Or rather
the same but with conjugates which make no di�erence since both plain and
conjugate are taken in (6) giving the real part only.

If kt = 0, which is n odd, the S case k=0 at (4) is not this 2k and bk pattern
but instead a �xed 1 in direction 0. Whether direction d−t = 0 is given by
dir(n) which is the count of bits k0 to kt.

For d 6=0 similarly with the 2k parts the same and a factor (−i)d to rotate
point to the Re direction, and suitable �nal low bit case when n odd.
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2 Convex Hull

A convex hull is the smallest convex polygon which can be drawn around a given
set of points.

P1

P2

P3

P4

P1′

P2′

P3′

P4′

start 0end bk

k=9

Theorem 6. The convex hull around C curve k ≥ 5 is a set of 8 vertices

P1 k = −i bk − ibk/2c P1 ′k = bk − i.P1 k
P2 k = P1 k−1 P2 ′k = bk − i.P2 k
P3 k = P1 k−2 P3 ′k = bk − i.P3 k
P4 k = P1 k−3 P4 ′k = bk − i.P4 k

For k < 5 these points are the hull vertices but with some duplications and
some points excluded.

k vertices duplication exclude

0 2 (P3 = P3′ = 1
2 on boundary) P2, P4, P2′, P4′

1 3 P1=P1′ (P4= 1
2 on boundary) P3, P3′, P4′

2 4 P1=P2 and P1′=P2′ P4, P4′

3 6 P2=P3 and P3=P4

4 6 P3=P4 and P3′=P4′

Proof. Hulls for k ≤ 5 can be constructed explicitly and are per the formulas.
The hull for k=5 has successive 45◦ sides,

0

start

−4−4i
end

P1

P1′

P2

P2′

P3

P3′

P4

P4′

k=5

convex hull

Curve k+1 is two k at right angles to the hull around k+1 is formed the
hulls around two k at right angles. In the following diagram the second k is �a�.
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0

bk

bk+1

P3 k = P4 k+1

P2 k = P3 k+1

P1 k = P2 k+1

P1 ′k = P1 k+1P1 ′k+1 = P1ak

P2 ′k+1 = P1a ′k

P3 ′k+1 = P2a ′k

P4 ′k+1 = P3a ′k P4a ′k P4 k

P4 ′k P4ak

P2ak,P2
′
k

hull k+1

from two k

The two k hull sides at the top are co-linear by symmetry. From the formulas
the P1 ′k point is right of P2ak, and similarly P1ak, so that P1 ′k and P1ak are
new hull vertices.

The bottom two k sides are also co-linear by symmetry, and again P3 k is
right of P4a ′k so that P3 k and P3a ′k are new hull vertices.

The two P2ak,P2
′
k vertices at the top are equal when k+1 even or a unit

square diagonal apart when k+1 odd.
Hull vertex limits for the curve scaled to a unit length are the coe�cients of

bk in P1 etc. The extents are 1 top, 1
4 bottom, and 1

2 each end.

P1P1′

P2P2′

P3P3′

P4P4′

start 01 end

1
2

1
2

1
4

1

1
2 1

1
2

1
4

1+ 1
2

1
4

Figure 5:

hull limit
extents

The hull boundary length is sum of sides |P1 k − P2 k| etc.

HBk =

{
2, 2+

√
2, 6 if k = 0 to 2

( 72+
3
2

√
2).
√
2k − 4

√
2 if k ≥ 3

= 2, 2+
√
2, 6, 6+3

√
2, 14+2

√
2, 12+10

√
2, . . .

HBk√
2k
→ 7

2 + 3
2

√
2 = 5.621320 . . . (10)

The rational and
√
2 parts of HB separately are

HBk = HBratk +HBsqrtk
√
2

HBratk =

{
2, 2, 6 if k = 0 to 2
1
2 [7, 6] 2

bk/2c if k ≥ 3

= 2, 2, 6, 6, 14, 12, 28, 24, 56, 48, 112, . . .
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HBsqrtk =

{
0, 1, 0, 3 if k = 0 to 3

HBratk−1 − 4 if k ≥ 4

= 0, 1, 0, 3, 2, 10, 8, 24, 20, 52, 44, . . .

The area of the hull can be calculated from its vertices as triangular areas.
HA1 and HA3 are fractions and all others are all integers.

HAk =

{
0, 1

2 , 2 if k = 0 to 5
35
162

k − 1
2 [10, 13].2

bk/2c + 2 if k ≥ 3

= 0, 12 , 2,
13
2 , 17, 46, 102, 230, 482, 1018, . . .

Theorem 7. The minimum area rectangle around C curve k has area

MRk =

{
0, 1, 2 if k = 0 to 2

5
2 2

k − 13
2 2

⌊
k
2

⌋
+ [4, 2] if k ≥ 3

= 0, 1, 2, 9, 18, 56, 112, 270, 540, 1178, . . .

This minimum rectangle is aligned to the curve endpoints, except for k=1
and k=3 where a square at 45◦ is equal minimum area.

Proof. Any minimum area rectangle has at least one side aligned to a side of
the convex hull. So for the C curve there are two alignments. Firstly rectangle
aligned to the endpoints,

start 0end bk

MRk rectangle aligned
to curve endpoints

The sides lengths from the hull vertices is

MRk = Re ω−k8

(
P2 k−P2 ′k

)
. Imω−k8

(
P4 k−P1 k

)
for k≥3

where ω8 = e2πi/8 = 1√
2
(1+i) eighth root of unity at +45◦
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Secondly, aligned at 45◦

start 0end bk

MSk square at 45◦

to curve endpoints

This alignment is a square by symmetry since the top two sides are the same.
Likewise the bottom two are the same. The side lengths are again from the hull
vertices, and including cases k < 3,

MSk =
(
Re ω

−(k+1)
8

(
P4 ′k−P1 k

))
2 k≥3

=
(

5
4

√
2 .
√
2k − [

√
2, 2]

)
2 k≥3

=

{
1
2 , 1 if k = 0, 1

25
8 2k − 5.2dk/2e + [2, 4] if k ≥ 2

= 1
2 , 1,

9
2 , 9, 32, 64, 162, 324, 722, 1444, . . .

MS 1 = 1 and MS 3 = 9 are equal to MR and MS is bigger for k ≥ 4. The
di�erence is, adapting ceil half power in MS to �oor the same as MR,

MSk −MRk = 5
8 2

k + [ 32 ,−
7
2 ] .2

bk/2c + [−2, 2] k ≥ 3

> 0 for k ≥ 4

3 Right Boundary

k=5

Rpart1

Rpart2

Rpart3

Rpart4

Rpart5 = 6

Rpart4 = 4

Rpart3 = 2

Rpart2 = 2

Rpart1 = 0, empty
Rpart0=1

k=5

part

lengths

Theorem 8. The right-side boundary length of C curve level k is

Rk = [7, 10] .2

⌊
k
2

⌋
− 2k − 6

= 1, 2, 4, 8, 14, 24, 38, 60, 90, 136, 198, 292, . . . 1
2 A276677
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Proof. Take a �part� of the curve as right boundary either straight or zig-zag.
Take the middle top of curve k as Rpartk. This top part is the convex hull top
side. It is straight segments when k even or zig-zag when k odd.

These sides are continuous since as noted after theorem 6 the top P2ak,P2
′
k

vertices are the same or diagonal step apart. So number of segments is a �Man-
hattan� distance

Manhattan(z) = |Re z|+ |Im z|
Rpartk = Manhattan

(
P1 k − P1 ′k

)
= 2dk/2e − [0, 2]

= 1, 0, 2, 2, 4, 6, 8, 14, 16, 30, 32, 62, . . . k≥3 2×A097110

The part sides curl inwards but do not overlap. This is so of k=5 and
supposing it true of k then the k+1 curve from two k is

0

bk

bk+1

mid-line

P4a ′k

Within k, the curling does not overlap so k right boundary does not touch
its curve mid-line. Working through the formulas, the second curve bottom hull
side P4ak to P4a ′k is above this mid-line of the �rst. So curling at the start of
the �rst k is not overlapped in k+1. Likewise by symmetry at the end of the
second k which is the k+1 end.

The whole boundary is then sum of parts, being a single middle k then two
of k−1 etc on each side.

Rk = Rpartk + 2

k−1∑
j=0

Rpartj

A straight or zig-zag right boundary part expands respectively as

straight

Rpart4 = 4 segments

=⇒
zig-zag

Rpart5 = 2.4− 2 = 6

zig-zag

Rpart5 = 6 segments

=⇒
straight

Rpart6 = 6 + 2 = 8 segments

In a straight part each segment becomes a zig-zag notch, except 1 segment at
each end. In a zig-zag part each segment of a notch becomes a straight segment
and an extra 1 at each end. This gives a recurrence
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Rpartk =

{
Rpartk−1 + 2 if k even, zig-zag becomes straight

2Rpartk−1 − 2 if k odd, straight becomes zig-zag
(11)

starting Rpart0 = 1

For k=0, Rpart0 = 1 is the single curve segment. For k=1 the two segments
are Rpart0 sides and in between the top middle is an empty Rpart1 = 0.

The boundary length doubles for R0 through R3 but at R4 = 14 there are
two segments not on the right boundary.

R is segments so the diagonals are bigger than their geometric length. For
that reason if scaled by 1/

√
2k for endpoints a unit length apart then the even

and odd cases of R do not converge to the same value (but to 7 and 5
√
2).

The geometric lengths are

RgeomPartk =
∣∣P1 k − P1 ′k

∣∣ =
√
2k − [0,

√
2]

=

{
Rpartk if k even

1
2

√
2Rpartk if k odd

Rgeomk = RgeomPartk + 2

k−1∑
j=0

RgeomPartj

=
(
3+2
√
2
)√

2k − k
√
2 − 2− 2

√
2

= 1, 2, 4, 6+
√
2, 10+2

√
2, 14+5

√
2, 22+8

√
2, . . .

Rgeomk√
2k

→ 3 + 2
√
2 = 5.828427 . . . A156035

end start

1

1
1√
2

1
2

This Rgeom limit is greater than the corresponding hull boundary length HB
from (10). Initially the hull boundary is greater, but eventually the spiralling
full right boundary is greater. This occurs at k=13,

Rgeomk −HBk =

{
−1, −

√
2, −2 if k = 0 to 2

1
2 (
√
2−1).

√
2k − k

√
2 − 2 + 2

√
2 if k ≥ 3

> 0 i� k ≥ 13

The rational and
√
2 parts of Rgeom are the total straight and total zig-zag

parts of R respectively, which are even and odd Rpart terms respectively.

Rgeomk = RgeomRatk +
√
2RgeomSqrtk

Rk = RgeomRatk + 2RgeomSqrtk

RgeomRatk = [1, 0]Rpartk + 2

k−1∑
j=0

[1, 0]jRpartj

= [3, 4].2bk/2c − 2
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= 1, 2, 4, 6, 10, 14, 22, 30, 46, 62, 94, . . . A027383

RgeomSqrtk = [0, 12 ]Rpartk + 2

k−1∑
j=0

[0, 12 ]jRpartj

= [2, 3].2bk/2c − k − 2

= 0, 0, 0, 1, 2, 5, 8, 15, 22, 37, 52, . . . k≥3 A077866

RgeomRatk is also the right boundary increase between levels,

dRk = Rk+1 −Rk = RgeomRatk

Unit squares on the right boundary are beside each straight segment and
beside each pair of zig-zag segments.

RQpartk = [1, 12 ]Rpartk = 2bk/2c − [0, 1]

= 1, 0, 2, 1, 4, 3, 8, 7, 16, 15, 32, . . . A106624

RQk = RgeomRatk + RgeomSqrtk

= [5, 7].2bk/2c − k − 4

= 1, 2, 4, 7, 12, 19, 30, 45, 68, 99, 146, . . . k even A097809

The curling ends of the right boundary don't touch so they are at least 1
unit square away from the mid-line and so these RQ squares are distinct (none
common to the two inward curls).

The straight and zig-zag part expansions from (11) show that the right
boundary segments are all single-traversed and directed from curve start to
end. They also give the point number n which is the start of part k. The �rst
part k=0 starts at n=0 and thereafter on expansion that n goes forward or back
1 segment, This is the Jacobsthal numbers.

PartN k = 2PartN k−1 + [−1, 1] starting PartN 0 = 0

= 1
3

(
2k + [−1, 1]

)
= 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, . . . A001045

= binary 101010... for k−1 bits and lowest forced to 1

The total number of segments in a part is the increment, since the end of
part k is the start of part k+1.

PartSegmentsk = PartN k+1 − PartN k

= 2PartSegmentsk−1 + [2,−2]
= 1

3

(
2k + [2,−2]

)
= 1, 0, 2, 2, 6, 10, 22, 42, 86, 170, 342, . . . k≥1 A014113
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3.1 Right Boundary Segment Numbers

0

1 261 62

63

5

6

9

1053

54

57

58

2122252637384142

18

13

45

50

Figure 6:

k=6

right boundary

segment numbers

Theorem 9. Number the segments of C curve level k starting n=0 for the �rst
segment. Write n in binary with k bits. Discard the highest bit run (which may
be 0s or 1s). Then consider pairs 00 or 11.

H · · ·H · · · seek bit pairs 00 or 11 · · ·

discard highest run 0s or 1s

n = k bits

Segment n is or is not on the right boundary of the curve according as

Rpredk(n) =

{
1 if all 00 or 11 pairs are even distances apart

0 if any pairs 00 or 11 are an odd distance apart

=

{
1 pairs 00 and 11 alternate

0 among pairs 00 or 11 any consecutive 00,00 or 11,11

A run of 3 bits 000 is reckoned as two pairs 00 and 00 at distance 1 apart
which is odd so Rpred = 0. Likewise a run of 3 bits 111.

For the curve continued in�nitely, in�nite 0-bits are considered at the high
end and they are the highest run discarded, so the pairs check starts from the
highest 1-bit of n.

Rpred∞(n) = 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, . . .

=1 at n = 0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 18, . . .

=0 at n = 7, 8, 14, 15, 16, 17, 23, 24, 27, 28, 29, . . .

As an example, n=715 is binary �0001011001011� in 13 bits for level k=13.
The highest run is 000, discard that to 1011001011. There are pairs 11, 00, 11.
They are all even distances apart, or equivalently they alternate 11,00, so 715
is on the boundary. On the other hand n=710 binary 1011000110 has pairs 11,
00, 00, 11. The two 00 are an odd distance apart, and equivalently they are
consecutive 00,00 (overlapping) so not on the boundary.

715 = 0001 0 1 1 0 0 1 0 1 1

Rpred13(715) = 1

high pairs
00 and 11

710 = 0001 0 1 1 0 0 0 1 1 0

Rpred13(710) = 0

high pairs
00 and 11
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Proof. A given boundary segment may have further segments before or after.
Segments expand by at most 1

2 for each two levels so no other segments can
touch the given segment.

When the segment expands it becomes two segments which are a new low
bit 0 or 1 for the segment number and a new con�guration of segments before
or after. The following con�gurations r0 to r7 occur and expand as

r0

=⇒ 01 r1

=⇒
01 r2

=⇒
01

r3

=⇒
01 r4

=⇒

01

r5

=⇒
01 r6

=⇒
01

r7

=⇒
01

r0 is the single initial segment of level k=0. r1 and r2 are the end-most
segments of k ≥ 1. r3 and r4 are the right and left end of a straight section. r7
is a middle segment in a straight section. r5 and r6 are the right and left sides
of a �V� zig-zag notch.

r0 expands as shown to two segments, con�guration r1 for a new 0-bit or
con�guration r2 for a new 1-bit. Continuing in this way each of the 8 con�gu-
rations are variously reached.

The transitions between con�gurations are as follows, taking bits of n high to
low. In r5 the 1-bit segment is overlapped by the expanded segment after it and
so is a non-boundary segment. Similarly in r6 the 0-bit segment is overlapped
by the segment before and so is a non-boundary segment.

r0

r1

r2

r3

r4

r5

r6

r7

non

non

0

1

0
1

0
1

0

1

0

1

0

1

0

1 0

1start
right boundary states,

n bits high to low
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A run of high 0-bits is consumed by r0 and r1. A run of high 1-bits is
consumed by r0 and r2. So r3 or r4 are reached by the 1 or 0 bit after the high
run (respectively). r3 and r4 alternate between each other for 010101 etc until
11 goes to r5 or 00 to r6.

In r5 alternating bits 010101 go to r7 and back, or an 00 goes to r6. In r6
alternating bits 101010 go to r7 and back, or a 11 goes to r5. So state r5 means
that a 11 pair was the last seen of either 00 or 11. And r6 means a 00 pair was
last seen.

In r5 a further 1 is either 111 or with bounces to r7 a 11. . . 010101. . . 1.
In both cases it is pairs 11 an odd distance apart, and equivalently a 11 pair
followed by another 11 pair. For a triplet 111 the two pairs are overlapping.
When bouncing to r7 they are distinct 11s.

Similarly in r6 a further 0 is either 000 or with bounces to r7 an 00. . . 101010
. . . 0. In both cases it is pairs 00 an odd distance apart, and equivalently a 00
pair followed by 00 (possibly overlapping).

As noted, a triplet 000 or 111 is treated as pairs 11,11 or 00,00 which are 1
bit apart so non-boundary. So any n with a run of 3 or more consecutive bits
is non-boundary for Rpred∞. (For �nite k the highest run is ignored.)

any run ≥3 bits = 7, 8, 14, 15, 16, 17, 23, 24, 28, 29, . . . A136037

These are a subset of Rpred∞. The �rst non-boundary without such a triplet
is n=27 �11011�.

NonRpred∞ without 3 bit 000 or 111

= 27, 36, 54, 73, 91, 100, 107, 108, 109, 146, 147, 148, 155, . . .

Total Rpred is the right boundary length Rk from theorem 8.

Rk =

2k−1∑
n=0

Rpredk(n)

This sum can be calculated from the state transitions. Doing so is not as easy
as the segment expansions in theorem 8, but is a combinatorial interpretation
for the length.

0 · · · 0 1 0101 · · · 10 1 0x0x · · · 0x0x

t ≥ 1 m ≥ 0 s

k bits

r5, 6, 7r1 r3 r3 r5

The high t bits go to r1 and stay there until 1 to r3. Then m optional
bounces between r3 and r4. A 1-bit goes to r5 and then must 0-bit to r7. At
r7 there is a choice of r5 or r6. This is shown as an x which can be either 0-bit
or 1-bit.

When an x goes to r6 it must be a 1 next back to r7 rather than the 0 shown
in the sample. In any case it is a no-choice position since after x=1 must have
0 or after x=0 must have 1.

If m is odd then that run ends at r4 and the next bit is 0 to r6 rather than
the 1 shown. The positions of choices and non-choices are the same.
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The k digits can be ful�lled by less than all the �elds shown. t=k all 0s is
1 combination. t +m = k−1 has the �rst �xed 1-bit at any of k−1 positions.
t+m ≤ k−2 has s = k− t−m− 2 ranging 0 to k−2. The �rst �xed 1-bit is in
any of k−s−2 positions. Within s there are bs/2c bit positions x which can be
either 0 or 1.

Starting from a t high run of 1-bits gives corresponding combinations since
the states are symmetric in 0↔1 bit �ip, so double all the counts.

2

(
1 + k−1 +

k−2∑
s=0

(k−s−2).2bs/2c
)

= Rk k ≥ 1

As described in the proof, r3 and r4 are the start and end segments of a
straight section. For the curve continued in�nitely r3 is at each n = 1

3 (4
j − 1)

binary �1010...101�, and r4 is at each n = 2
3 (4

j − 1) binary �1010...1010�, for
integer j ≥ 1.

These can be seen in the samples of �gure 6. n=1, 5, 21 are the start of
straight sections. n=2, 10, 42 are the ends of those sections. Note that the
left side vertical straight starting n = 53 is not on the boundary of the curve
continued in�nitely and is not the r3∞ bit pattern.

The top middle segments 26 and 37 in �gure 6 are each state r7 and to stay
on the boundary in their middle position they go to r5 and back to r7, or r6
and back to r7, respectively. These segment numbers are then

TopMiddlePrek =

{
0 if k ≤ 1
5
12 2

k − [ 23 ,
1
3 ] if k ≥ 2

= binary �11 01 01 . . . � for k−1 bits

= 0, 0, 1, 3, 6, 13, 26, 53, 106, 213, 426, . . . k≥2 A081254

TopMiddlePostk =

{
k if k ≤ 1
7
12 2

k − [ 13 ,
2
3 ] if k ≥ 2

= 2k−1− TopMiddlePrek

= binary �100 10 10 . . . � for k bits

= 0, 1, 2, 4, 9, 18, 37, 74, 149, 298, 597, . . . k≥2 A081253

Scaled to 0 to 1 for the fractal, the limits are the top middle points in Lévy's
big �nal diagram[3, �gure 3 page 292],

TopMiddlePrek
2k

→ 5

12

TopMiddlePostk
2k

→ 7

12

4 Left Boundary

Theorem 10. The left-side boundary length of C curve level k is

Lk =

{
2k if k ≤ 6

1
4 [55, 78] .2

⌊
k
2

⌋
+ 14k − 130 if k ≥ 6

(12)
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= 1, 2, 4, 8, 16, 32, 64, 124, 202, 308, 450, . . .

or a single curve part

Lpartk =

1, 0, 2, 2, 6, 10 if k = 0 to 5

1
4 [9, 14] .2

⌊
k
2

⌋
+ 7k − 68 if k ≥ 6

= 1, 0, 2, 2, 6, 10, 22, 38, 40, 66, 76, . . .

Proof. Each expansion of the right boundary as from above makes pairs of
segments on the left side. There is 1 pair between each 2 segments of Rpart for
k even, so 2k/2−1 − 1. The following diagram shows k=8 with a row of 7 pairs
at the top, then a row of 3 pairs which have expanded twice to be 2×2 squares,
and �nally a single pair expanded 4 times to a big cycle.

(empty) Rpart1 Rpart1 (empty)

Lcorner2 Lcorner2

Rpart3 Rpart3
Rpart4

k=8 part

The sides expand out at the same rate and so the bottom of each row overlaps
its immediate neighbouring rows above and below but no further than that. In
all cases the loops go anti-clockwise around.

The pair expanded which is bottom-most has bottom side Rpartk−4 and
diagonal sides Rpartk−5. But the overlap between the rows means the vertical
is then not a full Rpart side. Let Lcornerk−6 be the number of segments in the
vertical and horizontal of the overlap corner. Lcorner2 is shown above in part
k=8.

Lcorner is outward expanding segments so goes like Rpart in extra segments
or not at the ends. But the corner loses 2 segments to overlap at odd k.

Lcorner2=6

segments

=⇒

two segments lost

Lcorner3=8

segments

Lcorner4=10

segments
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Lcornerk =

{
Lcornerk−1 + 2 if k even, zig-zag becomes straight

2Lcornerk−1 − 4 if k odd, straight becomes zig-zag

starting Lcorner2 = 6

= 2.2
dk/2e

+ [2, 0]

= 6, 8, 10, 16, 18, 32, 34, 64, 66, 128, 130, . . . k≥2 2×A228693

For k ≥ 6 the start and end of the part alternate between two shapes

. . .

k=6 even

10 segments
at end

=⇒

. . .

k=7 odd

16 segments
at end

=⇒
. . .

k=8 even,

10 again

Figure 7:

part ends

expansion

For k even, there are 10 segments after then last Lcorner2. For k odd, there
are 16 segments. This is at each end of the part.

Lpartk = Rpartk−4 + 2Rpartk−5 for k ≥ 6

+ 2
(
Lcornerk−6 + Rpartk−7

)
sum terms . . . (13)

+ 2
(
Lcornerk−8 + Rpartk−9

)
+ · · ·+ 2

(
Lcorner2 or 3 + Rpart1 or 2

)
+ 2.[10, 16]

The sum terms (13) go k−6, k−8 etc down to Lcorner2 or Lcorner3 according
as k even or odd. When k=6 or 7 the sum is taken as empty.

For the full curve, the left sides of each curve part do not overlap since they
are contained within a line of slope 2;1 relative to the top side.
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part k

part k−1

part start

slope
2,1

slope 2,1
to diagonal

The middle biggest part shown is even k. On expanding twice to the next
k the o�set between the dotted vertex and part end doubles, and add i for the
part end moving upwards and 1 for the vertex moving left. This is then o�set
(−1+2i)2k +−1−i which is a �xed −1−i inside the −1+2i slope. Similarly for
odd k on the diagonal.

Or in terms of convex hull k formed from two k−1, the new loop point
shown above is P4a of the second copy of k−1. Slope 2:1 line in the �rst k−1
is uncrossed, and the second k−1 hull stays within 2:1 for the new middle part
k.

0bk

slope 2:1

P1 ′k−1

P4ak−1

Each row of pairs has its endmost expand in the same way as the middle and
so all of them have their vertex inside the slope. So the whole left boundary is
sum of parts

Lk = Lpartk + 2

k−1∑
j=0

Lpartj

In L formula (12), for k=6 the two cases 2k and the subsequent form both
give the same L6 = 26 = 64. k=6 is the last level which has all segments on
the left boundary and after that Lk < 2k for k ≥ 7.

k=6 all segments
on left boundary
L6 = 26 = 64

k=7 has 4 segments
not on left boundary
L7 = 27 − 4 = 124

When scaled by
√
2k for unit length endpoints the odd and even k cases do

not converge to the same value, the same as the right boundary segments do
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not. But if the zig-zag sides are taken geometrically across as distance
√
2 then

they do. Lcornerk is a zig-zag when k odd (like Rpart). So geometric lengths
become

LgeomCornerk =

{
Lcornerk if k even

1
2

√
2 Lcornerk if k odd

= 2.
√
2k + [2, 0]

LgeomPartk = RgeomPartk−4 + 2RgeomPartk−5 for k ≥ 6

+ 2
(
LgeomCornerk−6 + RgeomPartk−7

)
+ · · ·+ 2

(
LgeomCorner2 or 3 + RgeomPart1 or 2

)
+ 2.[10, 16]

=
(
5
4+

1
2

√
2
)√

2k +
[
−2−

√
2, 0

]
.k +

[
2
√
2, 28−9

√
2
]

Lgeomk = LgeomPartk + 2

k−1∑
j=0

LgeomPartj

=


Lk k ≤ 5(
23
4 +4
√
2
)√

2
k
+ (1− 1

2

√
2)k2 + (28−7

√
2)k

+
[
−372+56

√
2 − 374+57

√
2
] k ≥ 6

= 1, 2, 4, 8, 16, 32, 64, 122+
√
2, 192+4

√
2, 274+17

√
2, ...

The segments at the start and end of each part could be treated by some
kind of geometric step directly across. But they are a �xed 10 or 16 and so
don't change the

√
2k term. Scaled by 1/

√
2k for the endpoints a unit length,

the limit is the coe�cient on those
√
2k terms

Lgeomk√
2k

→ 23
4 + 4

√
2 = 11.406854 . . .

LgeomPartk√
2k

→ 5
4 + 1

2

√
2 = 1.957106 . . . (14)

Part limit (14) is also the ratio of left to right boundary on this geomet-
ric measure because RgeomPartk/

√
2k → 1 (the top part being limit 1 as in

�gure 5). Each part has this same left/right ratio limit and so the total too.

Lgeomk

Rgeomk

→ LgeomPartk
RgeomPartk

→ 5
4 + 1

2

√
2 same as (14)

Left boundary squares follow in a similar way to (13) but with RQpart
squares instead of segments. For Lcorner squares, there are 1 fewer squares
than segments when k even, or half when odd. That, initial cases, and patterns
at start and end of each part gives

LQpartk =

{
1, 0, 2, 2, 4, 6
1
4 [7, 9].2

bk/2c + [0, 3]

= 1, 0, 2, 2, 4, 6, 14, 21, 28, 39, 56, . . .

LQk = Lpartk + 2 + 2

k−1∑
j=0

(
LQpartj − 1

)
k ≥ 2 (15)
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=

{
1, 1, 2, 4, 8, 16
1
4 [39, 55].2

bk/2c + k − 50

= 1, 1, 2, 4, 8, 16, 34, 67, 114, 179, 272, . . .

For sum of parts at (15), a unit square is common to adjacent parts, hence
−1 to count those only once. But LQpart1 = 0 so it has no unit squares to
overlap, hence +2 adjusting for that and the formula applicable only k ≥ 2.

The total curve boundary length or squares is sum of left and right.

Bk = Rk + Lk

=

 2, 4, 8, 16, 30, 56 if k = 0 to 5

1
4 [83, 118] .2

bk/2c
+ 12k − 136 if k ≥ 6

= 2, 4, 8, 16, 30, 56, 102, 184, 292, 444, 648, . . .

Bpartk = Rpartk + Lpartk

=

 2, 0, 4, 4, 10, 16 if k = 0 to 5

1
4 [13, 22].2

bk/2c
+ [4, 8] if k ≥ 6

= 2, 0, 4, 4, 10, 16, 30, 52, 56, 96, 108, . . .

BQk = RQk + LQk

=

 2, 3, 6, 11, 20, 35 if k = 0 to 5

1
4 [59, 83] .2

bk/2c − 54 if k ≥ 6

= 2, 3, 6, 11, 20, 35, 64, 112, 182, 278, 418, . . .

BQpartk = RQpartk + LQpartk

=

 2, 0, 4, 3, 8, 9 if k = 0 to 5

1
4 [11, 13].2

bk/2c
+ [0, 2] if k ≥ 6

= 2, 0, 4, 3, 8, 9, 22, 28, 44, 54, 88, . . .

4.1 Left Boundary Segment Numbers

Theorem 11. The segment numbers n on the left boundary of the C curve are
given by the state machine of �gure 8 traversed by bits of n high to low.

For curve k, write n in k many bits (high 0s as necessary). Start at s0 and
if ever reach �non� then a non-boundary segment, otherwise boundary.

For the curve continued in�nitely, start at state s1 (as if in�nite high 0-bits).

Lpred∞(n) = 0 at n = 55, 56, 71, 72, 92, 93, 94, 101, 102, 103, . . .

Proof. The boundary segment numbers follow from the pattern of expansions
in theorem 10. Total 49 distinct segment types arise, labelled s0 to s38, r3 to
r7, and d1,d2, d12, d21.
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s0s1 s2

s3 s4

s6 s8s5 s7

s11s10 s12 s13s9 s14

s15 s23s17

d21 d2

s21

d12d2

s18

d12

s19s16 s22s20

d21

s24 s25

d1

s31s30

d1

s26

d1

s27 s28 s29

d1

s36

non

s33

non

s35

non

s34

non

s37s32

s39s38

nonnon

r3 r4

r5 r6r7

non non

d12 d21

non non

d2

d1

non

start
0 1

0 1 0 1

01 01

0

10 1 0 10

1

0

1
01

0 1 0 1 01
0

1

0
1

0

1 0

1

01 0 1
01

0 1 010
1

0

1
0

10
1 0 1 0 1 0

10
1

0

1

01

0

1 0
1 0

1 0

1

01

0

1

0
1

0

1 0
1

0

1 0
1

0

1

0
1 0

1

0,1

0,1

Figure 8:

Lpred

state

machine
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s0

k=0

s1s2

k=1

s1

s3s4

s2

k=2

s5s6s7s8

k=3

s7

s9s10

s11 s12

s13s14

s6

k=4

s14s15s16s17

s18

s19 s19

s20

s21s22s23s9

k=5

s24

s25 s12

s26d2

d21

d12

s27

r4

r3 r4

r3

s28

d21

d12

d2s29

s11 s30

s31

k=6

s16s32s33

d1

s34

s35

d1

s34

s35

r5 r6

s36s37s22

k=7

d1 d12

r3 s38

s39s38

s39 r4

d21 d1

k=8
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s38

s39

s39

s38

k=9

Ends of the curve part are shown dotted. A segment at the end of a part
can expand to add a segment to its adjacent part. That new segment is the last
or �rst segment of the adjacent part. For example s9 expands to s14,s15. s14
is the last of part k=4 which precedes in the curve.

When s3 expands it is to a new pair s5,s6. The s5 there is the last of a k=2
part, with a bigger part after it. This di�ers from s4 which is last segment of a
k=2 with smaller part after it. This matters when s5 expands to s7,s9 � it must
be s9 in the bigger k=4.

In k=7 at the right, segment type d1 is all 6 segments surrounding there,
other than s33 marked. Similarly d1 at the left all except s36. All these d1
segments are enclosed on the next expansion (when s34,s35 touch and close o�
the regions), for next bit either 0 or 1.

d2 in k=6 is similarly 2 expansions away from enclosed, no matter what
next 2 bits. Segment d12 is 1 expansion away for a 0-bit, ie. 0-bit to non, or 2
expansions away for a 1-bit, ie. a 1-bit followed by either 0 or 1. Likewise d21
for opposite 1-bit and 0-bit.

Segments s32,s33 in k=7 are not the same as s17,s21 of k=5 since the left
side of s32,s33 is enclosed on the next expansion, whereas s17,s21 is not (being
in the middle). Similarly s36,s37 have right side enclosed on next expansion.

The verticals produced by s32,s33 and s36,s37 in k=8 are d1,d12 and d21,d1.
Both those segments are reckoned on the boundary.

Segments r3 to r7 are the same as from Rpred . They are reached from s19
which is bottom of the k=5 diamond, and also reached by a vertical from each
of s18,s20, becoming s27,s28.

In k=8, segments s38,s39 are the 90◦ corner from theorem 10. When they
expand to k=9 the 0-bit of s38 is enclosed and the 1-bit of s39 is enclosed. The
resulting zig-zag corner segments in k=9 then expand likewise one enclosed, but
the opposite way around. The segment con�guration in k=9 is di�erent but the
resulting boundary or not on expansion is the same so the segment types are
shared.

The s38,s39 corner is a cycle where bit pattern 0101... stays on the boundary.
The r5,r6,r7 (an R side in a loop) and r3,r4 (an R start or end in a loop) are
also cycles. s9,s14 are start and end of curve parts. States s1,s2 all 0s and all
1s are start and end of the whole curve. Together these are all the cycles in the
state machine. Other states eventually reach one of them or non-boundary.

As noted, the verticals d21,d1 and d1,d12 in k=8 are reckoned both segments
on the boundary. If considering triangles then the inner d1 could be taken as
enclosed already, rather than 1 expansion later. Doing so gives left boundary
length L.
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LpredNink(n) = �gure 8 but s32 bit 1 and s37 bit 0 to non

Lk =

2k−1∑
n=0

LpredNink(n)

5 Area

Theorem 12. The area enclosed by C curve k is

Ak =

{
0, 0, 0, 0, 0, 1 if k = 0 to 5
19
16 2

k − 1
8 [142, 201] 2

⌊
k
2

⌋
+ 2k + 60 if k ≥ 6

= 0, 0, 0, 0, 0, 1, 6, 25, 96, 284, 728, . . .

or a single curve part

Apartk =

{
0, 0, 0, 0, 0, 1 if k = 0 to 5
19
48 2

k − 1
8 [24, 35]2

⌊
k
2

⌋
+ 1

3 [8,−2] if k ≥ 6

= 0, 0, 0, 0, 0, 1, 4, 15, 56, 132, 312, . . .

Proof. When the curve expands each existing enclosed unit square increases to
side length

√
2 so area doubles. Segments which expand outwards from the

boundary of an enclosed area add a further 1
2 each. A double-traversed segment

is segments expanding from an empty area.

enc

=⇒ unit length side

area 1
2
more

Boundary segments which expand inwards would decrease area, but all seg-
ments of both left and right boundary expand outwards, except for some at
start and end of each curve part. So area increase due to expansion is 1

2Bpart ,
less those non-enclosing start and end segments.

From �gure 7, for even k there are 4 segments along the top at the end of
the curve part which are not on an enclosed area. Bpart counts both sides of
them and they are the same at both ends of the part, so 1

2Bpart is area 8 too
big.

For odd k the following diagram shows expansions on each of the boundary
segments. Segments on both left and right boundary expand on both sides.

end

of

part

expansion
touch

Figure 9:

k odd part,

end area enclosed or

not by expansion of

boundary segments
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Black triangles are segment expansions which increase enclosed area. The
bottom pair touch and so enclose new area. The black triangles in the top row
increase this area.

Grey triangles are on the boundary so are counted by 1
2Bpart but are not on

the side of expansion. But they are inside the new enclosed area so are wanted.
Dashed triangles at the top left are similarly on the boundary and are

counted by 1
2Bpart , but they are not part of any enclosed area and so should not

be counted. But there are a corresponding 6 triangles inside the new enclosed
area, shown dotted, which should be counted and are not otherwise. The net
result is that no adjustment is needed to 1

2Bpart for k odd expanding to k even.
So for Apartk as a recurrence from the previous k−1, an adjustment by −8

when k odd which is k−1 even expanding to k odd.

Apartk = 2Apartk−1 +
1
2Bpartk−1 − [0, 8] k ≥ 7

and with initial values through to Apart6 taken explicitly from the curve, the
whole area is sum of parts

Ak = Apartk + 2

k−1∑
j=0

Apartj

A measure of density can be made by taking a triangle of area 1
4 on the

right of each segment and comparing that to the enclosed area. The triangles
on boundary segments are outside the area but there are at most Bk of them
which goes only as a half power of 2 so doesn't change the limit.

1
4 2

k

Ak
→ 4

19
= 0.210526 . . . A021479

6 Triangles in Regions

Consider the following regions around the ends of the C curve. The numbering
follows Duvall and Keesling [2] but stopping at 9 since the curve is symmetric
in horizontal mirror image so the regions on each side are mirror images.

1

2

34

5

6

7 8

9

8 7

6

5

43

Quarter triangles beside each unit segment as from �gure 3 fall variously into
these regions. The number in each region can be counted as a density measure.

Theorem 13. The number of triangles in each region above for curve level k
is a recurrence
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TRk = TRk−1 + 2TRk−2 − TRk−4 + TRk−5 + 2TRk−7 + 4TRk−8 (16)

The recurrence is the same for the count in each region, with di�erent initial
values.

TR(k, 1) = 1, 0, 0, 0, 0, 0, 0, 2, 6, 10, 22, 40, 80, 156, 308, 622, . . .

TR(k, 2) = 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 10, 20, 40, 76, 156, 310, . . .

TR(k, 3) = 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 20, 38, 78, 155, 311, . . .

TR(k, 4) = 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 20, 38, 78, 155, 311, . . .

TR(k, 5) = 0, 0, 0, 0, 1, 1, 3, 5, 10, 20, 38, 78, 155, 311, . . .

TR(k, 6) = 0, 0, 0, 1, 1, 3, 5, 10, 20, 38, 78, 155, 311, . . .

TR(k, 7) = 0, 0, 1, 1, 3, 5, 10, 20, 38, 78, 155, 311, . . .

TR(k, 8) = 0, 1, 1, 1, 1, 2, 4, 8, 18, 39, 79, 159, 315, 628, 1250, . . .

TR(k, 9) = 0, 0, 0, 2, 4, 8, 16, 30, 60, 116, 232, 466, 932, 1872, 3744, . . .

Generating functions

gTR1 (x) =
2

105
.

1

1−2x
+

1

6
.

1

1+x
+

1

20
.
7−x
1 + x2

+
1

28
.
13+5x−10x2−6x3

1− x2 + 2x4

gTR7 (x) =
16

105
.

1

1−2x
+

1

12
.

1

1+x
+

1

40
.
−3−x
1 + x2

+
1

56
.
−9−11x+22x2+2x3

1− x2 + 2x4

gTR8 (x) =
8

105
.

1

1−2x
− 1

12
.

1

1+x
+

1

40
.
−9+7x

1 + x2
+

1

56
.
13+33x+18x2−6x3

1− x2 + 2x4

gTR9 (x) =
24

105
.

1

1−2x
+

1

10
.
2−x
1 + x2

+
1

14
.
−6−5x−4x2+6x3

1− x2 + 2x4

gTR2 (x) = 2x.gTR3 (x) gTR3 (x) = x.gTR4 (x) gTR4 (x) = x.gTR5 (x)

gTR5 (x) = x.gTR6 (x) gTR6 (x) = x.gTR7 (x)

Proof. k=0 is a single triangle in region 1. Thereafter a curve level k consists
of two level k−1 curves directed as follows

1 4

4
36

8

5

9
7

27

8 5
6

3
4 1

6

3

5 8
7

2

4

7
8

5

9

63

The total triangles in each region are the triangles from the two sub-curves
k−1 which fall in it. For example at the top region 9 has triangles from k−1
regions 7 and 6 of the left sub-curve and regions 6 and 7 of the right sub-curve,
total 2TR(k−1, 6) + 2TR(k−1, 7).

TR(k, 1) = 2TR(k−1, 2) + 2TR(k−1, 3)
TR(k, 2) = 2TR(k−1, 3)
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TR(k, 3) = TR(k−1, 4)
TR(k, 4) = TR(k−1, 5)
TR(k, 5) = TR(k−1, 6)
TR(k, 6) = TR(k−1, 7)
TR(k, 7) = TR(k−1, 8) + TR(k−1, 9)
TR(k, 8) = TR(k−1, 1) + TR(k−1, 4) + TR(k−1, 5) + TR(k−1, 8)
TR(k, 9) = 2TR(k−1, 6) + 2TR(k−1, 7)

The following diagram shows the relationships in the recurrences. Along the
bottom for example 3→ 4 is TR(k, 3) = TR(k−1, 4). The chain 2→ 3→ 4→
5→ 6→ 7 is seen. Copies of some of them are picked out too by 8 and 9. The
edges marked 2 are where there is a factor of 2.

1

2

3 4 5 6

78 92

2

2

2

2
initial

Repeated substitution or a little linear algebra give the recurrence (16) for
each. The generating functions follow from the recurrence and initial values.

There are 2k triangles in total. The regions repeated on each side count
twice,

2k = TR(k, 1) + TR(k, 2) + TR(k−1, 9)

+ 2

(
TR(k, 3) + TR(k, 4) + TR(k, 5)

+ TR(k, 6) + TR(k, 7) + TR(k, 8)

)
The counts for regions 3 to 7 are identical, just starting each one k later.

The count for region 2 is the same too, with a factor of 2. These are a spiralling
out by 45◦ each time.

The recurrence for TR(k, 2) starts with a single 2 and other initial values
all zeros. Regions 3 to 7 can begin from a single initial 1 similarly if zeros at
negative indices are allowed.

The roots of the characteristic polynomial of the recurrence and the gener-
ating functions are

tr1 = 2, tr2 = −1, tr3,4 = ±i,

tr5,6,7,8 = ±

√
1±
√
7i

2
=
± 1

2

√
2
√
2 + 1

±i 12
√
2
√
2− 1

=
± 0.978318...

±i 0.676096...

−1
2 +A190260

∣∣tr5,6,7,8∣∣ = 4
√
2 = 1.189207... A010767

The largest root is tr1 = 2 so the coe�cients of terms 1/(1−2x) in the
generating functions give the proportion of the total 2k triangles in each region
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as k→∞. Those generating functions which are an x factor of another are 1
2 its

coe�cient, so successive halvings for 7, 6, 5, etc.

2

1

12

4

8

16 8

24

8 16

8

4

21

1

105
density as k→∞

A full 105/105 triangle occurs when there are 15 surrounding curves all
contributing their fractions, 24 + 2×16 + 4×8 + 2×4 + 3×2 + 3×1 = 105. The
�rst such full triangle occurs in k=14. Per Duvall and Keesling this is the �rst
triangle region entirely part of the C curve fractal.

105/105

One use for these densities could be in computer graphics to approximate
the fractal by some grey-scale colouring at the limit of drawing resolution.

If a line segment is the side of a square pixel then that line contributes
to 6 surrounding pixels. If a line segment is a diagonal across a pixel then it
contributes to 8 surrounding pixels. With the curve endpoints horizontal the
two cases are k even or odd.

42

3

2424

66

242412

3
3

24

3 12

A full-weight side square is 4 full triangles so total 420. A full-weight diagonal
square is 2 full triangles so total 210.

In practice, the main shape of the curve remains. The grey tends to spread
out resulting in a lot of low weight locations. It can help to raise the contrast
of those to distinguish them from the background.

For �nite k, the triangles in square regions are the sum of the respective TR
parts.

QR1

QR2

QR4

QR3

QR4

QR3
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QR(k, 1) = TR(k, 1) + 2TR(k, 8) + TR(k, 9)

QR(k, 2) = TR(k, 2) + 2TR(k, 3) = 2QR(k−2, 3)
QR(k, 3) = TR(k, 4) + TR(k, 5) = QR(k−2, 4)
QR(k, 4) = TR(k, 6) + TR(k, 7)

The TR recurrence is the same for each region so the QR recurrence is the
same for each region. In QR the alternating ±1 term 1/(1+x) from the TR
generating functions cancels out so reducing to an order 7 recurrence.

QRk = 2QRk−1 −QRk−4 + 2QRk−5 − 2QRk−6 + 4QRk−7

starting

QR(k, 1) = 1, 2, 2, 4, 6, 12, 24, 48, 102, 204, 412, 824, 1642, . . .

QR(k, 2) = 0, 0, 0, 0, 0, 0, 2, 4, 8, 16, 30, 60, 116, . . .

QR(k, 3) = 0, 0, 0, 0, 1, 2, 4, 8, 15, 30, 58, 116, 233, . . .

QR(k, 4) = 0, 0, 1, 2, 4, 8, 15, 30, 58, 116, 233, 466, 936, . . .

Generating functions

gQR1 (x) =
1− 2x2 − x4

(1− 2x)(1 + x2)(1− x2 + 2x4)

=
2

5
.

1

1−2x
+

1

10
.
1+2x

1+x2
+

1

2
.

1+2x

1− x2 + 2x4

gQR2 (x) = 2x2 gQR3 (x)

gQR3 (x) = x2 gQR4 (x)

gQR4 (x) =
x2

(1− 2x)(1 + x2)(1− x2 + 2x4)

=
8

35
.

1

1−2x
− 1

20
.
1+2x

1+x2
− 1

28
.
5+10x−6x2−12x3

1− x2 + 2x4

7 Single and Double Segments

Per theorem 1, each segment in the C curve is traversed either once or twice.
The number of single and double traversed segments can be found from the

curve pairs and expansions used by Strichartz and Wang [5] for the Hausdor�
dimension of the fractal boundary. They show the Hausdor� dimension follows
from the largest root of

poly9 (x) = x9 − 3x8 + 3x7 − 3x6 + 2x5 + 4x4 − 8x3 + 8x2 − 16x+ 8

largest root r = 1.954776 . . . (17)

dimH =
log r

log
√
2

= 1.934007 . . . A191689

r is also the matrix eigenvalue calculated by Duvall and Keesling from full
segment con�gurations (see section 8).
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This polynomial occurs in various recurrence characteristic polynomials, and
in the generating functions with powers reversed

revpoly9 (x) = 1− 3x+ 3x2 − 3x3 + 2x4 + 4x5 − 8x6 + 8x7 − 16x8 + 8x9

= (1− rx)(1− r2x) . . .

To count double-visited segments it's convenient to start from new doubles
arising in the join of two k curves at right angles, which is how the curve repeats
to form level k+1.

......

new doubles DJ 9 = 9
when two k=9 curves overlap

The new doubles occur only in the new biggest curve part k+1 as this is all
which overlaps.

The �rst double-segment seen in k=4 of �gure 1 is where two k=3 curves
have joined at +90◦. There are no new doubles in k=5, only the replications of
those from k=4, since the k=4 join is just a unit square.

Theorem 14. The number of new double-traversed segments formed by two C
curves level k joined at +90◦ is

DJ k = 3DJ k−1 − 3DJ k−2 + 3DJ k−3 − 2DJ k−4 − 4DJ k−5 k≥9 (18)

+ 8DJ k−6 − 8DJ k−7 + 16DJ k−8 − 8DJ k−9

= 0, 0, 0, 1, 0, 1, 0, 3, 4, 9, 12, 39, 72, 141, 264, 547, 1036, . . .

Generating function gDJ (x) = x3
1− 3x+ 4x2 − 6x3 + 8x4 − 4x5

revpoly9 (x)

Proof. The overlap between two k curves at a given orientation and o�set is
determined by the overlaps of their two k−1 sub-curves. The following diagrams
are per Strichartz and Wang and show the possible relative positions of pairs of
curves. Expansions of the curves are shown dashed.

p1 → p3,p3, p7 p2 → p3, p3 p3 → p10
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p4 → p7,p7, p12,p12 p5 → p4, p10,p10 p6 → p11, p11

p7 → p1, p6, p9,p9 p8 → p5, p8 p9 → p2, p9

p10 → p8 p11 → p1 p12 → p12

Two curves at +90◦ for the theorem are pair p11. New sub-pairings are
formed by taking one sub-curve from the �rst curve and one sub-curve from
the second curve. There are four such combinations. For p11 only the middle
pairing is close enough to overlap. This is con�guration p1. So a p11 level k
becomes a p1 level k−1.

The con�gurations with separated segments all have them a unit distance
horizontally and/or vertically. For example in p2 the second segment is a unit
distance above.

Whether a sub-pair is too far away to overlap is determined by the convex
hull around each. The following diagram shows the 30 curve locations which
are close enough to have the hull overlapping with the hull of the middle curve.

middle curve

In p11 the hulls around the two end sub-parts are disjoint, as is the middle
from one curve and the end from the other.

Each con�guration is taken to include its mirror image. p3 is shown with the
upper segment on the right side and that con�guration includes upper segment
on the left. p1 expands to one p3 in the orientation shown and one of mirror
image.

For vertical segments the side of the expansion is mirrored horizontally too
and that means vertical segments reverse. For example p9 mirrors as
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p9 mirror image

The curve expands symmetrically so starting symmetrically the number of
occurrences of a con�guration and its mirror image are equal and can thus be
counted together.

The following diagram shows how the con�gurations expand. The transi-
tions marked �2� are where there are 2 copies of the new con�guration. Other
transitions are 1 copy.

p1 p2 p3

p4 p5p6

p7

p8

p9

p10p11

p12

2

2

2

2

2
2

2start

double
traversed

pair
con�guration
transitions

The following mutual recurrences are the number of occurrences of each
con�guration after k expansions. For example p1 k+1 = p7 k + p11 k because p7
and p11 both expand to p1 in the next level so the number of p1 is how many
p7 and p11 there were in the previous level.

p1 k+1 = p7 k + p11 k p7 k+1 = p1 k + 2p4 k

p2 k+1 = p9 k p8 k+1 = p8 k + p10 k

p3 k+1 = 2p1 k + 2p2 k p9 k+1 = 2p7 k + p9 k

p4 k+1 = p5 k p10 k+1 = p3 k + 2p5 k

p5 k+1 = p8 k p11 k+1 = 2p6 k

p6 k+1 = p7 k p12 k+1 = 2p4 k + p12 k

These equations can be written as a matrix multiply of a column vector
of con�guration counts. Each row is an equation and represents where the
con�guration came from. Each column c is where a con�guration c goes to.

Strichartz and Wang write the �expands to� in rows, so their M is for a
row vector of con�guration counts (ie. transposed). p12 is a dead-end and is
discarded in their calculation and is not needed for DJ k here either.

Repeated substitution or a little linear algebra gives recurrences for each
count, starting p11 0=1 and other initial counts all 0. The double-traversed
segments DJ k is p6. All counts except p12 have the same recurrence as DJ but
di�erent initial values. p12 is a cumulative

p12 k = 2

k−1∑
j=0

p4 j with p12 0 = 0
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= 0, 0, 0, 0, 0, 0, 0, 4, 8, 16, 40, 92, 176, 344, . . .

The generating function gDJ (x) follows from the recurrence. Or a little
polynomial linear algebra (I −Mx)−1.initial gives a column vector of all the
generating functions, whereM the matrix of the equations, I an identity matrix,
and x the polynomial variable.

p4 is the only con�guration where all four pairs of its expanded parts are
close enough to go to new con�gurations. All other con�gurations have some
non-overlapping sub-pairs. A non-overlap con�guration could be included in the
calculation if desired so that each con�guration would have exactly 4 outputs
and a total 2k.2k = 4k pairings at each stage.

Theorem 15. The number of double-traversed segments in C curve level k is

Dk = 2Dk−1 +DJ k−1 =

k−1∑
j=0

2k−1−jDJ j (19)

= 5Dk−1 − 9Dk−2 + 9Dk−3 − 8Dk−4 + 16Dk−6 k ≥ 10

− 24Dk−7 + 32Dk−8 − 40Dk−9 + 16Dk−10

= 0, 0, 0, 0, 1, 2, 5, 10, 23, 50, 109, 230, 499, 1070, . . .

Generating function

gD(x) =
x

1− 2x
gDJ (x) = 1

2

(
1

1− 2x
− gS (x)

)
The number of single-traversed segments in the C curve level k is

Sk = 2k − 2Dk

= same recurrence as DJ k from (18), but starting

1, 2, 4, 8, 14, 28, 54, 108, 210, 412, 806, 1588, 3098, 6052, . . .

Generating function

gS (x) =
1− x+ x2 − x3 − 2x4 + 6x5 − 4x6 + 12x7 − 8x8

revpoly9 (x)

Proof. DJ k is the number of new double-traversed segments between two level
k curves, hence the recurrence (19) and starting from D0=0 the sum. The �rst
gD(x) form is from the recurrence written as

gD(x) = x
(
2gD(x) + gDJ (x)

)
and the resulting factor x

1−2x is the usual way to take a sum of descending
powers of 2 for a generating function.

Dk counts each double-traversed segment location once, so the total segments
are Sk + 2Dk = 2k and from that Sk, gS (x), and the second gD(x) form.

Total S +D is the number of distinct segments traversed by the curve

Sk +Dk = 1, 2, 4, 8, 15, 30, 59, 118, 233, 462, 915, 1818, 3597, 7122, . . .
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distinct traversed segments

A double-traversed segment is formed from consecutive segments whenever
the curve has turn(n) ≡ 2 mod 4 for 180◦ reversal. The double in the middle
of k=4 is the �rst of these. Non-consecutive doubles occur when curve sections
further apart expand or rotate to touch. The �middle overlap� in k=6 is the
�rst of these.

Consecutive-segment doubles can be counted from the turn formula. They
are n with CountLowZeros(n) ≡ 3 mod 4 for 1 ≤ n < 2k so a 1-bit then zeros
in the low 4 bits or multiple of 4 bits, and any bit values above.

DC k =
∑

j=4,8,...≤k

2k−j = 1
15

(
2k − 2k mod 4

)
consecutive doubles (20)

where 2k mod 4 = 20, 21, 22, 23 as k ≡ 0 to 3 mod 4

= 0, 0, 0, 0, 1, 2, 4, 8, 17, 34, 68, 136, 273, 546, 1092, . . . A083593

= binary 1000 1000 1000 . . . of ; k−3 bits

A consecutive-segment double is part of DJ only when the endpoint of level
k at n = 2k is a 180◦ turn so that the last segment of the �rst curve overlaps
the �rst segment of the second curve. This is turn(2k) ≡ 2 mod 4 which is
k ≡ 3 mod 4. The DC sum (20) is equivalent to the D sum (19) applied just to
those DJ consecutives.

Consecutive-segment doubles go in a period-4 pattern since on expanding
the segment pointing towards the point rotates +45◦ and the segment pointing
away rotates −45◦, so they cycle p11 → p1 → p7 → p6 and coincide every 4
expansions.

−45◦ +45◦

consecutive
segments

Both ends of p6 make rotating pairs like this, as does the cross pair from
p7, but not by consecutive segments. The doubles which arise only by such
rotational development can be calculated from the ways p11, p1, p7 and p6
transition among themselves.

p1rotk+1 = p7rotk + p11rotk p7rotk+1 = p1rotk

p6rotk+1 = p7rotk p11rotk+1 = 2p6rotk

Starting from p11rot0 = 1 the number of p6 double-segments arising only
from rotations in a k join is

DJrotk =

 0 if k even

1
3

(
2
k−1
2 − (−1)

k−1
2
)

if k odd k odd A001045

= 0, 0, 0, 1, 0, 1, 0, 3, 0, 5, 0, 11, 0, 21, 0, 43, 0, 85, . . .

And the total double-segments solely from rotations in level k is
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Drotk =

k−1∑
j=0

2k−1−jDJrotj

= 1
10 2

k − 1
6 2
dk/2e

+ 1
15 [1, 2,−1,−2]

where [1,2,−1,−2] means the respective value as k ≡ 0 to 3 mod 4

= 0, 0, 0, 0, 1, 2, 5, 10, 23, 46, 97, 194, 399, 798, 1617, . . .

The largest power in Sk is root r=1.95477 . . . < 2 so Dk → 1
22
k as k → ∞.

The proportion of consecutive doubles is then

DC k

Dk
→

1
152

k

1
22
k

=
2

15
= 0.13333 . . . as k →∞ (21)

and similarly rotational doubles,

Drotk
Dk

→
3
302

k

1
22
k

=
3

15
=

1

5

Theorem 16. The number of double segments exceeds single segments

Dk > Sk i� k ≥ 48

If each double-traversed segment is counted as 2, for total 2Dk + Sk = 2k

segments then those which are part of a double exceed those which are singles,

2Dk > Sk i� k ≥ 30

Proof. Seeking Dk > Sk means 1
2 (2

k − Sk) > Sk so

Sk < 1
3 2

k (22)

The S recurrence, which is the DJ recurrence (18), applied down repeatedly
gives an identity

Sk = 16Sk−5 + 22Sk−6 − 2Sk−7 − 13Sk−8 − 26Sk−9 + 20Sk−10 (23)

+ 128Sk−11 + 184Sk−12 + 168Sk−13 + 8Sk−14 − 128Sk−15

Suppose (22) is true of k−5 through k−15 inclusive. Then the positive terms
of (23) are an upper bound for Sk

Sk < 16 1
32
k−5 + 22 1

32
k−6 + 20 1

32
k−10 + 128 1

32
k−11 (24)

+ 184 1
32
k−12 + 168 1

32
k−13 + 8 1

32
k−14

= 677
2048 2

k < 1
3 2

k

It can be veri�ed explicitly that (22) holds for k=48 through k=62, and does
not hold below. Then for k ≥ 63 use the bound (24) so (22) is true of all k ≥ 48.

Similarly for 2Dk > Sk which becomes Sk ≤ 1
22
k, �rst true at the 15 values

starting k = 30 and thereafter by substituting 1
22
k into (23).

Identity (23) was found by a computer search rolling the S recurrence down
until reaching a form where the positive terms are small enough for the powers
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2−n in (24) to sum < 1
3 .

Another approach is that di�erence Dk−Sk (or factor 3
2 for similar di�erence

1
32
k − Sk) is a linear recurrence and asking when >0 is a linear recurrence

positivity problem. In this case a straightforward one since there is a single
largest root 2. So write as coe�cients on powers of 2 and the other roots r
etc then some computer calculation can �nd when the power k will certainly
be enough to overcome possible negatives. Identity (23) has the attraction of
doing the equivalent just in rationals.

Single-traversed segments can count the boundary length of the triangles
form of the curve.

boundary

k segments

boundaryboundary

k triangles
k+1 segments

A triangle on a single-traversed segment has its long side on the boundary
since there is no triangle in the opposite direction. On expanding the curve one
level segments are on the short sides of those level k triangles. The single-tra-
versed segments of level k+1 are therefore triangle short sides on the boundary
in k. So the number of boundary sides of triangles

ThreeBk = Sk + Sk+1

= 3, 6, 12, 22, 42, 82, 162, 318, 622, 1218, . . .

Figure 10: k=4 triangle

sides on the boundary

ThreeB4 = 42

ThreeNonB4 = 6

This boundary length relates the growth rk in S to the Hausdor� dimension
of the fractal boundary. The triangle short sides could be taken as their geo-
metric length 1

2

√
2 if preferred, so Sk + 1

2

√
2Sk+1. That still grows as power

rk.

Non-boundary sides of the triangles can be counted similarly by double-
traversed segments. Each double segment is 2 non-boundary triangle long sides
and at the next level each double segment is 2 non-boundary short sides.

ThreeNonBk = 2Dk + 2Dk+1

= 0, 0, 0, 2, 6, 14, 30, 66, 146, 318, . . .

In k=4 �gure 10 above there are 2 triangles with long sides meeting and 2
places with 2 short sides meeting for ThreeNonB6 = 6.

Total boundary and non-boundary are the 3 sides each of 2k triangles

ThreeBk + ThreeNonBk = 3.2k

A given triangle can have 1, 2 or 3 boundary or enclosed sides. See the
second part of section 8 for counts of triangles of each type.
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7.1 Outward Squares

The counts of single and double segments give the number of unit squares with
outward facing segments, meaning segments anti-clockwise around a unit square
so the square is on their left.

Unit square with outward

expanding segments

In such a square two of the corners are odd, meaning location x+iy has x+y
odd, and so an odd n along the curve. As from section 1.2, always have turn(n)
=1 left at odd n so the two segments at the odd corners are consecutive in the
curve.

even

odd

odd, turn(odd) = +1 = right

even

So except for the single segment k=0, a unit square has either 2 or 4 outward
segments. The pairs of consecutive segments have expanded from the previous
level as segments across the diagonal. So the 2 or 4 side segments correspond
to a single or double traversed segment in the previous level.

QO2 k =

{
0 if k=0

Sk−1 if k ≥ 1
squares with outward segments

QO4 k =

{
0 if k=0

Dk−1 if k ≥ 1

k=8

distinct unit squares
on left of segments

QO8 = S7 +D7 = 118

There are a few outward unit squares on the left of the curve at the start
and end of curve parts, and otherwise they are inside enclosed areas.

The right boundary segments all go forward along the curve so there are
none on the right boundary. The enclosed areas are the same curling around so
the boundary is their right.

Some of the QO4 unit squares are made by 4 consecutive segments taking
3 consecutive left turns around the square. These are the runs of 3 left turns
from section 1.2. They are also the expansion of a consecutive double-traversed
segment from DC above. The proportion of 4 side consecutive squares within
QO4 is thus the same as DC/D → 2

15 from (21).
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8 Triangle Con�gurations

Duvall and Keesling[2] show that the contents of a given triangular area adjacent
to a line segment on repeated expansion are determined by the contents of
itself and 14 neighbours, for total 15 triangles. The following diagram is their
numbering.

1

2

34

5

6

7 8

9

10 11

12

13

1415

This set of triangles arises from the curve extents (convex hull). Repeatedly
expanding each of the triangles eventually puts sub-triangles into region 1. Any
triangle further away than these 15 does not expand into region 1.

A given con�guration has each triangle either �lled or un�lled. On expansion
each triangle divides in half and its contents spread out as follows.

1 1

2 2

3

3

4

4

6 6

5 5

8

8

7

7

9 9

11

11

10

10

12 12

13 13

14

14

15

15

The original location 1 is the two dashed triangles shown. The expansion
makes the left contain whatever was in the original 8, and has a set of other
half-triangles surrounding. The right dashed triangle contains whatever was in
the original 10, and has a set of other half-triangles surrounding.

It can be noted there are some blank half-triangles in the expansion. They
would be from other triangles further away. The expansion of the 15 triangles
given is enough to cover the similar 15 half triangles at and around the left and
right dashed locations, nothing further away is needed.

The new left and right con�gurations are

8

1

98

10

9

1 10

15

3 2

5

4

75

left

10

1

1211

14

13

2 15

3

8 1

9

8

109

right
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This means that an original arrangement of 15 triangles each �lled or un�lled
becomes these two new arrangements with �lled or un�lled copied from the
respective numbered locations.

Note that this expansion follows the location, not the content. This is why
neither left nor right have original triangle 1 contents in the middle. The content
of 1 has spread out of that location in the expansion, that location instead
receiving the content from 8 and 10.

The complete curve is represented by an initial set of 15 con�gurations which
are a single �lled triangle in each possible position. The curve begins with a
single triangle which is a single line segment and these arrangements are all the
locations close enough to have it in one of the 15 parts.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

Figure 11: initial con�gurations

By some computer calculation, 753 distinct non-empty con�gurations occur
from repeatedly expanding these. Duvall and Keesling reduce this to a 734×734
matrix. They note that if all combinations of �lled and un�lled occurred then
there would be 215−1 = 32767 con�gurations, but only 753 actually occur and
at k=19 all have been seen.

Curve properties limit possible con�gurations. A simple condition is that
connected curve means there must be the same number of segments entering as
leaving each point, other than curve start and end. Demanding this of the left
and right points (the horizontal ends of triangle 1) is 2518 con�gurations.

count(1, 3, 5, 7) = count(2, 4, 6, 8) left point (25)

count(2, 10, 12, 14) = count(1, 11, 13, 15) right point (26)

All turns are the same at a given location, as from page 6. So each entering
segment present or absent must have the same present or absent as its turned
leaving. Turn is left at odd locations (x+iy with x+y odd), so one of the left or
right con�guration points must be turn left. The other point can be any turn,
including another left. Demanding this or curve start/end is the 753 non-empty
con�gurations which occur.

These conditions say nothing about triangle 9, allowing it to be �lled or
un�lled. The con�gurations which occur have both 9 �lled and 9 un�lled forms,
other than the single segments and the 2-segment curve start and ends.

Some con�gurations are mirror images of another. Since the curve is sym-
metric the number of occurrences of a con�guration and its mirror image are
equal. If mirror images are combined then 393 non-empty con�gurations occur.

When a triangle expands its two half triangles touch at their ends. Initial
con�gurations 1 and 2 in �gure 11 have no triangle at either end and therefore
do not occur as an expansion, only as initial con�gurations.
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Initial con�gurations 3 to 8 and 10 to 15 have one end of their triangle with
no other touching triangle. This means they are at the start or end of the curve
and so occur exactly 1 each in all curve levels. (The remaining single 9 occurs
in many places.)

Counts of how many times each con�guration occurs can be written as mu-
tual recurrences. A given con�guration in curve k+1 arises as expansion of some
con�guration from k, possibly several di�erent con�gurations there. With some
computer linear algebra these mutual recurrences can be turned into individual
recurrences for count of a given con�guration. The characteristic polynomials
of these recurrences have poly9 (x) from section 7 and further polynomials

poly8alt(x) = x8 − 2x6 − x4 + 2x2 − 4 =
(
(x2− 1

2 )
2 − 5

4

)
2 − 5

largest roots ±
√

1
2 +

√
5
4 +
√
5 = ±1.538538 . . .

poly8 (x) = x8 − x7 + x6 − 2x5 + x4 − x3 + x2 − 2

largest root 1.320638 . . .

poly11 (x)=x11−2x10+3x9−5x8+6x7−9x6+10x5−14x4+12x3−14x2+8x−8
largest root 1.642339 . . .

poly14 (x) = x14 − 2x10 − 5x6 − 6x4 − 4x2 − 8

largest roots ±1.438110

poly18 (x) = x18−5x17+12x16−21x15+28x14−25x13+8x12+19x11−53x10

+ 90x9−112x8+118x7−108x6+88x5−48x4+16x3+8x2−32x+32

largest root r18 = 1.848349 . . . (27)

Triangle 1 fully enclosed is the con�guration with all 15 triangles �lled. It
has �lled triangles on all its sides and in all directions at its corners. The number
of such fully enclosed triangles in curve k is

Enck = 0, ..., 0 (14 zeros), 8, 44, 172, 554, 1656, 4714, . . .

given by a 94-term recurrence with characteristic polynomial

EncPoly(x) = (x+1) (x−1)2 (x−2) (x2+1) (x4+1)3 (x4−2)2

.poly8 (x) .poly8alt(x) .poly9 (x) .poly11 (x) .poly14 (x) .poly18 (x)

Per Duvall and Keesling, the �rst fully enclosed triangles occur in k=14 and
there are Enc14 = 8 of them there. These are 4 adjacent triangles, repeated in
mirror image at the other end of the curve.
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startend

centreline

. . .

k=14
fully enclosed triangles,
same in mirror image

at left of curve,
Enc14 = 8

Each fully enclosed triangle expands to two fully enclosed triangles in the
next level, hence term x−2 in EncPoly(x) which is power 2k. From its generating
function the coe�cient on that power is 1.

Enck = 2k −NotEnck

No other con�guration has x−2 in its characteristic polynomial so Enck is
the only one growing as 2k.

There are 2k triangles total in the curve so the remaining NotEnck is triangles
not fully enclosed but rather with one or more side or corner on the boundary.
This is what Duvall and Keesling use to establish the Hausdor� dimension of
the fractal boundary. The largest root in NotEnc is the largest of Enc other
than 2, and this is r=1.954... from poly9 (x).

Apart from the 1-segment initial con�gurations noted above and 4 further
2-segment con�gurations at curve start or end, all con�gurations have a count
which is a linear recurrence of length 88 or more. The characteristic polynomials
all have the six poly8 through poly18 then various further terms up to degree
4. They all have poly9 so grow as power of its root r.

Another form of enclosure can be made by considering how many sides of
a given triangle have neighbours. The con�gurations can count triangles with
1, 2 or 3 sides enclosed by taking triangle 1 �lled and counting how many of
its neighbouring 2, 8, 10 are �lled. The number of triangles with 0 to 3 such
neighbours are

Three0 k = 1, 2, 4, 6, 10, 18, 36, 68, 126, 234, 448, 844, . . .

Three1 k = 0, 0, 0, 2, 6, 14, 26, 54, 114, 238, 476, 960, . . .

Three2 k = 0, 0, 0, 0, 0, 0, 2, 6, 16, 40, 98, 234, . . .

Three3 k = 0, ...(10 zeros), 2, 10, 36, 120, 350, . . .

Three0 ,1 ,2 are recurrences of 64 terms with the same characteristic polyno-
mial. Three3 has an extra factor x−2.

PolyThree0 (x) = PolyThree1 (x) = PolyThree2 (x)

= (x2+1) .(x4+1)3 .(x4−2) .poly8alt(x) .poly9 (x) .poly11 (x) .poly18 (x)
PolyThree3 (x) = (x−2) .PolyThree0 (x)

For k = 0, 1, 2 all triangles have no neighbours on their sides. For k=3 the
triangles in the middle have a side in common.
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startend

k=3, triangles with 1 neighbour

Three1 3 = 2

The �rst 3-side enclosed triangle is in k=10 where Three3 10 = 2 is a single
triangle, repeated in mirror image at the other end of the curve.

startend

centreline

. . .

k=10, triangle with 3 neighbours

and mirror image so Three3 10 = 2

The total of all three types is the 2k curve triangles

Three0 k + Three1 k + Three2 k + Three3 k = 2k

ThreeB and ThreeNonB from section 7 are the total number of boundary
and non-boundary sides. Three0 ,1 ,2 ,3 have respectively 0,1,2,3 non-boundary
sides, or 3,2,1,0 boundary sides. On summing those multiples the recurrences or
generating functions of Three0 ,1 ,2 ,3 variously cancel to leave just poly9 which
is in ThreeB and ThreeNonB .

ThreeBk = 3Three0 k + 2Three1 k + Three2 k

ThreeNonBk = Three1 k + 2Three2 k + 3Three3 k

Single and double traversed segments from theorem 15 can be counted by
con�gurations too. Single-traversed segments are locations 1 �lled and 2 un�lled.
147 such con�gurations occur (or 78 with mirror images combined). The total
count of all these is Sk. The opposite 2 �lled and 1 un�lled is the same result.

Double-traversed segments are locations with both 1 and 2 �lled. 224 such
con�gurations occur (or 116 with mirror images combined). There is such a loca-
tion on both sides of a double segment so the total count of these con�gurations
is 2Dk.

Con�guration counts cover all locations with at least one �lled triangle so
single and double segments can also be counted by any back-to-back pair of
triangles in the con�guration, for example 3,4. This has the e�ect of counting
locations which are beside a single or double segment rather than on it. Mirror
image con�gurations are not equivalent in this case.

As noted above the counts for each individual con�guration are recurrences
of 88 terms or more. But cancellations leave only poly9 (and 2k for the doubles)
in the total.

As an example of a con�guration in the total, 1,2,4,7 �lled is the �rst double
segment at the top of k=4 (as from �gure 1), here turned +90◦ so the double
is 1,2.

�rst double segment con�guration

(one of 224 such double
con�gurations altogether)
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The count of this con�guration in curve level k grows as rk,

Teek = 0, 0, 0, 0, 1, 2, 4, 6, 13, 22, 40, 64, 119, 205, . . . (28)

TeePoly(x) = same as EncPoly(x) but change (x−2) to a second (x+1)

8.1 Visited Points and Inward Squares

The C curve visits points up to 4 times. The number of points which are visited
1 through 4 times can be counted from the con�gurations. Take triangle 1
�lled and then count how many con�gurations have 11, 13, 15 �lled. This is the
number of segments leaving the point at the right hand end of triangle 1.

1

11

13

15

Triangle 1 �lled
and some of 11, 13, 15

The end of the curve is only a destination, so is not included in these counts
of segment starts. It is a further 1-visited point.

When a point is visited v=2 or more times, triangle 1 is any of the segments
leaving the point, so the total counts of such con�gurations are v times the
number of v-visited points.

The number of points visited 1 to 4 times are then

V1 k = 2, 3, 5, 9, 15, 27, 49, 93, 171, 321, 601, 1137, . . .

V2 k = 0, 0, 0, 0, 1, 3, 8, 18, 43, 93, 200, 414, . . .

V3 k = 0...(9 zeros), 2, 8, 28, 84, 238, 596, . . .

V4 k = 0...(12 zeros), 1, 5, 24, 78, 232, 626, 1648, . . .

The �rst double-visited point V2 4 = 1 is the top middle in k=4 (�gure 1).
Multiplied by the number of visits the total is the 2k+1 curve points.

V1 k + 2V2 k + 3V3 k + 4V4 k = 2k + 1

The visit counts are recurrences of 35, 18, 35 and 36 terms respectively with
characteristic polynomials

PolyV1 (x) = PolyV3 (x) = poly8alt(x) .poly9 (x) .poly18 (x)

PolyV2 (x) = (x−1) .poly8alt(x) .poly9 (x)
PolyV4 (x) = (x−2) .poly8alt(x) .poly9 (x) .poly18 (x)

Factor (x−2) in PolyV4 (x) is power 2k and all the others grow only as the
poly9 power rk. From its generating function, the 2k term in V4 is

V4 k = 1
4 2

k + · · ·

V1 and V3 have the same poly9 term in their generating function so although
V3 starts slowly their ratio has limit
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V1 k
V3 k

→ 1 as k→∞

This is approached from above since V1 k >V3 k always. This can be seen
by considering their di�erence

V1sub3 k = V1 k −V3 k

= 2, 3, 5, 9, 15, 27, 49, 93, 171, 319, 593, 1109, . . .

PolyV1sub3 (x) = poly18 (x) (29)

This is a recurrence with characteristic polynomial poly18 (x) since their
other parts cancel. Showing it >0 is a linear recurrence positivity problem. In
this case an easy one since there is a single largest root r18 (27). Writing V1sub3
in powers of the roots of poly18 and suitable factors f ,

V1sub3 k = f1 r
k
1 + · · ·+ f17 r

k
17 + f18 r

k
18

V1sub3 k
r k18

= f1

( r1
r18

)
k + · · ·+ f17

(r17
r18

)
k + f18

f18 = 1.319372 . . .

Terms other than f18 may be negative but are at worst their magnitude neg-
ative and each |rj/r18| < 1 so they decrease with k. Some computer calculation
shows those total magnitudes < f18 for k ≥ 1.

The limit for V2 is smaller than V1 and V3 . Writing its poly9 generating
function part in terms of shifts of the corresponding part of V1 or V3 (which
are the same) gives a ratio limit, using the poly9 root r (17),

V2 k
V1 k

→ V2 k
V3 k

→ − 34
15 +

1
12 r−

1
10 r

2+ 43
120 r

3+ 1
4 r

4− 31
240 r

5+ 19
80 r

6− 3
16 r

7+ 3
80 r

8

= 0.950615 . . .

The total of all visited point types is the number of distinct points in the
curve. This is a 37 term recurrence

Vk = V1 k +V2 k +V3 k +V4 k

= 2, 3, 5, 9, 16, 30, 57, 111, 214, 416, 809, 1579, . . .

PolyV (x) = (x−1)(x−2) .poly8alt(x) .poly9 (x) .poly18 (x)

k=8

distinct visited points

V8 = 214

The various visited point counts can also be calculated from unit squares
with inward facing segments, meaning segments going clockwise around a unit
square so the square is on their right and so they will expand into it.
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unit square sides
expanding inward

The number of unit squares with 1 to 4 inward sides follow from the con�g-
urations

QI1 k = 1, 2, 4, 6, 12, 22, 44, 78, 150, 280, 536, 998, . . .

QI2 k = 0, 0, 0, 1, 2, 5, 10, 25, 50, 107, 214, 439, . . .

QI3 k = 0, ... (8 zeros), 2, 6, 20, 56, 154, 358, 848, . . .

QI4 k = 0... (11 zeros), 1, 4, 19, 54, 154, 394, 1022, 2492, . . .

These are the increments of the respective V1 etc. When the curve expands,
its existing visited points keep the same visit count and the curve expands into
adjacent unit squares to visit a new point in the middle of each square. The
number of visits to that point is the number of sides of the square so

V1 k+1 = V1 k +QI1 k etc (30)

The �rst 4-inward square occurs in k=11 as single QI4 11=1 and this becomes
the �rst 4-visited point V4 12=1. This is located on the centreline between the
curve endpoints. The curve is symmetric so it must be on the centreline as
anywhere else would have another in mirror image. The following diagram has
the curve start to end horizontal which means the unit square in k=11 is at 45◦.

=⇒

startend startend

centreline centreline

unit
square

QI4 11=1

4-visited
point

V4 12=1

�rst QI4 inward unit square becoming �rst V4 visited point

Each segment of the curve has a unit square on its right side so the squares
multiplied by number of sides is the 2k total curve segments.

QI1 k + 2QI2 k + 3QI3 k + 4QI4 k = 2k

Total squares (without multiplying) is the number of distinct unit squares
on the right of the curve.

QI k = QI1 k +QI2 k +QI3 k +QI4 k

= 1, 2, 4, 7, 14, 27, 54, 103, 202, 393, 770, 1494, . . .

The curve curls around over itself so these right sides can be on either left
or right curve boundary or inside an enclosed area.
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k=8

unit squares on
right of segments

QI 8 = 202

QI2 squares occur in 2 types. The 2 sides can be adjacent around the square
or can be opposite sides of the square.

QI2a
adjacent

QI2o
opposite

The number of squares of each type are 17-term recurrences the same as QI2
but di�erent initial values.

QI2ok = 0, 0, 0, 1, 2, 5, 10, 23, 46, 97, 190, 383, . . .

QI2ok = 0, 0, 0, 0, 0, 0, 0, 2, 4, 10, 24, 56, . . .

The �rst opposites QI2o7 = 2 are the squares at each end of part k=7 from
�gure 9 (which on the next expansion touch to enclose new area).

Both counts grow as the root r. Writing the poly9 (x) parts of their gener-
ating functions in terms of the corresponding part of QI2 gives limits for their
proportions as various terms in r. The proportion is just under 6 times more
adjacent than opposite.

QI2ak
QI2 k

→

3061140− 624884r + 1337706r2 − 506076r3 − 411025r4

+801257r5 − 675875r6 + 454961r7 − 139808r8

2.2.31.20177
(31)

= fQI2a = 0.856584...

QI2ok
QI2 k

→ 1− fQI2a = 0.143415...

QI2ak
QI2ok

→ fQI2a

1− fQI2a
= 5.972726... as k→∞

The QI2a,QI2o squares expand to 2-visit points with left turns. They have
either opposing or adjacent segments. Subsequent expansions of those points are
then likewise straight, right or reverse turns with opposing or adjacent segments.

V2leftA V2strA V2rightA V2revA
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V2leftO V2strO V2rightO V2revO

Each expansion opens the turn up by 90◦ decrease, in the manner of turn
�gure 4. These expansions cycle around to reach the original left again after 4
levels.

V2leftA V2strA V2rightA V2revA

V2leftO V2strO V2rightO V2revO

So recurrences

V2leftAk = QI2ak +V2leftAk−4 (32)

= 0, 0, 0, 0, 1, 2, 5, 10, 24, 48, 102, 200, 407, 794, 1591, . . .

V2leftOk = QI2ok +V2leftOk−4

= 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 10, 24, 58, 112, 238, . . .

The other types arise only from the respective turn expansion since they are
turn ≡ 0,−1,−2 mod 4 so not an odd location which is a new expansion point.

V2strAk = V2leftAk−1 V2strOk = V2leftOk−1

V2rightAk = V2leftAk−2 V2rightOk = V2leftOk−2

V2revAk = V2leftAk−3 V2revOk = V2leftOk−3

The total is all 2-visit points

V2 k = V2leftA+V2strA+V2rightA+V2revA

+V2leftO +V2strO +V2rightO +V2revO

Con�gurations can count V2leftA by suitable triangle combination, for ex-
ample around the left point 1,2,4,7 present and 3,5,6,8 absent. Similarly the
other adjacent V2 types.

Con�gurations can count sum V2leftO + V2rightO , but not the two sepa-
rately since the con�gurations do not distinguish segments consecutive in the
curve or not. That information could be added, for more con�guration types,
but it's enough to go from QI2o and how the points expand. Similarly sum
V2strO +V2revO together.

Working through generating functions shows limits for proportions of each
pair V2leftA/V2leftO etc are the same as the QI2a/QI2o at (31).

8.2 Other Squares

Unit squares with a segment of either direction on their sides can be counted
by con�gurations.
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1

2

7 8 10 11

extra

9

The extra segment above 9 is not in the con�gurations, but is determined
by the segments which are. Per outward squares in section 7.1, the curve turns
mean that for k≥1 there are 0, 2 or 4 outward segments around a square.
So count(2, 7, 11) odd or even determines the extra segment present or absent
respectively.

The count of sides is then

Qsides(conf ) = (1 or 2) + (7 or 8) + (10 or 11) + (9 or odd 2, 7, 11)

for k ≥ 1

The number of unit squares with 1 to 4 segment sides is then

Q1 k = 2, 2, 4, 6, 10, 16, 32, 54, 98, 166, 312, 552, . . .

Q2 k = 0, 1, 2, 5, 10, 17, 30, 60, 116, 222, 410, 789, . . .

Q3 k = 0, 0, 0, 0, 0, 2, 6, 14, 32, 74, 166, 350, . . .

Q4 k = 0, 0, 0, 0, 0, 1, 2, 5, 10, 23, 50, 114, . . .

For k=0 there is a single segment and two 1-sided squares (each side of
it). Thereafter Q1 , 2 , 3 are recurrences of 80 terms and Q4 of 81 terms, with
characteristic polynomials

PolyQ1 (x) = PolyQ2 (x) = PolyQ3 (x)

= (x−1) (x+1) (x2+1) (x4−2) (x4+1)3 (33)

.poly8alt(x) .poly9 (x) .poly11 (x) .poly14 (x) .poly18 (x)

PolyQ4 (x) = (x−2) .PolyQ1 (x)

For k even the counts are even since the centreline is segments and the
squares on each side of it are in mirror image. For k odd the centreline is
squares and the symmetry means those squares cannot be 1 or 3 sides. So Q1
and Q3 always even, and from the recurrences Q2 and Q4 parity in a repeating
pattern after initial k = 1, 5.

Q2 k ≡ Q4 k+4 mod 2

Q4 k
mod 2

≡


0 if k=1

1 if k=5

[0, 1, 0, 0, 0, 0, 0, 1] otherwise k>5 and o�set A173858

Number of squares multiplied by number of sides is the segments traversed
by the curve, but counted twice since there is a square on each side.

Q1 k + 2Q2 k + 3Q3 k + 4Q4 k = 2(Sk +Dk)

Total without weighting is the number of unit squares beside the curve.
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Qk = Q1 k +Q2 k +Q3 k +Q4 k

= 2, 3, 6, 11, 20, 36, 70, 133, 256, 485, 938, 1805, . . .

k=8

unit squares
beside the curve

Q8 = 256

Some areas enclosed by the curve are Q4 unit squares and some are bigger
areas made of multiple squares. The �rst bigger area is the 2×2 square in k=6
(�gure 2). The number of non-unit-square areas can be calculated using Euler's
formula for a connected planar graph

vertices + inside regions − edges = 1 (34)

Vertices are the curve points Vk. Edges are the line segments between them
Sk+Dk. Regions are Q4 k squares and NonQk non-unit-square areas. So (34)
gives

NonQk = Sk +Dk − Vk −Q4 k + 1 non unit square areas

= 0, 0, 0, 0, 0, 0, 1, 3, 10, 24, 57, 126, . . .

The 2k parts ofD,V,Q4 cancel leaving NonQ the same recurrence as Q1 ,2 ,3
at (33) but di�erent initial values.

The total number of enclosed regions of both kinds is

Acountk = Q4 k +NonQk = 0, 0, 0, 0, 0, 1, 3, 8, 20, 47, 107, 240, . . .

The total area of these is A from section 5. So the mean size of an enclosed
area (either unit square or not) has limit

Ak
Acountk

→ 4+ 3
4 mean enclosed area size (35)

NonQ grows only as rk so (35) is simply the coe�cients of 2k in A and Q4 ,
being 19

16/
1
4 . The Q4 contribution to the area is only its 1

42
k, count, leaving area

15
162

k from NonQ . So although the number of NonQ areas grows slowly, their
sizes successively increase so as to contribute the majority of A.

A yet further variation on squares can be made by considering those which
have only double-traversed segments as sides (no singles).

In the con�gurations this is asking that 1=2, 7=8, 10=11, 9=extra. As from
section 7.1, the outward facing segments are always even so there can be only 2
or 4 sided double squares. The 2-sided double squares have adjacent sides since
2 outward segments must be consecutive.
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1

2

7 8
2 sides both double-traversed

always adjacent

QD2 k = 0... (9 zeros), 2, 4, 10, 24, 58, 112, 240, 484,

QD4 k = 0... (13 zeros), 2, 10, 40, 122, 350, 936, 2480, . . .

QD2 is a recurrence of 27 terms with the following characteristic polynomi-
als. QD4 is a recurrence with the same characteristic polynomial as Q4 but
di�erent initial values.

PolyQD2 (x) = (x2+1) (x4+1) (x4−2) . poly8alt(x) . poly9 (x)
PolyQD4 (x) = PolyQ4 (x)

The �rst 4-sided double squares QD4 13=2 occur together on the curve cen-
treline.

startend

centreline

k=13
�rst unit squares with

4 double-traversed sides

QD4 13 = 2

8.3 Triangle Polygon Pieces

Triangles beside curve segments touch at their sides to form polygon pieces.
The number of such pieces can be counted.

Lemma 1. The polygon pieces of the C curve do not contain fully enclosed
holes. A fully enclosed hole means a hole which cannot be reached by passing
end-to-end through un�lled triangles.

Proof. As from the grid of theorem 1, an in�nite set of C curves traverses every
segment exactly twice. If there was a hole inside a fully enclosed polygon in
any curve then it could not be reached from the outside by another to �ll the
plane.

The smallest example of a fully enclosed hole not occurring would be triangle
1 un�lled and everything around it �lled. Its left point has 3 segments entering
but 4 leaving, and vice versa at the right, which is contrary to (25),(26).

1

empty triangle 1

fully enclosed

does not occur
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At a polygon vertex consider the turn there as angle + or − to go to the next
side anti-clockwise around. For any polygon the net turn all the way around is
360◦.

+90◦

+90◦

+135◦

−90◦

+135◦

polygon piece
net turn
+360◦

By lemma 1 there are no holes inside a polygon piece so all triangle boundary
sides (ThreeB) are on the outside of polygon pieces.

At a triangle end vertex there are one or more polygon pieces. The total
turns of the pieces there are reduced by each triangle. No triangles would be
each piece reversing + 1

2 of 360◦, then less 1
8 for each triangle. It doesn't matter

how the triangles are distributed among the pieces, just the total.
At a triangle top vertex, in a unit square, similarly each piece reversing + 1

2
of 360◦ but net turn reduced 1

4 for each triangle, which is each side of the square.

Trigonsk =
∑

triangle ends

(
1
2pieces−

1
8 triangles

)
+
∑

squares

(
1
2pieces−

1
4sides

)
Each polygon vertex has one triangle boundary side anti-clockwise around,

so total number of pieces at points is ThreeB . Each triangle end is a V1 ,2 ,3
visited point and there are 2 triangles for each visit, except only 1 at curve start
and end. Each triangle top is the side of a QI1 ,2 ,3 inward square. So

Trigonsk = 1
2ThreeBk − 1

8 .2
(
V1 k + 2V2 k + 3V3 k − 1

)
− 1

4

(
QI1 k + 2QI2 k + 3QI3 k − 1

)
= 1

2ThreeBk − 1
4

(
V1 k+1 + 2V2 k+1 + 3V3 k+1 − 1

)
(36)

= 1, 2, 4, 7, 13, 25, 49, 95, 183, 353, 685, 1320, . . .

TrigonsPoly(x) = poly8alt(x) .poly9 (x) .poly18 (x)

(36) uses V1 k+1 = V1 k +QI1 k etc increment as from (30).

The same sort of calculation can be made from the full triangle con�gurations
by net polygon piece turns at the left point and top point of triangle 1. A given
location in the curve has con�gurations with triangle 1 as any of the 4 rotated
positions around it. Duplicates can be eliminated by requiring triangle 1 �lled
and divide by the number of �lled triangles which could be 1 by rotation. For
the left end this means the �lled among 1,3,5,7, and for the top point 1,8,9,10.

Another approach is to apply Euler's formula (34). Take each triangle as
a graph vertex, total 2k. Edges are between triangles with a side in common,
which is total 1

2ThreeNonBk. Each polygon piece is a connected part of this
graph. Di�erent polygon pieces are not connected.

Inside regions of the graph are around a V4 enclosed point at the end of
a triangle or around a QI4 inward square around the top of a triangle. By
lemma 1 these are the only inside regions of the graph.
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inside region
around V4

inside region
around QI4

example polygon piece

Summing over vertices plus inside regions less edges, for aggregate (34), is 1
for each connected polygon piece so

Trigonsk = 2k +V4 k +QI4 k − 1
2ThreeNonBk (37)

= 2k +V4 k+1 − 1
2ThreeNonBk

V4 k+1 = V4 k + QI4 k is again from (30), giving all regions. The 2k term
here and the 2k parts of V4 and ThreeNonB cancel to leave (36).

The polygon pieces touch at various corners and there are empty �unpoly-
gons� between them.

Untrigons

The number of these unpolygons can be counted using Euler's formula again.
Take vertices as the non-enclosed triangle vertices, which is V1 ,2 ,3 k+1. Edges
are the ThreeB sides between such points. Regions are then polygon pieces plus
unpolygon pieces.

Trigonsk +Untrigonsk = ThreeBk −
(
V1 k+1 +V2 k+1 +V3 k+1

)
+ 1

Untrigonsk = 1
2ThreeBk − 1

4

(
3V1 k+1 + 2V2 k+1 +V3 k+1 − 3

)
(38)

= 0, 0, 0, 0, 0, 1, 3, 10, 24, 57, 131, 295, . . .

Or Euler's formula again but for unpolygons directly. Take vertices as the
points of each triangle, edges as their sides, and regions as all triangles and the
unpolygons in between. There are 2k triangle regions and the remaining are
unpolygons. The 2k terms in this form cancel (similar to (37)) to leave (38).

Untrigonsk = ThreeBk +
1
2ThreeNonBk − Vk −QI k − 2k − 1

Untrigons has the same recurrence as Trigons. Di�erence from (36),(38) is

Trigonsk −Untrigonsk = 1
2

(
V1sub3 k+1 − 1

)
= 1, 2, 4, 7, 13, 24, 46, 85, 159, 296, 554, 1025, . . .

This di�erence grows as r18 as from (29), which is slower than r of poly9 .
So ratio Untrigons to Trigons approaches 1, and from below since V1sub3 ≥ 2.

Untrigonsk
Trigonsk

→ 1 as k→∞, approached from below
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At a given curve vertex there can be 1, 2 or 3 polygon pieces touching. The
1,2,3 visits and their turn determine how many pieces touch. V2leftA etc are
from page 52. V1left and V3left etc are likewise turns and 1 or 3 visits.

V1left
2 touch

V1str ,
2 touch

V1right,
1 touch

V1rev ,
1 touch

V2leftA
3 touch

V2strA
3 touch

V2rightA
1 touch

V2revA
1 touch

V2leftO
2 touch

V2strO
2 touch

V2rightO
2 touch

V2revO
2 touch

V3left
2 touch

V3str
2 touch

V3right
1 touch

V3rev
1 touch

The number of touches are the same in V1 and V3 with respective turns,
since the two are �ll/un�ll inverses.

Similar to (32), each turn type begins as left from the respective inward
square and opens out successively.

V1leftk = QI1 k +V1leftk−4

= 0, 1, 2, 4, 6, 13, 24, 48, 84, 163, 304, 584, 1082, . . .

V3leftk = QI3 k +V3leftk−4

= 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 20, 56, 156, . . .

V1strk = V1leftk−1 V3strk = V3leftk−1

V1rightk = V1leftk−2 V3rightk = V3leftk−2

V1revk = V1leftk−3 V3revk = V3leftk−3

The totals are, with +2 for start and end of the curve which have no turn
so not included in the turn types,

V1 k = V1leftk +V1strk +V1rightk +V1revk + 2

V3 k = V3leftk +V3strk +V3rightk +V3revk

V2leftO etc opposing points all have the same touches so can be taken to-
gether. They are cumulative inward opposite squares,

V2ok = QI2ok +V2ok−1

= 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 16, 40, 96, 204, . . .

Curve start and end are again not in these vertex with turn counts, but have
just 1 polygon piece each. The number of points touched by 1, 2 or 3 polygon
pieces are then
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VTouch1 k = V1rightk+V1revk +V2rightAk+V2revAk

+V3rightk+V3revk + 2

= 2, 2, 2, 3, 5, 8, 13, 24, 46, 89, . . .

VTouch2 k = V1leftk+V1strk +V2ok +V3leftk+V3strk

= 0, 1, 3, 6, 10, 19, 37, 72, 134, 255, . . .

VTouch3 k = V2leftAk+V2strAk

= 0, 0, 0, 0, 1, 3, 7, 15, 34, 72, . . .

Polygon pieces also touch at the tops of each triangle. Two pieces touch in
a QI2o type square, and all other inward squares are 1 touch.

QTouch1 k = QI1 k +QI2ak +QI3 k

= 1, 2, 4, 7, 14, 27, 54, 101, 198, 383, . . .

QTouch2 k = QI2ok

So number of 1, 2 or 3 polygon piece touch locations are

Touch1 k = VTouch1 k +QTouch1 k

= 3, 4, 6, 10, 19, 35, 67, 125, 244, 472, . . .

Touch2 k = VTouch1 k +QTouch1 k

= 0, 1, 3, 6, 10, 19, 37, 74, 138, 265, . . .

Touch3 k = VTouch3 k

PolyTouch3 (x) = (x2+1) . poly8alt(x) . poly9 (x)

PolyTouch1 (x) = PolyTouch2 (x) = (x−1) .PolyTouch3 (x)

There is one ThreeB side anti-clockwise around at each polygon point so
total weighted by touches is

ThreeBk = Touch1 k + 2Touch2 k + 3Touch3 k

or unweighted is points plus inward squares, which together are next level points

V1 k+1 +V2 k+1 +V3 k+1 = Touch1 k + Touch2 k + Touch3 k

Each polygon piece variously touches other pieces, and possibly touches it-
self. A piece has a touch at each Touch2 or Touch3 location. Each of those are
on 2 or 3 polygon pieces respectively. So the mean number of touches at a piece
is, using the various poly9 parts,

2Touch2 k + 3Touch3 k
Trigonsk

→ 1

488504

( 371728 + 1109244r − 1142344r2

+ 1003322r3 − 677148r4 + 270311r5

− 67483r6 − 68763r7 + 44657r8

)
= 3.589245 . . .

Or mean proportion of a polygon piece's points which touch 1 or more other
pieces, including self-touches,
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2Touch2 k + 3Touch3 k
ThreeBk

→ 1

1052288

( 675976 + 367080r − 664352r2

+ 431384r3 − 176436r4 − 3018r5

+ 164727r6 − 182548r7 + 56145r8

)
= 0.632922 . . .

It's possible for a given polygon piece to touch the same other piece at
multiple places. The means above count all such. The �rst pieces with 2 same
touches occur in k=11.

centreline

k=11

2 touches

The lower touches are a piece with 2 touches each to 2 others. Pieces can
touch more than 2 times too. The �rst 3 same touches are in k=14,

...

centreline

k=14 3 touch,

with same in
mirror image

across
centreline

The �rst 4 same touches are in k=16. This is the above k=14 pieces location
expanded twice. The left piece here is the �rst with a self-touch. The indentation
into it is the inverse of a Tee from (28).

centreline

...

k=16,

with same in
mirror image

across
centreline

9 Centroid

Theorem 17. Consider the C curve level k to have each segment length 1 and
mass uniformly distributed along its length.

The curve is symmetric in horizontal mirror image so the centroid of its
segments is on a line midway between and perpendicular to the endpoints.

start

0

end

bk
Gk

Gk = 1
2

(√
2k − 1√

2k

)
= 0,

√
2

4
, 3

4
, 7
√
2

8
, 15

8
, 31
√
2

16
, 63

16
, . . .
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Proof. k=0 is a single line segment and the centroid is its midpoint, so G0 = 0.
The centroid of curve level k is the midpoint of the centroids of its two k−1

sub-curves, suitably rotated and shifted.

1
2

√
2k

1
4

√
2k

Gk−1 Gk−1

Gk

Gk = 1
4

√
2k + 1√

2
Gk−1 = 1

4

k−1∑
j=0

√
2k−j

(
1√
2

)
j with G0 = 0

Second Proof of Theorem 17. The centroid can also be calculated from the seg-
ments in each direction S(k, d) of theorem 4.

Gk =
√
2

(
Gk−1 + 1

2k−1

(
b√
2

)
k−3

3∑
d=0

1
4 i
d−1S(k−1, d)

)
k ≥ 1

Factor
√
2 for expansion maintains unit length of each segment. Each seg-

ment expands on the right, so its centroid moves by 1
4 i
d−1. Factor 1/2k−1 takes

the mean of those moves.
S(k, d) counts the �rst segment in �xed direction d=0, so a power of b/

√
2

rotates to have the curve end vertical so the centroid is the real part. The
imaginary parts cancel by symmetry.

Gk → 1
2

√
2k which is where the two sub-curves begin and end. Scaled to

endpoints a unit length this is

Gk√
2k
→ 1

2

For an arbitrary unfolding angle θ, a similar calculation gives

bθ = 1 + e(π−θ)i |bθ| =
√
2− 2 cos θ = 2 sin θ

2

G(k, θ) = 1
2 (cos

θ
2 ) |bθ|

k−1 + (sin θ
2 )Gk−1

= 1
2 (cos

θ
2 )

k−1∑
j=0

(2 sin θ
2 )
k−1−j(sin θ

2 )
j with G(0, θ) = 0

=
1

2 tan θ
2

(sin θ
2 )
k (2k − 1) θ > 0

and which scaled to a unit length between endpoints is

G(k, θ)

|bθ|k
→ 1

2 tan θ
2

The centroid of a single curve part can be calculated similarly.
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startend

. . .

k = 8

part centroid

Gpart8 = 12+ 1
2

Theorem 18. Consider C curve level k to have each segment length 1 and mass
uniformly distributed along its length.

The centroid of the segments comprising middle part k is distance Gpartk
up from the line connecting curve start and end,

Gpartk =
GpartTotalk

PartSegmentsk

= 11
14

√
2k + 1

14

−[15, 27]
√
2k + [−18, 27

√
2]

2k + [2,−2]
(39)

= 0,none, 1, 5
4

√
2, 17

6 ,
59
20

√
2, 135

22 ,
173
28

√
2, . . .

where GpartTotal is sum distances segment midpoints of the part

GpartTotalk = 11
42 (2
√
2)k + 1

6 [1,−7]
√
2k + 3

14 [−2, 3
√
2]

= 0, 0, 2, 5
2

√
2, 17, 59

2

√
2, 135, 519

2

√
2, . . .

Part k=1 is empty so it has no centroid, Gpart1 = none.

Proof. The centroid of part k can be found from the whole curve by subtracting
parts k−1 and below.

end start

k

k−1 k−1

k−2 k−2

k−3 k−3
k−4

1
2

√
2k−2

GpartTotalk−1 is directed on a line perpendicular to its k−1 sub-curve start
and end, so an o�set 1

2

√
2k−2 upwards and this is to be multiplied by its

PartSegmentsk−1.
GpartTotalk−2 has the same o�set up as k−1 does and is to be multiplied by

its PartSegmentsk−2. It is directed horizontally so no centroid term, just this
position o�set.

GpartTotalk−3 is similar to k−1 but directed downward from its k−3 sub-
curve middle of the start to end, of which up from the k line at o�set 1

2

√
2k−4.

The remaining parts k−4 down can be joined together to make a k−4 curve
pointing downwards, with an extra copy of middle part k−4. The net result,
with Gtotalk = 2kGk for the whole curve total segment midpoints,
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GpartTotalk = Gtotalk

− 2
(
PartSegmentsk−1

1
2

√
2k−2 +GpartTotalk−1

1
2

√
2
)

− 2
(
PartSegmentsk−2

1
2

√
2k−2

)
− 2

(
PartSegmentsk−3

1
2

√
2k−4 +GpartTotalk−3

−1
2

√
2
)

−
(
−Gtotalk−4 −GpartTotalk−4

)
This is an order 4 recurrence and simpli�es to powers of 2

√
2 and

√
2 with

periodic terms.

Scaled to curve endpoints a unit length the limit is coe�cient 11
14 in Gpart

at (39). This is above the corresponding limit 1
2 for the whole curve Gk.

1
2

11
14Gpartk√

2k
→ 11

14

10 Moment of Inertia

The mass moment of inertia I =
∑
mr2 of a rigid body rotating around a given

axis is the ratio of torque to angular acceleration, similar to the way mass is the
ratio of force to linear acceleration.

Any plane �gure which is symmetric in mirror image has principal axes
aligned to that symmetry. This is since the product of inertia

∑
mxy = 0 if all

points occur as pairs x, y and −x, y. For the C curve this means axes parallel
and perpendicular to the endpoints, through the centre of gravity.

Ix

Iy
Iz

principal axes of inertia

Theorem 19. Consider the C curve with unit length segments and a point mass
1 at the midpoint of each segment, for total mass 2k. The moment of inertia
tensor about the centre of gravity isIx 0 0

0 Iy 0
0 0 Iz


Ix(k) =

1
8

(
4k − (2k−1)2k − 2

)
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= 0, 0, 1
4 ,

11
4 ,

71
4 ,

367
4 , 1695

4 , 7359
4 , . . . 1

8 A286778

Iy(k) = Ix(k+1)− Ix(k)

= 1
8

(
3.4k − (2k+3)2k

)
= 0, 1

4 ,
5
2 , 15, 74, 332, 1416, 5872, . . . 2k−3×A050488

Iz(k) = Ix(k) + Iy(k) = Ix(k+1)

Proof. For k=0 there is a single point mass and it has inertia 0 for all axes.
For k ≥ 1 the curve is of 2 copies of level k−1 at right angles. Let tk−1 be

the distance from the Gk−1 centroid to the Gk centroid.

0bk

Gk−1 Gk−1Gk

tk−1

Iz(k) from two

copies of Iz(k−1)

tk−1 = 1√
2
Gk−1 +

1
4

√
2k =

2k−1
2.
√
2k

The distances to the axes are scaled by 1/
√
2 for the 45◦ rotations, which

squared and with two sub-parts is factor 2
(

1√
2

)
2 = 1.

Ix(k) = Ix(k−1) + Iy(k−1) = Iz(k−1) k ≥ 1 (40)

Iy(k) = Ix(k−1) + Iy(k−1) + 2.2k−1.t 2k−1 (41)

Iz = Ix + Iy is true of any plane �gure, since squared distances to the axes
are Iz =

∑
m(x2+y2), Ix =

∑
m(y2+z2), Iy =

∑
m(x2+z2) and for a plane

�gure z = 0. So (40) is Ix(k) = Iz(k−1). Add (40),(41) for Iz recurrence, which
is also the parallel axis theorem,

Iz(k) = 2Iz(k−1) + 4k−1 − 2k−1 + 1
4

=

k−1∑
j=0

2j
(
4k−1−j − 2k−1−j + 1

4

)
with Iz(0) = 0

=
4k − 2k

4− 2
− k 2k−1 + 1

4 (2
k − 1)

= 1
4

(
2.4k − (2k+1)2k − 1

)
and from which Iy as �rst di�erences per (40).

For an arbitrary unfolding angle θ the calculation becomes, using G(k−1, θ)
and bθ from section 9,

t(k−1, θ) = G(k−1, θ) cos θ2 + 1
4 |bθ|

k
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= 1
2 (2

k−1− cos2 θ2 ) sin
k−2 θ

2

Iz(k, θ) = 2Iz(k−1, θ) + 2.2k−1 t(k−1, θ)2 parallel axis theorem

= 2k
k−1∑
j=0

t(k−j−1, θ)2

=


Iz(k) if θ = π

2

(k − 9
4 ) 2

k + 3 − 3
4 (

1
2 )
k if θ = π

3

2
1−2 cos θ (8 sin

2 θ
2 )
k−1 + 1+cos θ

cos θ (4 sin2 θ2 )
k−1

− 1
4 (1+ cos θ)(2 sin2 θ2 )

k−1 − 1
4

(
1+ 2

(1−2 cos θ) cos θ

)
2k

The powers form for the general case is written with exponents k−1 since it
slightly simpli�es the coe�cients.

The special cases for θ = π
2 ,

π
3 are where the denominators cos θ, 1−2 cos θ

respectively in the powers form would be zero. There is no discontinuity there,
just sum of powers

∑k−1
j=0 a

j = ak/(a−1) if a6=1 but =k if a=1.
Case θ=π is full unfolding to a straight line and inertia is a simple sum over

the squared distances to the segment midpoints for Iz(k, π) = 1
122

k(4k − 1).
This is the �rst and last terms of the general case, the middle two factors have
1+ cosπ = 0.

sin2 θ2 in the general form reduces the powers 8k etc. For θ=π the top term
8 sin2 θ2 is full 8k. For right-angle θ=π

2 have sin2 θ2 = 1
2 so the top term reduces

to 4k as per Iz(k) (that part of the sum is �ne, it is the middle part where
4 sin2 θ2 = 2 which is the special case). For θ=π

3 have 2 sin2 θ2 = 1
2 which is

where the ( 12 )
k arises in its special case.
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