Iterations of the Alternate Paperfolding Curve

Kevin Ryde

July 2018, Draft 9

Abstract

Various properties of finite iterations of the alternate paperfolding curve, including coordinates, boundary, area, Golay-Rudin-Shapiro sequence, twin alternate, area tree, and some fractionals.

Contents

1 Alternate Paperfolding .. 2
2 Turn ... 3
3 Direction ... 10
4 Coordinates .. 16
4.1 Coordinate Norm Increments .. 21
5 Coordinates to N ... 24
6 Segments in Direction .. 28
7 Boundary and Area .. 30
8 Points ... 32
8.1 Boundary Segment Numbers ... 37
8.2 Enclosure Sequence ... 39
9 Cumulative GRS .. 42
10 Midpoint Curve .. 53
11 Graph ... 54
11.1 Diameter and Wiener Index .. 55
12 Twin Alternate ... 59
12.1 Twin Alternate Area Tree .. 65
12.2 Twin Alternate Turn Tree .. 91
13 Fractional Locations ... 92
References ... 99
Index ... 101

Notation

Bits of an integer written in binary are numbered starting from 0 as the least significant. Odd and even bit positions follow from this numbering.

Some formulas have terms going in a repeating pattern of say 4 values according as an index \(k \equiv 0 \) to \(3 \) mod \(4 \). They are written for example

\[
[5, 8, -5, 9]
\]

values according as \(k \) mod \(4 \)

meaning 5 when \(k \equiv 0 \) mod \(4 \), or 8 when \(k \equiv 1 \) mod \(4 \), etc. Likewise periodic patterns of other lengths.

Periodic patterns like this can be expressed by powers of \(-1\) or \(i\) (or other roots of unity), but except in simple cases that tends to be less clear than the values.
1 Alternate Paperfolding

The alternate paperfolding curve of Davis and Knuth[5] is defined as repeated unfolding of a copy of itself beginning from a unit line segment. The unfoldings are alternately to the left and right sides.

When the unfolding is 90° the curve touches itself at level \(k=3 \) onwards. In the following diagram the corners are chamfered off to better see the path taken.

An equivalent definition is to form the next level by mirror image and expand even segments on the right and odd segments on the left. The whole curve is rotated suitably to keep the first segment East.

This can be seen explicitly for the expansion of \(k=2 \), and for subsequent levels it holds by the unfolding. The mirror image each time effectively alternates the unfolding.

It’s convenient to draw even segments directed forward and odd segments reverse. This corresponds to the unfolding, and drawn this way the expansion is always on the right after mirror image.

Applying two expansions is two mirror images which cancel out, giving the following plain segment replacement.
The successive unfolding means the shape is triangular and traverses all segments in the eighth of the plane $0 \leq y \leq x$ except for odd segments on the x axis.

2 Turn

Davis and Knuth\cite{5} give the alternate paperfolding curve turn sequence in the form $+1$ left and -1 right for $n \geq 1$.

\[
\begin{align*}
turn(2n) &= -\text{turn}(n) & \text{even negated} \quad (1) \\
turn(2n+1) &= (-1)^n & \text{odd alternately L, R} \quad (2)
\end{align*}
\]

This can be calculated from n in binary, again for $n \geq 1$.

\[
\text{turn}(n) = \begin{cases}
+1 \, (\text{left}) & \text{if BitAboveLowestOne}(n) \text{ is even} \\
-1 \, (\text{right}) & \text{if odd}
\end{cases}
\]

\[
= (-1)^{\text{BitAboveLowestOne}(n) + \text{CountLowZeros}(n)}
\]

\[
\text{BitAboveLowestOne}(n) = 0,0,1,0,0,1,1,0,0,1,\ldots \quad n \geq 1 \quad \text{A038189}
\]

\[
\text{CountLowZeros}(n) = 0,1,0,2,0,1,0,3,0,1,0,2,\ldots \quad n \geq 1 \quad \text{A007814}
\]

The effect of \text{CountLowZeros} is to flip the sense of \text{BitAboveLowestOne} when that bit is at an odd position (least significant bit as position 0).

For computer calculation in a single machine word, \text{BitAboveLowestOne} can be located by some bit-twiddling. The flip at odd positions can be done by XOR of binary 1010...10 before applying the location mask (similar to for example Arndt\cite{1}).

\[
\text{turn}(n) = \begin{cases}
+1 & \text{if } \text{BIT AND} \left(\text{MaskAboveLowestOne}(n), \text{BITXOR}(n, 1010\ldots10) \right) = 0 \\
-1 & \text{if } \neq 0
\end{cases}
\]

\[
= 2,4,2,8,2,4,2,16,2,4,2,8,2,4,2,32,\ldots \quad \text{A171977}
\]

\[
\text{MaskAboveLowestOne}(n) = \text{BITXOR}(n, n-1) + 1 \quad n \geq 1
\]

MaskAboveLowestOne is a 1-bit located immediately above the lowest 1-bit of n. In (5) the $n-1$ changes low zeros “...0000” to “...0111” and XORing the two gives “0001111” which is a mask up to and including the lowest 1-bit. $+1$ gives “0010000” which is the bit above.

This bit-twiddling uses carry propagation in the CPU adder to locate the lowest 1-bit. It’s common for the adder on a single machine word to be faster.
than CountLowZeros and test-ith-bit.

The next turn, ie. the turn at point $n+1$, after segment n, is given similarly but above the lowest 0-bit.

$$\text{turn}(n+1) = \begin{cases} +1 \text{ (left)} & \text{if } \text{BitAboveLowestZero}(n) \text{ is even} \\ -1 & \text{if odd} \end{cases}$$

$$= (-1)^{\text{BitAboveLowestZero}(n)+\text{CountLowOnes}(n)}$$

$turn(n)$ and $turn(n+1)$ are related simply by $n+1$ changing low “0111” to “1000”,

$$\begin{array}{c|c|c} n & \cdots & t \ 0 \ 1 \cdots \\ \hline
n+1 & \cdots & t \ 1 \ 0 \cdots \end{array}$$

$turn(n)$ is multiplicative. This follows from the recurrence (1) or the bits (4).

In the bits, multiplication adds the counts of low zeros then further 1 or 3 mod 4 of the odd parts multiply as $\equiv \pm 1$ mod 4.

$$\text{turn}(m.n) = \text{turn}(m) \cdot \text{turn}(n) \quad \text{multiplicative}$$

Michael Somos in OEIS A209615 gives a generating function for turn,

$$g_{\text{turn}}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2^k}}{1 + x^{2^{k+1}}}$$

(6)

This follows from recurrence (1). Term k is those n with $\text{CountLowZeros}(n) = k$. The first term $k=0$ is signs at odd terms per (2) which is generating function $x/(1 + x^2)$. Further $\text{turn}(2n)$ is by substituting x^2 to have 2n and negate. Repeated negations are $(-1)^k$.

Predicates for left and right turns are

$$\text{TurnLpred}(n) = n \geq 1 \text{ and } \text{turn}(n) = 1$$

$$= 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, \ldots \quad \text{A106665}$$

$$\text{TurnRpred}(n) = n \geq 1 \text{ and } \text{turn}(n) = -1$$

$$= 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, \ldots \quad \text{A292077}$$

Turn runs follow from recurrence (1). Odd turns L, R are parts of runs of turns. The turn between each of these is the same as one or the other, forming runs of lengths 1, 2 or 3. (See subsection 12.2 on how this pattern falls at curve locations in the plane.)

$$\begin{array}{cccccc}
-\ t_1 & -t_2 & -t_3 & -t_4 & -t_4 \\
L & R & L & R & L \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
\text{run} & \text{run} & \text{run} & \text{run} & \text{run} \end{array}$$

$\begin{array}{c}
\text{turn}(2n) \quad \text{evens} \\
\text{turn}(2n+1) \quad \text{odds} \\
\text{Figure 5 turn runs.} \\
\end{array}$

Counting the first run as $m=0$, the run lengths are then, using turn,
Pairs occur in the midpoint curve ahead in section 10.

The powers of unfold of the initial run length 1.

For a curve of finite $k \geq 2$ the run lengths end with a final 1 which is an unfold of the initial run length 1.

$g_{\text{Run}}(-x)$ in (8) changes only the $k=0$ term of the g_{Turn} sum at (6), since the powers of x there are all even for $k \geq 1$. The extra $/(1+x^2)$ in (9) adjusts for that $k=0$.

Pairs of turns $n, n+1$ in (7) can be written together as a sum s_{Run}. Such pairs occur in the midpoint curve ahead in section 10.

$$s_{\text{Run}}(n) = \text{turn}(n) + \text{turn}(n+1)$$

$$= (-1)^{\lfloor n/2 \rfloor} - \text{turn}([n/2])$$

Form (11) is by a pair of integers n and $n+1$ having one odd and one even. turn of the odd one alternates 1, -1 and the even one is $-\text{turn}$ per recurrence (1). Floor and ceil $n/2$ combine them. TurnRun is then

$$\text{TurnRun}(m) = \begin{cases} 1 & \text{if } m=0 \\ 2 - 2 \cdot (-1)^m s_{\text{Run}}(m) & \text{if } m \geq 1 \end{cases}$$

A predicate for the n which is the start of a run is

$$\text{TurnRunStart}(n) = \begin{cases} 1 & \text{if } n=1 \text{ or } \text{turn}(n-1) \neq \text{turn}(n) \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1 & \text{if } n=1 \text{ or } \text{turn}([n/2]) = (-1)^{\lfloor n/2 \rfloor} \\ 0 & \text{otherwise} \end{cases}$$

Form (12) is by considering cases n odd or even. Each pair of even $2j, 2j+1$ has the run start as one of the two. The odd turn is $(-1)^j$ and the $(-1)^{\lfloor n/2 \rfloor}$ expression gives opposites at $2j$ and $2j+1$ to compare.

The sequence of those n which are the start of a run, $\text{TurnRunStart}(n) = 1$, follows from the odd even cases too. Counting the first run as $m=0$, each odd turn is at $n = 2m+1$. If preceded by the same turn then its run starts 1 earlier. This can be written as an expression (14).

$$\text{TurnRunStart}(m) = 1 + \sum_{j=0}^{m-1} \text{TurnRun}(j)$$
\[
\begin{align*}
\text{if } m & \geq 1 \text{ and } \text{turn}(m) = -(-1)^m, \\
\text{if } m = 0, \\
\text{if } m \geq 1
\end{align*}
\]

\[
= \begin{cases}
2m & \text{if } m \geq 1 \\
2m + 1 & \text{otherwise}
\end{cases}
\]

\[
= \begin{cases}
1 & \text{if } m = 0 \\
1 + \frac{1}{2} + \frac{1}{2}(-1)^m \text{turn}(m) & \text{if } m \geq 1
\end{cases}
\]

In sum (13), the TurnRun formula (7) gives turn in pairs with alternating signs. They cancel out leaving \(\frac{1}{2}\text{turn}(1) = \frac{1}{2}\) at the start and \((-1)^m \frac{1}{2}\text{turn}(m)\) at the end, hence (14).

Shallit[13] considers certain sums of powers of powers of 2 (which are among types Kempner[9] showed are transcendental),

\[
C(u, k) = \sum_{j=0}^{k} \frac{(-1)^j}{u^{2^j}}
\]

and gives the continued fraction representation by the following successive “unfolding”. These sums are < 1 so continued fraction integer part \(a_0=0\) always,

\[
\begin{align*}
C(u, 0) &= [0, u] & C(u, 1) &= [0, u+1, u-1] \\
C(u, k) &= [a_0, a_1, \ldots, a_u] \\
C(u, k+1) &= [a_0, a_1, \ldots, a_{u-1}, a_u + (-1)^k, a_{u-1}, \ldots, a_1]
\end{align*}
\]

The \(k+1\) continued fraction (17) is the \(k\) continued fraction taken forward and reverse and offsets \(\mp(-1)^k\) each side of the middle. Case \(u=2\) is

\[
\begin{align*}
C(2, 0) &= [0, 2] & = \frac{1}{2} \\
C(2, 1) &= [0, 3, 1] & = \frac{1}{2} - \frac{1}{4} \\
C(2, 2) &= [0, 3, 2, 0, 3] & = \frac{1}{2} - \frac{1}{4} + \frac{1}{16} \\
C(2, 3) &= [0, 3, 2, 0, 2, 4, 0, 2, 3] & = \frac{1}{2} - \frac{1}{4} + \frac{1}{16} - \frac{1}{256} \\
C(2, \infty) &= [0, 3, 2, 0, 2, 4, 0, 2, 4, 2, 0, 4, \ldots]
\end{align*}
\]

\(C(2, k)\) corresponds to turn runs of the alternate paperfolding curve \(k\). Each term is \(2r\) for run length \(r\) many left or right turns (alternately), except first and last terms are \(2r+1\).

This follows since the expansion at (17) is the same as curve unfolding. Existing terms are appended in reverse, per the curve unfold. The last term \(2r+1\) is then each side of the middle and adding \(\pm(-1)^k\) gives 2 for the new turn at \(n=2^k\) either on the left or right run alternating according as \(k\) odd or even, which is per the curve unfold.

The general \(C\) formula starting (16) has some 0 terms when \(u=2\) (one in each block of 4 terms). For the turn run lengths they can be collapsed by adding each side of the empty run. In a continued fraction the same applies, i.e. a continued fraction with a 0 term is equal to sum of the terms each side. If \(C\) is started from a collapsed \(C(2, 2) = [0, 3, 5]\) instead of (18) then there are no 0s.
Continued fraction terms \(a_1, a_2, \ldots\) are descents down the Stern-Brocot tree of rationals by \(a_1\) many levels left, \(a_2\) many right, etc, alternating left and right. Continued fraction terms which are in fact run lengths are therefore successive descents left or right according to the original sequence, in this case the alternate paperfolding curve turn sequence with each value taken twice, and extra initial left.

The tree here is drawn across the page. A left descent is downwards and a right descent is upwards. The initial 1 in the continued fraction goes to 1/2 and that is the starting point for the turns.

At each fraction, descent is to the left (the smaller child) if \(\text{turn} = +1\). Descent is to the right (the larger child) if \(\text{turn} = -1\). For example 1/2 has children 1/3 and 2/3. Since \(\text{turn}(1) = +1\) go to 1/3. Take two such descents for each curve turn value.

Any binary sequence can be used as directions down the Stern-Brocot tree like this. At a given node the values in all deeper nodes are within a wedge-shaped area. The children divide that into non-overlapping smaller wedges, so any descent sequence converges towards some constant.

Theorem 1. The \(n\) which is the \(m\)th left or right turn is given by mutual recurrences, with first turn as \(m=0\),

\[\text{for } m = 2^k + e \text{ with } 0 \leq e < 2^k\]

\[\text{TurnLeft}(m) = \begin{cases} 1 & \text{if } m=0 \\ 2^{k+2} - [0, 2]_k & \text{if } e = 2^k - 1 \\ 2^{k+2} - \text{TurnRight}(2^k - [2, 1]_k - e) & \text{otherwise} \end{cases}\]

\[= 1, 4, 5, 6, 9, 13, 14, 16, 17, 20, 21, 22, \ldots\]

\[\text{TurnRight}(m) = \begin{cases} 2, 3, 7 & \text{if } m = 0 \text{ to } 2 \\ 2^{k+2} - [1, 0] & \text{if } e = 2^k - 1 \text{ and } m \geq 3 \\ 2^{k+2} - \text{TurnLeft}(2^k - [1, 2]_k - e) & \text{otherwise} \end{cases}\]

\[= 2, 3, 7, 8, 10, 11, 12, 15, 18, 19, 23, 26, \ldots\]
Proof. Among the turns $n = 1$ to 2^k inclusive, for $k > 1$ there are 2^{k-1} lefts and 2^{k-1} rights. This follows from the unfolding since the unfolding swaps lefts and rights and the turn between, which is the final new turn 2^k, is alternately left and right.

The turns $n = 1$ to 2^{k+2} are in sub-curves level $k+1$,\[R/L \]

\[m = 2^{k+1} - 1 \]

\[\text{TurnLeft parts} \]

\[k+2, \text{ sub-parts } k+1 \]

\[\text{part 1} \]

\[m = 2^k, \ e = 0 \]

\[\text{L/R unfold} \]

The m which is the L after the unfold point, so $n > 2^{k+1}$, is the number of L preceding, which is $m=2^k$. For $m \geq 1$, taking k, e per (19) gives e ranging from 0 after the unfold L/R up to but not including the opposite R/L at the unfold after part 1.

The unfolding swaps turns L→R, so the L sought is an R of part 1 and measuring back from the end. The last $m = 2^{k+1} - 1$ is $e = 2^k - 1$. If $k+1$ is even then this is the R/L end at $n = 2^{k+2}$. If $k+1$ is odd then this m is the L preceding that end, which is $n = 2^{k+2} - 2$.

For other e, measure back in part 1 to seek an R of index $2^k - 1 - e$, or when $k+1$ even the L at the end of part 1 reduces that to $2^k - 2$.

Similarly TurnRight. When $k+1$ odd the end of part 1 is an R, or when $k+1$ even the last R is $n = 2^{k+2} - 1$ being an unfold of the initial L at $n=1$. Likewise opposite reduction $2^k - 1 - e$ or $2^k - 2 - e$.

Both TurnLeft and TurnRight are close to $2m$, roughly since there are 2^k of each turn among $n = 1$ to 2^{k+1} inclusive. Or algebraically in (20),(21) an $m = 2^k$ subtracted past the unfold adds 2^{k+1} to the resulting n (without the reversal). Offsets from $2m$ can be expressed

\[\text{TurnLeftOff}(m) = 2m - \text{TurnLeft}(m) \]
\[= -1, -2, -1, 0, -1, -3, -2, -1, -2, -1, 0, 0, 1, -1, \ldots \]
\[\text{TurnRightOff}(m) = \text{TurnRight}(m) - 2m \]
\[= 2, 1, 3, 2, 1, 0, 1, 2, 1, 3, 4, 3, 2, 3, \ldots \]

Substituting into (20),(21) gives mutual recurrences,

where $m = 2^k + e$, with $0 \leq e < 2^k$

\[\text{TurnLeftOff}(m) = \begin{cases}
-1, -2 & \text{if } m = 0, 1 \\
[-2, 0]_k & \text{if } e = 2^k - 1 \\
\text{TurnRightOff}(2^k - 1 - e - [1,0]_k) - [4,2]_k & \text{otherwise}
\end{cases} \]

\[\text{TurnRightOff}(m) = \begin{cases}
2, 1, 3 & \text{if } m = 0, 1, 2 \\
[1,2]_k & \text{if } e = 2^k - 1 \\
\text{TurnLeftOff}(2^k - 1 - e - [0,1]_k) + [2,4]_k & \text{otherwise}
\end{cases} \]

The offsets at (22) are taken in opposite directions away from $2m$ in order to have the mutual recurrences descending to each other as positives (then $\pm 2, 4$).
Both offsets can be arbitrarily large positive or negative. (The first right negative is \(\text{TurnRightOff}(26) = -1 \).) Algebraically this is by choosing \(m \) so that its high bits recurse with successive \(k \) giving the larger or smaller of each \([-4, 2] \) and \([2, 4] \) term.

\(m = 2^k + e \) takes a high bit, then the reversal is a bit flip, so the descent into the opposite \(\text{Left} / \text{Right} \) finds the next 0-bit below. The recurrences can be expressed staying in left or right by taking a high run of 1s from \(m \).

\[
\begin{array}{c|ccccccc}
\text{high} & 1 & 1 & \ldots & 1 & 0 & \ldots \\
\text{low}
\end{array}
\]

The high run of 1s of \(m \)

for \(m = 2^k - 2^l + e \) with 0 \(\leq e < 2^{l-1} \), and \(d = [0, 1]_k - [1, 0]_l \)

\[
\text{TurnLeftOff}(m) = \begin{cases}
-1 & \text{if } m = 0 \\
0 & \text{if } e + d < 0 \\
-2 & \text{if } e = 0, \ k \text{ odd, } l = 0 \\
-3 + d & \text{if } e = 2^{l-1} - 1, \ k \text{ odd} \\
\text{TurnLeftOff}(e + d) + 2d & \text{otherwise}
\end{cases}
\] (23)

\[
\text{TurnRightOff}(m) = \begin{cases}
2 & \text{if } m = 0 \\
0 & \text{if } e - d < 0 \\
1 - d & \text{if } l = 0 \\
3 & \text{if } l = 1, \ k \text{ even} \\
2 - d & \text{if } e = 0, \ k \text{ even, } l \geq 2 \\
4 + 2d & \text{if } e = 2^{l-1} - 1, \ k \text{ even, } l \geq 2 \\
\text{TurnRightOff}(e - d) - 2d & \text{otherwise}
\end{cases}
\] (24)

Offset \(d = +1, 0, -1 \) arises from the offsets in the mutual recurrences going to the other and back again. It can also be written as a function of the curve direction \(\text{dir} \) (ahead in section 3).

\[
d = 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, -1, 0, -1, \ldots \quad m \geq 1
\]

\[
= \left\{ \begin{array}{ll}
\frac{1}{2} (\text{dir}(2^k - 2^l) - 1) & \text{if } l = 0 \\
\frac{1}{2} \text{dir}(2^k - 2^l) & \text{if } l \geq 1
\end{array} \right.
\]

\[
= \frac{1}{2} \text{dir}(4.(2^k - 2^l))
\]

In left (23) the \(e + d < 0 \) case is when \(e = 0, k \text{ even, } l \text{ even so } d = -1 \). The corresponding \(e - d < 0 \) in the right (24) is \(k \text{ odd, } l \text{ odd so } d = +1 \). The cases \(e = 2^{l-1} - 1 \) are \(m \) with a single 0-bit like 11101111.

Increments between \(m \) with turns successively \(\text{L} \) or \(\text{R} \) are

\[
d\text{TurnLeft}(m) = \text{TurnLeft}(m+1) - \text{TurnLeft}(m)
\]

\[
= 3, 1, 1, 3, 4, 1, 2, 1, 3, 1, 1, 2, 1, 4, 1, 3, 3, \ldots
\]

\[
d\text{TurnRight}(m) = \text{TurnRight}(m+1) - \text{TurnRight}(m)
\]

\[
= 1, 4, 1, 2, 1, 1, 3, 3, 1, 4, 3, 1, 3, 1, 2, 1, \ldots
\]

The expansions in figure 5 show steps are always 1, 2, 3, 4. The \(m \)th such increment can be expressed by mutual recurrences.
for \(m = 2^k + e \) with \(0 \leq e < 2^k \)

\[
dTurnLeft(m) = \begin{cases}
3 & \text{if } m=0 \\
[2,1]_k & \text{if } e = 2^k-2 \\
[1,3]_k & \text{if } e = 2^k-1 \\
dTurnLeft(2^k - 2 - e - [1,0]_k) & \text{otherwise}
\end{cases}
\]

\[
dTurnRight(m) = \begin{cases}
1,4 & \text{if } m = 0,1 \\
[3,1]_k & \text{if } e = 2^k-2 \\
[4,2]_k & \text{if } e = 2^k-1 \text{ and } m \geq 2 \\
dTurnRight(2^k - 2 - e - [0,1]_k) & \text{otherwise}
\end{cases}
\]

In the unfolding, the direction reverses so the two turns which are the delta step swap positions. This makes it necessary to descend to 1 smaller \(2^k - 2 - e \) back from the end, to stay across the same step.

In these recurrences nothing is accumulated, just descend down \(m \) by unfolds until reaching one of the final 1, 2, 3, 4 cases.

3 Direction

The direction of segment \(n \) is sum of turns preceding it

\[
dir(n) = \sum_{j=1}^{n} \text{turn}(j) \quad \text{empty sum when } n=0, \text{ so } dir(0)=0 \quad (25)
\]

\[
dir(n) = 0, 1, 0, -1, 0, 1, 2, 1, 0, 1, 0, -1, -2, -1, 0, -1, 0, 1, \ldots
\]

Theorem 2. Write \(n = \text{binary } a_k \ldots a_1 a_0 \), where \(a_0 \) is the least significant bit and there is at least one high 0-bit so \(a_k=0 \). \(dir(n) \) is sum \(\pm 1 \) at each bit transition with signs according as even or odd bit position.

\[
dir(n) = \sum_{j=0}^{k-1} 1 \quad \text{if } a_j \neq a_{j+1} \text{ and } j \text{ even} \\
-1 \quad \text{if } a_j \neq a_{j+1} \text{ and } j \text{ odd} \quad (26)
\]

Proof. A level \(k+1 \) curve comprises two level \(k \) sub-curves, with the unfold side according to \(k \) even or odd

Bit 0 or 1 of \(n \) is sub-curve 0 or 1 shown. The direction of the unfolded sub-curve is an extra +1 or −1 according as \(k \) even or odd.

The unfolding means sub-curve 1 has segments in reverse order. The sub-curves there have bit 1 for the first or bit 0 for the second. So a state machine on the bits of \(n \),
Forward state is always reached by a 0-bit and reverse state by a 1-bit. The direction extra ±1 is accumulated where a different bit switches state.

The initial forward state accumulates ±1 on the high 1-bit. In the sum (26) this is achieved by reckoning a high 0-bit (or several such).

Davis and Knuth have direction implicit within their location formula (here ahead at (44)). They write \(n \) in a “folded” representation where powers of 2 have alternating signs,

\[
n = 2^{k_0} + (-1)2^{k_1} + (-1)^22^{k_2} + \cdots + (-1)^t2^{k_t}
\]

\(k_0 > k_1 > \cdots > k_t \) folded representation of \(n \)

This representation follows unfoldings, and it locates bit runs. Term +1 is above the high end of each run and −1 at the low end.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Davis and Knuth show each \(n \) has two folded representations, the lowest term being either +1 or −1 (which determines those above). The one with an even number of terms, so \(t \) odd and lowest term sign −1, gives direction, with \(n \mod 2 \) understood as 0 or 1,

\[
dir(n) = (n \mod 2) - \sum_{j=0}^{t} (-1)^{k_j} \quad \text{for } t \text{ odd}
\]

Each \(k_j \) power is one bit position above the transition in (26), so sum \((-1)^{k_j-1} = -(-1)^{k_j}\). If \(n \) is odd then there is no transition in (26) corresponding to the final \(k_t \). Adding \(n \mod 2 \) adjusts for that.

The folded representation with an odd number of \(k \) powers, so \(t \) even, effectively arrives at a point from the far end of the curve so gives direction of the segment preceding the point

\[
dir(n-1) = (n \mod 2) - \sum_{j=0}^{t} (-1)^{k_j} \quad \text{for } t \text{ even, } n \geq 1
\]

Binary reflected Gray code locates bit transitions in \(n \) too, including highest 1-bit as a transition from 0s above it. \(dir \) is then ±1 at each 1-bit of \(Gray(n) \) with sign according as bit position odd or even,

\[
dir(n) = PmOneBits(Gray(n))
\]

\[
PmOneBits(n) = \sum_{j=0}^{k-1} (-1)^{a_j} \quad \text{bits of } n
\]
\[\text{Gray}(n) = \text{BITXOR}(n, \lfloor n/2 \rfloor) \text{ binary reflected Gray code} = 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, \ldots \]

Gray codes are used in various applications, such as digital communications and computer science. The direction can also be expressed by the product of adjacent bits. For \(n = \text{binary} a_{k-1}a_{k-2}\ldots a_1a_0 \) which is \(k \) many bits with \(a_0 \) the least significant,

\[\text{dir}(n) = a_0 - 2 \sum_{j=0}^{k-2} (-1)^j a_j a_{j+1} \quad (30) \]

Within a run of 1-bits the successive terms of this sum cancel. For an odd length run they cancel entirely to 0, the same as transitions (26). For an even length run there is a single net \(\pm 1 \) here whereas the transitions \(\pm 1 \) at both start and end of the run, hence factor \(-2\). If \(n \) is odd then the run ends at the least significant bit (either odd or even length run) and there is no ending transition. Adding \(a_0 \) adjusts for that (in a similar way to the folded (28)).

\[\text{dir} \text{ is a maximum when terms of the transition sum (26) are all positive, or equivalently terms of the product sum (30) are all negative. This means runs of 2 bits each starting at odd bit positions. Similarly minimum \(\text{dir} \). Within level } k \text{ then,} \]

\[\text{DirMax}_k = \max_{n=0}^{2^k-1} \text{dir}(n) = \lfloor k/2 \rfloor \]

\[\text{DirMaxN}_k = \frac{1}{4} \left([2, 4], 2^k - [2, 3, 3, 2] \right) \]

\[= 0, 1, 1, 6, 6, 25, 25, 102, 102, 409, 409, \ldots \]

\[= \text{binary } 0, 1, 1, 110, 110, 11001, 11001, \ldots \]

\[= 11001100 \ldots \text{for odd number of bits } k \text{ or } k-1 \]

\[\text{DirMin}_k = \min_{n=0}^{2^k-1} \text{dir}(n) = \lceil k/2 \rceil \]

\[\text{DirMinN}_k = \frac{1}{4} \left([4, 2], 2^k - [4, 4, 1, 1] \right) \]

\[= \left\lfloor \frac{1}{2} \text{DirMaxN}_{k+1} \right\rfloor \]

\[= 0, 0, 3, 3, 12, 12, 51, 51, 204, 204, 819, \ldots \]

\[= \text{binary } 0, 0, 11, 11, 1100, 1100, 110011, 110011, \ldots \]

\[= 11001100 \ldots \text{for even number of bits } k \text{ or } k-1 \]

The number of left and right turns from 1 to \(n \) inclusive are

\[\text{TurnsL}(n) = \sum_{j=1}^{n} \text{TurnLpred}(j) \]

\[= \frac{1}{2} (n + \text{dir}(n)) \quad (31) \]

\[\text{TurnsR}(n) = \sum_{j=1}^{n} \text{TurnRpred}(j) \]
\[
\frac{1}{2}(n - \text{dir}(n)) = 0, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 7, 7, 8, 8, 8, 9, \ldots
\] (32)

Forms (31), (32) follow since all turns are left or right so total lefts plus rights is simply \(n\). Then difference lefts minus rights is net direction \(\text{dir}\) (its sum \((25)\)). Sum and difference of (33), (34) are then (31), (32).

\[
\text{TurnsL}(n) + \text{TurnsR}(n) = n \quad (33)
\]
\[
\text{TurnsL}(n) - \text{TurnsR}(n) = \text{dir}(n) \quad (34)
\]

dir\((n)\) mod 4 is a net segment direction East, North, West or South.

\[
dir(n) \mod 4 \equiv 0, 1, 0, 3, 0, 1, 2, 1, 0, 1, 0, 3, 2, 3, 0, 3, 0, 1, 0, 3, \ldots
\]

Arndt[1] gives some bit twiddling for \(\text{dir} \mod 4\),

\[
dir(n) \equiv \text{CountOneBits(BITXOR\((1010\ldots1010, \text{Gray}(n))\))} \mod 4
\]

This is similar to the \(\text{PonOneBits(Gray(n))}\) form \((29)\). The BITXOR leaves even positions unchanged so \(+1\) each. The bits at odd positions are flipped and the BITXOR constant is made a multiple of 4 bits flipped \((8\) bits total) so the resulting bit count is negated \(\mod 4\).

In figure 6, switches between forward and reverse are \(\pm 1\) direction, so forward is \(\text{dir} \) even which is horizontal and reverse is \(\text{dir} \) odd which is vertical. Those states can be split into \(\text{dir} \equiv 0, 2 \mod 4\) and \(1, 3 \mod 4\) according to how the same sign \(\pm 1\) accumulates and different signs cancel.

\[
\begin{array}{c}
0 \quad \text{start} \\
1 \\
2 \\
3
\end{array}
\]

Figure 7

\[
dir(n) \mod 4
\]

bits of \(n\)

high to low

Some state machine manipulations or considering the \(\text{dir}\) sum gives the following for bits of \(n\) low to high,

\[
\begin{array}{c}
\text{dir} \equiv 3 \\
\text{dir} \equiv 1 \\
\text{dir} \equiv 0 \\
\text{dir} \equiv 2
\end{array}
\]

At start state the low bit is \(n\) even or odd so goes to states only horizontal 0, 2 or vertical 1, 3 respectively. The states then effectively look for even length runs of 1-bits. These are transitions at high and low positions of the same parity so giving the same \(\pm 1\) at each and so direction \(+2\) \mod 4. An odd length run
of 1-bits is transitions at different parity bit positions so +1 and −1 cancelling out.

The two sides from the start are the same structure and transitions, and are the same as high to low figure 7. Predicates for those \(n \) with \(\text{dir}(n) = d \) can be formed by bits low to high entering this part at suitable state.

![Diagram](image)

The starting state is according to the desired direction \(d \) test. The double circled accepting states are the final states for \(n \) with \(\text{dir}(n) = d \).

Reaching "non" is non-accepting. Horizontal \(d = 0 \), 2 are only even \(n \) so for them a low 1-bit goes to non. Vertical \(d = 1 \), 3 are only odd \(n \) so for them a low 0-bit goes to non.

Starting state \(d=0 \) is accepting since \(n \) of no bits is 0 which is \(\text{dir}(0) = 0 \). Further 0-bits go to state 0 which is also accepting being \(n=0 \) represented by multiple 0-bits. The other starting states are non-accepting.

\[
\text{dir}(n) \equiv 0 \text{ at } n = 0, 2, 4, 8, 10, 14, 16, 18, 20, \ldots \quad 2 \times A203463
\]

\[
\equiv 1 \text{ at } n = 1, 5, 7, 9, 17, 21, 23, 27, 29, \ldots
\]

\[
\equiv 2 \text{ at } n = 6, 12, 22, 24, 26, 30, 38, 44, 48, \ldots \quad 2 \times A022155
\]

\[
\equiv 3 \text{ at } n = 3, 11, 13, 15, 19, 25, 35, 43, 45, \ldots
\]

Direction gives coordinate steps \(dx \) and \(dy \) in the \(x \) or \(y \) directions.

\[
dx(n) = \Re e^{i \text{dir}(n)} = 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, \ldots
\]

\[
dy(n) = \Im e^{i \text{dir}(n)} = 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, \ldots
\]

The curve always turns ±90° so \(dx \) and \(dy \) are a zero and non-zero. Combining them by a sum gives the Golay-Rudin-Shapiro sequence.

\[
\text{GRS}(n) = (-1)^{\text{count 11 bit pairs of } n \text{ incl overlapping pairs}}
\]

\[
= 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, \ldots \quad A020985
\]

\[
dsum(n) = dx(n) + dy(n) = \text{GRS}(n)
\]

\[
\text{GRS} \text{ bit pairs 11 are the bit products in } \text{dir form (30)}. \text{ For } n \text{ even their count in (30) gives } \text{dir } \equiv 0 \text{ or } 2 \text{ mod 4 corresponding to } dx, \text{ and for } n \text{ odd their count gives } \text{dir } \equiv 1 \text{ or } 3 \text{ mod 4 corresponding to } dy.
\]

The geometric interpretation of \(dsum \) is steps going between anti-diagonals.
The non-zero terms in dx are at even $2n$. GRS is unchanged by a low 0-bit,

$$dx(2n) = GRS(2n) = GRS(n)$$ \hspace{1cm} (37)

The non-zero terms in dy are at odd $2n+1$. GRS is changed or unchanged by a low 1-bit according as the bit above it is 1 or 0, so the rest odd or even

$$GRSalt(n) = (-1)^n . GRS(n)$$ \hspace{1cm} (38)

$$dy(2n+1) = GRS(2n+1) = GRSalt(n)$$

This $GRSalt$ is difference $dx - dy$. The dx terms are at even n so $(-1)^n = 1$ and is $GRS(n)$. The dy terms are at odd n and the $-dy$ is factor $(-1)^n = -1$ in (38).

$$ddiff(n) = dx(n) - dy(n) = (-1)^n . GRS(n)$$ \hspace{1cm} (39)

See section 9 on these GRS terms summed to give x, y coordinates.

Those n with $GRS(n) = \pm 1$ or alternating $GRSalt(n) = \pm 1$ are

$GRS(n) = +1$ at $n = 0, 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, \ldots$ \hspace{1cm} A203463

$GRS(n) = -1$ at $n = 3, 6, 11, 12, 13, 15, 19, 22, 24, 25, 26, \ldots$ \hspace{1cm} A022155

$GRSalt(n) = +1$ at $n = 0, 2, 3, 4, 8, 10, 11, 13, 14, 15, 16, \ldots$

$GRSalt(n) = -1$ at $n = 1, 5, 6, 7, 9, 12, 17, 21, 22, 23, 24, \ldots$

Theorem 3. The differences which occur between successive n with $GRS(n) = 1$ are $1, 2, 3, 4, 5$. Likewise between $GRS(n) = -1$, and likewise between $GRSalt(n) = \pm 1$. Each difference occurs infinitely many times.

$GRS(n) = +1 \text{ increments} = 1, 1, 2, 1, 2, 1, 1, 4, 2, 1, 1, \ldots$

$GRS(n) = -1 \text{ increments} = 3, 5, 1, 1, 2, 4, 3, 2, 1, 1, 4, 5, \ldots$

$GRSalt(n) = +1 \text{ increments} = 2, 1, 1, 4, 2, 1, 2, 1, 1, 2, 1, \ldots$

$GRSalt(n) = -1 \text{ increments} = 4, 1, 1, 2, 3, 5, 4, 1, 1, 2, 1, \ldots$

Proof. The first occurrence of each difference 1 to 5 can be found by explicit calculation. For $GRS(n) = -1$ the first 6 shown contain the full set of differences. For $GRS(n) = +1$ differences 3 and 5 are beyond the samples shown. The first of each is 1 to 5 are at $n = 0, 2, 51, 10, 46$.

Draft 9 page 15 of 103
GRSalt\((n) = -1 \) also has the full set in the first 6 values. \(GRSalt\((n) = +1 \) differences 3 and 5 are also beyond the samples shown. The first of each of its 1 to 5 are at \(n = 2, 0, 25, 4, 20 \).

All differences occur infinitely since 1 or more high zero bits and any further high bits \(h \) with \(GRS\((h) = 1 \) leaves the low unchanged. So for example \(n=51 \) is the first location of \(GRS\((n) = +1 \) difference 3 so each \(n = 51 + 2^k \) has the same difference 3.

To show no other differences occur, the low 3 bits of \(n \) mean that \(n \equiv 0, 1, 2 \mod 8 \) have the same \(GRS\((n) = a \), and \(n \equiv 3 \mod 8 \) has opposite \(GRS\((n) = -a \). Similarly \(n \equiv 4, 6, 7 \mod 8 \) the same and \(n \equiv 6 \mod 8 \) opposite to them.

\[
\begin{align*}
n &\equiv 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \mod 8 \\
GRS\((n) &= a & a & a & -a & c & c & -c & c
\end{align*}
\]

\(a \) and \(c \) are the same or different according as the next bit above is 0 or 1. So an \(n \) difference starting at \(2 \mod 8 \) has the \(-a\) at 3 different but then either 4 is \(a = c \) or 6 is \(a = -c \) giving difference either 2 or 4. Working through possible starts and \(a, c \) same or different shows differences 1 to 5 only.

GRSalt negates odd positions. At (40) this results in the same pattern of \(a, c \) and signs but in reverse order and so the same set of differences.

A mechanical approach to these differences is to represent those \(n \) with \(GRS\((n) = 1 \) by a state machine matching bit patterns. This is the state machine of \(\text{dir mod 4} \) in figure 7 with directions 0, 1 being \(GRS = +1 \).

Some usual state machine manipulations can modify to match bit strings of \(n \) where \(GRS\((n+1) = 1 \). The intersection of \(n \) through \(n+4 \) inclusive is empty so there are no runs of 4 or more same value and so biggest difference between is 5. For example difference 2 is an \(n \) with \(n+1 \) opposite and \(n+2 \) same. Each such locations of differences are infinite.

Similarly \(GRS\((n+1) = -1 \) with directions 2, 3, and similarly \(GRSalt = \pm 1 \).

With \(\text{dir} \) from \(GRS\) as above, those \(n \) with \(GRS = \pm 1 \) become \(\text{dir}(2n) \equiv 0, 2 \mod 4 \). Similarly \(\text{dy} \) and \(GRSalt \). So differences between \(n \) with \(\text{dir}(n) \equiv d \mod 4 \) for given \(d \) are 2, 4, 6, 8, 10 and all differences occurring infinitely.

For example if \(n \) is a segment East then there is another East at one of \(n + 2, 4, 6, 8, 10 \). Or at any \(n \) there is at least one segment of all directions \(d \mod 4 \) somewhere in the 10 values \(n \) to \(n+9 \) inclusive. (The first of each direction are \(n \leq 9 \).

4 Coordinates

It’s convenient to calculate locations in complex numbers and number points starting \(n=0 \) at the origin and first segment directed East. The end of the curve unfolds by factor \(b = i+1 \) when \(k \) even or \(b \) when \(k \) odd (eg. figure 1)

\[
\begin{align*}
b &= 1+i & \bar{b} &= 1-i \\
End_k &= b^{[k/2]}, \bar{b}^{[k/2]} & \text{curve end (41)} \\
&= i^{-[k/2]} \cdot b^k & (42) \\
&= [1, b], 2^{[k/2]}
\end{align*}
\]
Davis and Knuth\[5\] give a coordinate formula using their folded representation (27). An n in the second half of the curve is a point in that sub-curve directed back from End_k. The unfold is on the left or right according as $k-1$ odd or even.

\[
\text{point}(n) = \begin{cases}
\text{End}_k + i.(-1)^k.\text{point}(2^k-n) & 2^{k-1} \leq n \leq 2^k \\
\text{End}_{k-1} & n = 2^k-1, 1+2i, 2+2i, 4+4i, \ldots
\end{cases}
\]

They expand (43) repeatedly which is n in folded representation per (27) and give, for an arbitrary unfold angle θ,

\[
\text{point}(n) = \zeta^{-d_0}(1+\zeta)^{k_0} + \zeta^{-d_1}(1+\zeta)^{k_1} - \cdots + (-1)^t\zeta^{-d_t}(1+\zeta)^{k_t}
\]

where $\zeta = e^{i(\pi-\theta)}$ unfold by angle θ

\[
d_j = (-1)^{k_0} + \cdots + (-1)^{k_j-1} + [k_j/2]
\]

d_j part summing $(-1)^k$ is per the direction dir form noted at (28).

For $\zeta = i$ the formula can simplify a little, using End style (42) and reducing exponents by $i(-1)^k = i.(-1)^k$.

\[
\text{point}(n) = \begin{cases}
\text{End}_{k_0} + i.(-1)^{k_0}.\text{End}_{k_1} + i^2.(-1)^{k_0+k_1}.\text{End}_{k_2} + \cdots + i^t.(-1)^{k_0+\cdots+k_{t-1}}.\text{End}_{k_t} & n = 0, 1+i, 2+i, 3, 3+i, 2+i, 2+2i, \ldots
\end{cases}
\]

In (43) the midpoint $n = 2^{k-1}$ is the end of the first sub-curve and also the end of the second sub-curve. The location is the same. In folded representation (27) this is either a final 2^{k-1} or $2^k - 2^{k-1}$, or negatives of those when odd number of terms above. These are the two possible folded representations of n. The resulting point is the same since

\[
\text{End}_{k-1} = \text{End}_k + (-i).(-1)^{k-1}.\text{End}_{k-1}
\]

For odd n, or odd part of n, the geometric interpretation of these final terms is to arrive at the target z either from the segment before or the segment after, according as a final term $+1$ or -1 respectively.
Another approach to curve unfolding is to take \(n \) in binary and for the second sub-curve calculate coordinates along a reversed curve.

Write \(n \) in \(k \) many bits with \(a \) the highest bit, either 0 or 1. Then the above expansions become

\[
\text{point}(n) = \begin{cases}
\text{point}(n_1) & \text{if } a = 0 \\
\text{End}_{k-1} + i.(-1)^{k-1}.\text{revPoint}_{k-1}(n_1) & \text{if } a = 1
\end{cases}
\]

\[
\text{revPoint}_k(n) = \text{End}_k - \text{point}(2^k - n)
\]

\[
= \begin{cases}
 i.(-1)^{k-1}.\text{point}(n_1) & \text{if } a = 0 \\
 i.(-1)^{k-1}.\text{End}_{k-1} + \text{revPoint}(n_1) & \text{if } a = 1
\end{cases}
\]

\(\text{revPoint}_k \) is the reverse of a particular expansion level \(k \). In general successive levels taken in reverse are not prefixes of the next, hence particular \(k \).

Both forward and reverse descend to \(\text{point} \) or \(\text{revPoint} \) according as \(a=0 \) or \(a=1 \) respectively, so bit above determines which state (like dir figure 6).

![Diagram](image)

Both forward and reverse add \(\text{End}_{k-1} \) when \(a=1 \), but with various factors of \(\pm i \). It's convenient to multiply \(-i.(-1)^k \) through \(\text{revPoint} \) so its \(\text{End} \) is without further factor.

\[
\text{revPointRot}_k(n) = -i.(-1)^{k-1}.\text{revPoint}_k(n)
\]

\[
\text{point}(n) = \begin{cases}
\text{point}(n_1) & \text{if } a = 0 \\
\text{End}_{k-1} + \text{revPointRot}(n_1) & \text{if } a = 1
\end{cases}
\]

\[
\text{revPointRot}(n) = \begin{cases}
\text{point}(n_1) & \text{if } a = 0 \\
\text{End}_{k-1} - \text{revPointRot}(n_1) & \text{if } a = 1
\end{cases}
\]

Geometrically this means taking the reverse curve at \(+90^\circ \) when \(k-1 \) even or \(-90^\circ \) when \(k-1 \) odd. The first halves of both forward and reverse are forward curves to \(\text{End}_{k-1} \), hence plain \(\text{point}(n_1) \) in both (45),(46). The second half of reverse \(n \) has that sub-part directed \(180^\circ \) from the direction it descends to, hence \(-\text{revPointRot}\) at (46).
The \(-\text{revPointRot}\) in (46) is at an \(a=1\) bit with a further 1-bit above it. So sign change below each 11 bit pair, including overlapping pairs.

\[
\text{point}(n) = \text{End}_{k-1} + \text{End}_{k-2} - \text{End}_{k-2} + \cdots \quad \text{for each 1-bit of } n, \quad (47)
\]

\[- \text{End}_{l-1} - \text{End}_{l-2} + \cdots \quad \text{sign change below 11}
\]

\[+ \text{End}_{m-1} + \text{End}_{m-2} - \cdots \]

\[- \cdots \]

The expansion of each individual segment also gives a coordinate formula for a new low bit. The expansion shown in figure 2 is a function

\[
\text{expand}(z) = b.z
\]

which doubles out points

\[
\text{expand} (\text{point}(n)) = \text{point}(2n)
\]

Repeated \(\text{expand}\) of a unit length is the curve endpoint,

\[
\text{expand}^k(z) = \text{expand} (\ldots \text{expand}(z)) = \begin{cases}
z.\text{End}_k & \text{if } k \text{ even}
\overline{z}.\text{End}_k & \text{if } k \text{ odd} \end{cases}
\]

\[
\text{End}_k = \text{expand}^k(1)
\]

The conjugate \(\overline{z}\) in (48) means factor \(b\) is alternately \(b, \overline{b}\), per \(\text{End}\) form (41).

A point \(n\) with low bit \(a\) and \(n_1\) all bits above is then

\[
\text{point}(2n_1 + a) = \text{expand} (\text{point}(n_1)) + i \text{ dir}(2n_1).a
\]

If \(a=1\) then the curve direction at \(2n_1 = n - a\) is the direction to go to the new point in between.
Each \(\text{dir}(2n_1) \) is horizontal 0 or 2 since the curve turns \(\pm 90 \) at each point so an even numbered segment is horizontal, \(\pm 1 \).

\[
\text{point}(2n+1) - \text{point}(2n) = i \text{dir}(2n) \quad \text{even segment direction}
\]
\[
= dx(2n) = \text{GRS}(n) \quad \text{as from (35)}
\]

Applying (51) repeatedly is repeated expand on these steps, which is factor \(\text{End per (50)} \).

\[
n = \text{binary } a_{k-1}a_{k-2} \ldots a_1a_0
\]

\[
\text{point}(n) = \text{End}_{k-1}a_{k-1}
\]
\[
+ \text{End}_{k-2}a_{k-2} \text{GRS}(a_{k-1})
\]
\[
+ \text{End}_{k-3}a_{k-3} \text{GRS}(a_{k-1}a_{k-2})
\]
\[
+ \ldots
\]
\[
+ \text{End}_1 a_1 \text{GRS}(a_{k-1}a_{k-2} \ldots a_2)
\]
\[
+ \text{End}_0 a_0 \text{GRS}(a_{k-1}a_{k-2} \ldots a_2a_1) \quad \text{low bit}
\]

These \(\text{GRS} \) factors are the same as the forward/reverse signs (47). \(\text{GRS}(n_1) \) changes only when new bit pair 11.

All of the above coordinate formulas are expressed with factors determined by bits of \(n \) from high to low. For computer calculation the formulas can be applied low to high instead by assuming lowest \(\text{End}_0 \) term has factor 1 and proceeding upwards from there. The factors on all the powers are then correct relative to each other and if the high \(\text{End}_{k-1} \) turns out to have factor \(-1\) then negate to adjust all.

For computer calculation in binary, high to low, the base-4 digits (2 bits) of \(n \) determine a bit of \(x \) and \(y \) coordinate each, via a direction state.

An even level \(2k \) curve is a triangular half of a square \(0 \leq x, y \leq 2^k \). Its sub-curves are in turn within squares \(0 \leq x, y \leq 2^{k-1} \), possibly with rotation and/or reversal.
Each sub-part is a base-4 digit. For example base-4 digit 2 is part 2 which has \(x \) bit 1 and \(y \) bit 1 and the same forward direction 0 in that part. Or base-4 digit 1 is part 1 has \(x \) bit 1 and \(y \) bit 0 and descend to reverse dir 1. The sub-curve directions which occur are:

- forward dir 0
- forward dir 2
- reverse dir 1
- reverse dir 3

The curve goes horizontally or vertically so one of \(x \) or \(y \) changes by \(\pm 1 \). An \(x \) change is the following increment, and similarly vice-versa \(dy \),

\[
(x + dx)^2 + y^2 - (x^2 + y^2) = 2x \cdot dx + 1
\]

The final state is forward dir 2 or reverse dir 3 then their start is at \(x=1, y=1 \) so add +1 to both \(x \) and \(y \) in addition to bits calculated so far. This is how double-visited points arise, as otherwise all \(x, y \) locations would be distinct.

If the final state is dir mod 4. The transitions are the same as two bits at a time in figure 7. This can be used to draw both point and following segment or part of it (along the direction of the curve).

4.1 Coordinate Norm Increments

Coordinate norm \(|z|^2 = x^2 + y^2 \) has increment

\[
dnorm(n) = |point(n+1)|^2 - |point(n)|^2
= 1, 1, 3, -1, 5, 1, -5, 3, 5, 7, -5, -7, -3, \ldots
\]

The curve goes horizontally or vertically so one of \(x \) or \(y \) changes by \(\pm 1 \). An \(x \) change is the following increment, and similarly vice-versa \(dy \),

\[
(x + dx)^2 + y^2 - (x^2 + y^2) = 2x \cdot dx + 1
\]

\[
\begin{array}{cccccccccc}
7 & 9 & 11 & 13 & 15 & -1 & 1 & 3 & 5 & 7 \\
5 & 5 & 5 & 5 & 5 & 3 & 3 & 3 & 3 & 3 \\
-3 & -5 & -7 & -9 & -11 & -13 & -15 \end{array}
\]

\[
dnorm \text{ for segments, without signs}
\]

Draft 9 page 21 of 103
x changes when n even and y changes when n odd, and at (53) using dir to combine,

$$dnorm(n) = \begin{cases} 2x, dx + 1 & \text{if } n \text{ even} \\ 2y, dy + 1 & \text{if } n \text{ odd} \end{cases}$$

(52)

$$dnorm = 2 \Re((-i)^{\text{dir}(n)} \cdot \text{point}(n)) + 1$$

(53)

dnorm is always odd. Taking half rounded down is

$$\frac{1}{2} (dnorm(n) - 1) = \begin{cases} x, dx & \text{if } n \text{ even} \\ y, dy & \text{if } n \text{ odd} \end{cases}$$

(54)

$$= \Re((-i)^{\text{dir}(n)} \cdot \text{point}(n))$$

$$= 0, 0, 1, -1, 2, 0, -3, 1, 2, 3, -3, -4, -2, \ldots$$

abs A068915

Absolute values remove the dx or dy factor from (54), since $x, y \geq 0$.

$$\left| \frac{1}{2} (dnorm(n) - 1) \right| = XorY(n) = \begin{cases} x & \text{if } n \text{ even} \\ y & \text{if } n \text{ odd} \end{cases}$$

(55)

$$= 0, 0, 1, 1, 2, 0, 3, 1, 2, 2, 3, 3, 4, 2, \ldots$$

A068915

The opposite $YorX$ is a shift by 1 index position since x and y values repeat.

$$YorX(n) = \begin{cases} y & \text{if } n \text{ even} \\ x & \text{if } n \text{ odd} \end{cases}$$

(56)

$$= 0, 1, 1, 2, 0, 3, 1, 2, 2, 3, 3, 4, 2, \ldots$$

YorX is OEIS sequence A068915. That sequence is defined by a recurrence

$$a(0) = 0 \quad a(1) = 1$$

A068915

$$a(2n) = |a(n) - a(n-1)|$$

(55)

$$a(2n+1) = a(n) + a(n+1)$$

(56)

The correspondence to YorX can be seen in the curve as follows. $2n$ is even so want y. An expand from (49) is

$$YorX(2n) = \text{Im} \text{ point}(2n) = x(n) - y(n)$$

When $n \geq 2$, have $y(n) = YorX(n)$ and the preceding segment is vertical so its x is the same as at n so $x(n) = YorX(n-1)$. When n odd, the opposite $x(n) = YorX(n)$ and preceding is horizontal so $y(n) = YorX(n-1)$.

$$YorX(2n) = \begin{cases} YorX(n-1) - YorX(n) & \text{if } n \text{ even} \\ YorX(n) - YorX(n-1) & \text{if } n \text{ odd} \end{cases}$$

(57)

$$= (-1)^n (YorX(n-1) - YorX(n))$$

$$= |YorX(n) - YorX(n-1)|$$

per (55)

Form (57) shows how the sign removed by the absolute value alternates as n odd or even.

The following diagram shows examples $2n = 14, 16$.
$2n+1$ is odd so want x for $YorX$. In the unexpanded coordinates this is a Manhattan sum $x+y$, but then also step to the new point in the expanded segment. This is per the point low bit formula (51),

$$YorX(2n+1) = \text{Re point}(2n+1) = x(n) + y(n) + i \text{dir}(2n)$$

(58)

When n even the segment expands on the left, or when n odd the segment expands on the right (both before mirror image) so the desired $x+y$ sum is at the $n+1$ location in both cases.

When n even the segment to $n+1$ is horizontal so y is the same at both, hence $YorX(n)$ for y and $YorX(n+1)$ for the x at $n+1$. When n odd the segment to $n+1$ is vertical so x is the same at both, hence $YorX(n)$ for x and $YorX(n+1)$ for the y at $n+1$. Thus (56) in both cases.

Algebraically the same can be seen in (58) by expressing $\text{dir}(2n)$ in terms of $\text{dir}(n)$. An extra low 0 bit in theorem 2 bit difference sum (26) gives

$$\text{dir}(2n) = -\text{dir}(n) + (1 \text{ if } n \text{ odd})$$

$\text{dir}(2n)$ is even since the curve is horizontal at even segments, so can negate in the i power at (59) without changing the result. When n even have dir even so the i power is real and is dx there. When n odd have dir so the i power is imaginary and the effect of “-1 when n odd” is to rotate back to get that as a real dy,

$$i \text{ dir}(2n) = i \text{ dir}(n) - (1 \text{ if } n \text{ odd})$$

$$= \begin{cases}
\text{Re}i \text{ dir}(n) & \text{if } n \text{ even} \\
\text{Im}i \text{ dir}(n) & \text{if } n \text{ odd}
\end{cases} = \begin{cases}
dx(n) & \text{if } n \text{ even} \\
dy(n) & \text{if } n \text{ odd}
\end{cases}$$

(59)

Putting this into (58) is a step of x or y to the next n according as n even or odd. Pair $YorX(n)$ and $YorX(n+1)$ is the incremented and un-incremented for all n, per (56).
\[YorX(2n+1) = \begin{cases} x + y + dx & \text{if } n \text{ even} \\ x + y + dy & \text{if } n \text{ odd} \end{cases} = YorX(n) + YorX(n+1) \]

The same sort of argument gives recurrences for \(XorY\). It can use \(n+1\) for both sum and difference cases.

\[XorY(2n) = XorY(n) + XorY(n+1) \]
\[XorY(2n+1) = (-1)^n \left(XorY(n) - XorY(n+1) \right) \]

Half \(dnorm\) rounded up is similar. It adds 1 to (54),

\[\frac{1}{2} \left(dnorm(n+1) \right) = \begin{cases} x \cdot dx + 1 & \text{if } n \text{ even} \\ y \cdot dy + 1 & \text{if } n \text{ odd} \end{cases} \]

\[= 1, 1, 2, 0, 3, 1, -2, 2, 3, 4, -2, -3, -1, \ldots \]

Absolute values can be taken by multiplying through \(dx\) or \(dy\) to cancel those signs, provided \(x, y \neq 0\). When \(x=0\) have \(dx = +1\) and when \(y=0\) have \(dy = +1\) so such a multiply holds for those too. The respective resulting \(+dx\) or \(+dy\) is location \(n+1\), hence (60).

\[\frac{1}{2} \left(dnorm(n) + 1 \right) = \begin{cases} x \cdot dx + 1 & \text{if } n \text{ even} \\ y \cdot dy + 1 & \text{if } n \text{ odd} \end{cases} \]

\[= YorX(n+1) = XorY(n+2) \quad (60) \]

A similar multiply through \(dx\) or \(dy\) cancels the sign in the full \(dnorm\) from (52). Its resulting \(x + (x + dx)\) is like \(2 \times\) the segment midpoint.

\[\left| dnorm(n) \right| = \begin{cases} 2x + dx & \text{if } n \text{ even} \\ 2y + dy & \text{if } n \text{ odd} \end{cases} \]

\[= 2 \Re \left(-i \right)^{\dir(n)} \cdot point(n) + 1 \]

5 Coordinates to \(N\)

\(point(n)\) can be inverted low to high to calculate \(n\) at a given location \(z\). Suppose \(z = point(n)\) and that in (47) the total sign changes would leave sign \(s\) on terms below the last so \(s = GRS(n)\). Then

```
unpoint(z, s)      z = Gaussian integer, s = ±1
loop until z=0 or z = -s or z = -i.s
    if z ≡ i mod b² then s ← -s
    bit 0 or 1 = z mod b
    if bit=1 then z ← z - s
    step to even point
end loop
if z=0 and s=1 then n in unrotated curve
otherwise rotated or reflected copy
```
The two \(s = \pm 1 \) are directions \(d = 0, 2 \) (horizontal) at an even point and \(d = 1, 3 \) (vertical) at an odd point, respectively.

\[
s = i^{\text{dir}} - (1 \text{ if } z \text{ odd})
\]

This is \(s = i^{\text{dir}(2n)} = \text{GRS}(n) \) which would be the next sign factor in (47). \(z \text{ odd} \) is when \(n \text{ odd} \) so that \(\text{dir}(2n) \) has an extra bit transition.

\(z \equiv i \bmod b^2 \) is when the lowest two bits of \(n \) are 11 and so a sign change for all powers below. The sign below is \(s \) so change to \(-s\) for the present term and above.

For computer calculation everything can be done in Cartesian coordinates \(x+iy \) without full complex number arithmetic. \(\text{bit} \equiv z \bmod b \) is simply \(x+y \equiv 0, 1 \bmod 2 \) and division \(z/(i+1) \) is \((x,y) \leftarrow (\frac{x+y}{2}, \frac{x-y}{2}) \). The test for \(z\equiv i \bmod b^2 \) is equivalent to \(x \equiv 0 \bmod 2 \) and \(y \equiv 1 \bmod 2 \) since \(z \bmod b^2 \) goes in a \(2\times2 \) repeating pattern.

The loop reduces \(z \) by dividing \(b \) each time, except for the \(s \) subtraction. Considering just magnitudes, \(|z| \) decreases when

\[
|z| - \left| \frac{z-s}{b} \right| \geq |z| - \frac{|z|+1}{\sqrt{2}} = (1 - \frac{1}{2}\sqrt{2}) |z| - \frac{1}{2}\sqrt{2} > 0 \text{ when } |z| > 1+\sqrt{2}
\]

So \(|z| \) decreases until \(|z| \leq 1+\sqrt{2} \) and for points there it can be verified explicitly that all integer \(z \) and \(s = \pm 1 \) reach one of the loop ends.

For a given \(n \) let \(\text{other}(n) \) be the point number which is the other visit to that location. This can be found from \(n \) without calculating the location as such.

```
\begin{array}{cccc}
\text{high} & \text{flip} & \text{flip} & \text{low} \\
\ldots & \neq t & x & t & x & t & 1 & 0 & \ldots \\
\text{repeat} & \geq 0 \text{ times} \\
\end{array}
```

\(\text{other}(n) = 0, -, -, 7, -, -, 14, 3, -, 13, -, 31, 28, 9, 6, \ldots \)

\(n \) in binary is divided into the fields shown in figure 8. \(t \) is the bit above lowest 1-bit. This is per \(\text{turn}(n) \) from (3). Each bit \(x \) is arbitrary and is flipped until reaching bit above \(\neq t \).

High 0-bits are understood on \(n \) as necessary to make the fields shown. When \(t=1 \) and the highest of \(n \) is one of the \(t \) bits then the \(x=0 \) above it is flipped. This happens for points on the join side of the triangle. They are locations within level \(k \) which have their second visit in the next level \(k+1 \).

If \(t=0 \) then the pattern might continue infinitely into high 0-bits on \(n \). This occurs for points on the \(x \) axis and \(x=y \) diagonal. They have no second visit within the curve.

This \(\text{other} \) bit flip is found by taking bits of \(n \) and the forward/reverse End terms they imply (47), then apply \text{unpoint} to those terms with opposite final sign.
\[\text{other}(n) \quad n \neq 0 \]

\[s = 1 \quad \text{sign on } n \]

\[h = -1 \quad \text{sign on } \text{other}(n), \text{starting opposite} \]

\[\delta = 0 \]

loop

\[a_0 = \text{low bit of } n, \quad a_1 = \text{second lowest bit of } n \]

\[\text{if } a_1, a_0 = 1, 1 \quad \text{then } s \leftarrow -s \]

\[z = b \cdot a_1 + a_0 + \delta \]

\[c_0 = 0 \text{ or } 1 \equiv z \mod b \quad \text{other}(n) \text{ bits, low to high} \]

\[\text{if } z \equiv i \mod b^2 \quad \text{then } h \leftarrow -h \]

\[\delta \leftarrow (\delta + a_0, s - c_0, h) / b \]

drop lowest bit of \(n \)

end loop

\(s \) is the sign below the last bit of \(n \). If \(n \) bits are 11 then it changes to \(-s\) for the present term of \(n \) and above. \(h \) is the sign below the bits of \(\text{other}(n) \) being calculated. Taking only the low bits of \(n \) and \(\text{other}(n) \) does not in general give the same location. \(\delta \) is the offset from location \(n \) to \(\text{other}(n) \). It changes when the \(\text{End terms in } n \) and \(\text{other}(n) \) are not the same (different sign, or zero and not zero). Bits of \(n \) and \(\delta \) then give the other location \(\mod b \) and \(b^2 \) for bit of \(\text{other}(n) \) and sign change on \(h \).

Following up through possible bits of \(n \) gives combinations of \(s, h, \delta, \text{bit} \) as states of a finite state machine. This state incorporates a “current” bit since two bits are required at each step. The next higher bit is taken as input and the output is a bit of \(\text{other}(n) \) at the “current” position. The higher bit goes into the new state. The initial state is \(s=1, h=-1, \delta=0 \) and \(\text{bit} = \text{low of } n \).

The states and outputs simplify to the bit flips above. \(\delta \) takes five possible values 0, ±1, ±b.

The turn bit \(t \) above lowest 1 is unchanged by this \(\text{other} \) going up by states. This is a complicated way to see the turn at first and second visits are the same (see subsection 12.2).

Each bit \(x \) in figure 8 is flipped. Differences \(\text{BITXOR}(n, \text{other}(n)) \) which occur are therefore 1-bits at every second bit in a single run.

Figure 9

\[\text{OXpred} \]

\[\text{binary} \quad 0 \ldots 0 \quad 1 \quad 0 \quad 1 \quad 0 \ldots 0 \]

\[\geq 2 \quad \text{low 0-bits} \]

\[\text{OXpred}(c) = \begin{cases} 1 & \text{if } c = \text{BITXOR}(n, \text{other}(n)) \text{ for some } n \\ 0 & \text{otherwise} \end{cases} \]

=1 at \(c = 4, 8, 16, 20, 32, 40, 64, 80, 84, 128, 160, \ldots \) = binary 100, 1000, 10000, 10100, 100000, 101000, …

The number of distinct XOR differences within level \(k \) is

\[\text{NumOXpred}_k = \sum_{c=0}^{2^k - 1} \text{OXpred}(c) \]
Binomials (61) are locations of the bit flip run. In the bit fields of figure 9, when an even number of low 0s there are \(\lfloor k/2 \rfloor - 1\) remaining even positions. When an odd number of low 0s there are \(\lceil k/2 \rceil - 1\) remaining odd positions. The binomials select two of them as start and end. The start and end can coincide, so +1 on the possible positions. Products (62) follow from these binomials.

Differences \(n - \text{other}(n)\) have +1 or -1 at these bit positions according to whether the flip is 0→1 or 1→0 respectively. The differences which occur are therefore ±1 at every second bit position in a single run.

\[
\text{NumOpred}_k = \left(\sum_{l=1}^{[k/2]-1} 2^{l-1} (\lfloor k/2 \rfloor - l) \right) + \left(\sum_{l=1}^{[k/2]-1} 2^{l-1} (\lceil k/2 \rceil - l) \right) \quad \text{(63)}
\]

The number of distinct differences \(|n - \text{other}(n)|\) is

\[
= 0, 0, 0, 1, 2, 5, 8, 15, 22, 37, 52, 83, \ldots \quad \text{A077866}
\]

The sums (63) are over length \(l\) many bits of each ±1. The top-most bit position is +1 to get the positive differences, leaving \(2^{l-1}\) combinations of ±1 below. These \(l\) bits can be located at any of the remaining \(\lfloor k/2 \rfloor - l\) (or ceil) bit positions. Working through these sums gives powers (64).

The locations of first occurrence of each \(\text{Opred}\) difference follow from the unfolding.
On unfolding, the new second half has the same set of differences within it, so new differences are only at the join points. Those points have \(n \) decreasing on the first half and increasing on the second half, from the unfolding of the \(x \) and \(x=y \) sides ahead in points theorem 6.

The differences are then a high \(+1\) with further \(\pm 1 \) every second bit position. The smallest is all \(-1\) and the biggest is all \(+1\). In figure 10 for example the middle column has \(44 = 64 - 16 - 4 \) up to \(84 = 64 + 16 + 4 \).

The smallest new difference \(+1\) then all \(-1\) is bigger than the biggest previous difference of \(+1\) at second highest bit then all \(-1\). The new smallest is previous biggest \(+4\), as for example 40 to 44 above.

The initial difference 4 is a column of one value, and the 8 is an anti-diagonal of one value.

6 Segments in Direction

Theorem 4. The number of segments in direction \(d = 0, 1, 2, 3 \mod 4 \) of the alternate paperfolding curve level \(k \) are

\[
S(k, d) = \begin{cases}
1, 0, 0, 0 & \text{for } d \equiv 0 \text{ to } 3 \\
\frac{1}{2} (2^k + 2 \Re(-i)^d \cdot \text{End}_k) & \text{if } k \geq 1
\end{cases}
\]

\[
S(k, 0) = \begin{cases}
1 & \text{if } k=0 \\
2^{k-2} + 2^{\lfloor (k-2)/2 \rfloor} & \text{if } k \geq 1
\end{cases}
\]

\[
= 1, 1, 2, 3, 6, 10, 20, 36, 72, 136, 272, \ldots \quad \text{A005418}
\]

\[
S(k, 1) = \begin{cases}
0 & \text{if } k=0 \\
2^{k-2} & \text{if } k \geq 1 \text{ even} \\
2^{k-2} + 2^{\lfloor (k-2)/2 \rfloor} & \text{if } k \geq 1 \text{ odd}
\end{cases}
\]

\[
= 0, 1, 1, 3, 4, 10, 16, 36, 64, 136, 256, \ldots \quad \text{A051437}
\]

\[
S(k, 2) = \begin{cases}
0 & \text{if } k=0 \\
2^{k-2} - 2^{\lfloor (k-2)/2 \rfloor} & \text{if } k \geq 1
\end{cases}
\]

\[
= 0, 0, 0, 1, 2, 6, 12, 28, 56, 120, 240, \ldots \quad \text{A122746}
\]

\[
S(k, 3) = \begin{cases}
2^{k-2} & \text{if } k \geq 1 \text{ even} \\
2^{k-2} - 2^{\lfloor (k-2)/2 \rfloor} & \text{if } k \geq 1 \text{ odd}
\end{cases}
\]
Proof. Unfolding for the next level $k+1$ repeats the curve, with directions turned ± 1, so counts are the original plus $d \mp 1$ of unfold.

$$S(k+1,d) = \begin{cases} S(k,d) + S(k,d-1) & \text{if } k \text{ even} \\ S(k,d) + S(k,d+1) & \text{if } k \text{ odd} \end{cases}$$

The total segments is simply 2^k. Since the curve always turns $\pm 90^\circ$ the number of verticals and horizontals are the same for $k \geq 1$.

$$S(k,0) + S(k,1) + S(k,2) + S(k,3) = 2^k$$

horizontals $S(k,0) + S(k,2) = \frac{1}{2}2^k$ \quad $k \geq 1$

verticals $S(k,1) + S(k,3) = \frac{1}{2}2^k$ \quad $k \geq 1$

Theorem 5. Among the first n segments of the alternate paperfolding curve, the number in direction $d \mod 4$ is

$$SN(n,d) = \frac{1}{4}\left(n + 2 \Re(-i)^d \text{point}(n) + ((-1)^d \text{ if } n \text{ odd})\right)$$ (65)

SN(n,0) = 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, ...
SN(n,1) = 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, ...
SN(n,2) = 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, ...
SN(n,3) = 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, ...

Proof. Segments alternate horizontal and vertical so total horizontals are $\lceil n/2 \rceil$, which is SN directions 0 plus 2. The difference of directions 0 and 2 is the net horizontal position $\Re \text{point}$,

$$SN(n,0) + SN(n,2) = \lceil n/2 \rceil$$ (66)

$$SN(n,0) - SN(n,2) = \Re \text{point}(n)$$ (67)

(66)+(67) and (66)-(67) give

$$SN(n,0) = \frac{1}{2}\left(\lceil n/2 \rceil + \Re \text{point}(n)\right)$$

$$SN(n,2) = \frac{1}{2}\left(\lceil n/2 \rceil - \Re \text{point}(n)\right)$$

Similarly for the verticals

$$SN(n,1) + SN(n,3) = \lceil n/2 \rceil$$

$$SN(n,1) - SN(n,3) = \Im \text{point}(n)$$

$$SN(n,1) = \frac{1}{2}\left(\lceil n/2 \rceil + \Im \text{point}(n)\right)$$

$$SN(n,3) = \frac{1}{2}\left(\lceil n/2 \rceil - \Im \text{point}(n)\right)$$

The $\pm \Re, \Im$ parts are selected in (65) by $\Re(-i)^d \text{point}$, and the floor or ceil $n/2$ by the $(-1)^d$ offset part. \hfill \square

Draft 9 page 29 of 103
7 Boundary and Area

The boundary length of a given level k follows from its triangular shape,

$$L_k = \begin{cases}
1 & \text{if } k = 0 \\
[4, 2]2^{[k/2]} - [4, 0] & \text{if } k \geq 1
\end{cases}$$

left boundary

$$= 1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, \ldots$$

$$R_k = \begin{cases}
1 & \text{if } k = 0 \\
[2, 6]2^{[k/2]} - [0, 4] & \text{if } k \geq 1
\end{cases}$$

right boundary

$$= 1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, \ldots$$

$$B_k = L_k + R_k = [6, 8]2^{[k/2]} - 4$$

total boundary

$$= 2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, \ldots$$ $2 \times \text{A027383}$

And likewise the number of unit squares on the boundary

$$LQ_k = [2, 1]2^{[k/2]} - [1, 0]$$

left boundary squares

$$= 1, 1, 3, 2, 7, 4, 15, 8, 31, 16, 63, \ldots$$

$$RQ_k = [1, 3]2^{[k/2]} - [0, 1]$$

right boundary squares

$$= 1, 2, 2, 5, 4, 11, 8, 23, 16, 47, 32, \ldots$$

$$BQ_k = LQ_k + RQ_k = [3, 4]2^{[k/2]} - 1$$

total boundary squares

$$= 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, \ldots$$ A052955

The unfolding to the respective side means

$$L_k = L_{k-1} + R_{k-1} = B_{k-1} \quad k \text{ even unfold}$$

$$R_k = L_{k-1} + R_{k-1} = B_{k-1} \quad k \text{ odd unfold}$$

$$LQ_k = LQ_{k-1} + RQ_{k-1} = BQ_{k-1} \quad k \text{ even unfold} \quad (68)$$

$$RQ_k = LQ_{k-1} + RQ_{k-1} = BQ_{k-1} \quad k \text{ odd unfold} \quad (69)$$

The area enclosed by a given level k follows from its triangular shape too.

$$\text{Figure 11 Area } k=6$$

$$AL_6 = 9 \text{ left, gray}$$

$$AR_6 = 12 \text{ right, black}$$

$$A_6 = AL_6 + AR_6 = 21$$

Draft 9 page 30 of 103
Since the curve always turns ±90° the unit squares enclosed on the left or right side of the curve alternate. Left squares have an even \(x+y \) lower left corner. Right squares have an odd \(x+y \) lower left corner.

\[
\begin{align*}
AL_k &= 2^{k-2} - \left[1, \frac{1}{2}\right], 2^{[k/2]} + [1, 0] \quad \text{left area} \\
&= 0, 0, 0, 1, 1, 6, 9, 28, 49, 120, 225, \ldots \\
AR_k &= 2^{k-2} - \left[\frac{1}{2}, \frac{3}{2}\right], 2^{[k/2]} + [0, 1] \quad \text{right area} \\
&= 0, 0, 0, 2, 3, 12, 21, 56, 105, 240, \ldots \\
A_k &= AL_k + AR_k \quad \text{area} \\
&= 2^{k-1} - \left[\frac{3}{2}, 2\right], 2^{[k/2]} + 1 \\
&= (2^{[(k-1)/2]} - 1) (2^{[(k-1)/2]} - 1) \\
&= \frac{1}{2} \times 0, 0 \times 0, 0 \times 1, 1 \times 1, 1 \times 3, 3 \times 3, 3 \times 7, 7 \times 7, \ldots \\
&= 0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, \ldots \\
\end{align*}
\]

Area and boundary are related by a general rule for non-overlapping curves. Each segment has 2 sides and each enclosed unit square has 4 of the inside, so

So insides plus outsides is total \(4A + B = 2N \). For the alternate paperfolding curve this is

\[
4A_k + B_k = 2 \cdot 2^k
\]

The left and right sides separately in a similar way, counting only the left or right side of each segment.

\[
4AL_k + L_k = 2^k \quad \quad 4AR_k + R_k = 2^k
\]

Some enclosed unit squares are formed by 3 consecutive left or right turns.

The number of such runs in curve level \(k \) follows from the unfolding. The unfolding duplicates the runs, with lefts and rights swapped in the unfolded copy. New runs might occur at the unfold point. For \(k \geq 4 \) the unfold point is not such a run as the curve turns away. So successive levels from there on simply sum lefts plus rights, giving

\[
\begin{align*}
\text{Turn3left}_k &= \begin{cases}
0, 0, 1 & \text{if } k = 0 \text{ to } 3 \\
2^{k-4} & \text{if } k \geq 4
\end{cases} \\
\text{Turn3right}_k &= \begin{cases}
0 & \text{if } k \leq 3 \\
2^{k-4} & \text{if } k \geq 4
\end{cases}
\end{align*}
\]
The proportion of enclosed unit squares arising from such turn runs is then
\[
\frac{\text{Turn}_3 \text{left}_k}{AL_k} \to \frac{1}{4} \quad \frac{\text{Turn}_3 \text{right}_k}{AR_k} \to \frac{1}{4}
\]

Area increases by
\[
dA_k = A_{k+1} - A_k = \frac{1}{2} \left(2^{\lfloor k/2 \rfloor} - 1 \right) \cdot 2^{\lceil k/2 \rceil} \quad \text{area increment}
\]
\[
= 2^{k-1} - 2^{\lfloor (k-1)/2 \rfloor}
\]
\[
= 0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, \ldots \quad \text{A122746}
\]

The join area between levels is the column or diagonal of unit squares in between the unfolds,
\[
JA_k = A_{k+1} - 2A_k \quad \text{join area}
\]
\[
= 2^{\lfloor k/2 \rfloor} - 1
\]
\[
= 0, 0, 1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, \ldots \quad \text{A052955}
\]

8 Points

In the triangular shape of each level the outer points are single visited and the inner ones are double visited, so from the shape
\[
S_k = [3, 4, 2^{\lfloor k/2 \rfloor} - 1] \quad \text{singles}
\]
\[
= 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, \ldots \quad \text{A052955}
\]
\[
D_k = \frac{1}{2} (2^k + 1 - S_k) = A_k \quad \text{doubles} \quad \text{area} \quad \text{A274230}
\]
\[
P_k = S_k + D_k = 2^{k-1} + \left\lfloor \frac{3}{2} \right\rfloor \cdot 2^{\lfloor k/2 \rfloor} \quad \text{total}
\]
\[
= 2, 3, 5, 8, 14, 24, 44, 80, 152, 288, \ldots \quad \text{A200075, } k \geq 3 \text{ A211525}
\]

Doubles = area holds for any curve where each enclosed unit square has all 4 sides traversed, without overlaps. Each unit square is formed when and only when a segment re-visits a point,

\[
\begin{align*}
D &= A \\
S &= B/2 + 1
\end{align*}
\]

\[
\text{unvisited point} \quad \text{re-visited point}
\]

\[
A \text{ unchanged} \\
D \text{ unchanged}
\]

\[
\begin{align*}
S + 1 & \quad A + 1 \\
B + 2 & \quad S - 1
\end{align*}
\]

\[
D = A \quad \text{double-visited} = \text{area}
\]
\[
S = B/2 + 1 \quad \text{single-visited and boundary}
\]

Total points \(P\) and doubles \(D\) are also related
\[
D_k = \frac{1}{2} (2^k + 1 - S_k) \quad \text{from } S + 2D = 2^k + 1
\]
\[
P_k = \frac{1}{2} (2^k + 1 + S_k)
\]

If there were no singles then it would be \(D\) doubles \(= P \text{ distinct} = \frac{1}{2} (2^k + 1)\) half total points. Every 2 singles reduces the doubles by 1 and increases the
distinct points by 1 (as +2 singles, −1 double).

Total points can have a copy of D added in to make the total n points,

$$P_k + D_k = 2^k + 1$$

With $D = A$ this is Euler’s formula for regions of a connected planar graph. Vertices are points P, edges are 2^k segments, and regions are A enclosed unit squares.

$$\text{vertices + inside regions = edges + 1}$$

Theorem 6. The points n of the alternate paperfolding curve on the x axis are

$$X_{\text{pred}}(n) = \begin{cases}
1 & \text{if } n \text{ base-4 digits only } 0 \text{ or } 1 \\
0 & \text{otherwise}
\end{cases}$$

$$x \text{ axis}$$

$$= 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, \ldots$$ \[A151666 \]

$$gX_{\text{pred}}(x) = \prod_{j=0}^{\infty} \left(1 + x^{4^j} \right)$$ \[(71) \]

$$X_{\text{num}}(m) = m \text{ in binary, change to base-4 digits } 0,1$$

$$m \geq 0$$

$$= 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, \ldots$$ \[A000695 \]

The points n on the $x=y$ diagonal are

$$G_{\text{pred}}(n) = \begin{cases}
1 & \text{if } n \text{ base-4 digits all } 0 \text{ or } 2 \\
0 & \text{otherwise}
\end{cases}$$

$$x=y \text{ diagonal}$$

$$= \frac{X_{\text{pred}}(2n)}{x=y \text{ diagonal}}$$

$$= 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, \ldots$$ \[(72) \]

$$gG_{\text{pred}}(x) = gX_{\text{pred}}(x^2) = \prod_{j=0}^{\infty} \left(1 + x^{2^{4^j}} \right)$$

$$G_{\text{num}}(m) = m \text{ in binary, change to base-4 digits } 0,2$$

$$= 2X_{\text{num}}(m)$$

$$= 0, 2, 8, 10, 32, 34, 42, 128, 130, 136, 138, \ldots$$ \[A062880 \]

Proof. The theorem holds up to $k=2$. Thereafter segments expand twice as

Existing points n become $4n$. Each new x axis point is $+1$ from there, so
base-4 digits 0,1 only. Each new $x=y$ diagonal point is $+2$, so base-4 digits 0,2 only.

Diagonals are $X_{\text{pred}}(2n)$ at (72) simply by the digits, or since those diagonals are
the x axis points of the previous level in figure 2 and expand (48).

$$\text{expand}(x + 0i) = x + xi$$

gX_{pred} at (71) is per Sloane in OEIS A000695. It is a usual way to form
characteristic sequences of numbers with certain digits. A product of k many
terms is all n with up to k many base-4 digits. The next product $1 + x^4$ is
then 1 to keep existing and x^4 to copy up to an n with a 1-digit at position k.
Similarly gG_{pred}.

There are 2^k points on the x axis so $4^k - 2^k$ non axis points. These are n with at least one base-4 digit 2 or 3, or equivalently at least one odd position 1-bit. The m'th non axis point can be calculated by a recurrence splitting m
within $4^k - 2^k$ levels.

For $4^k - 2^k \leq m < 4^{k+1} - 2^{k+1}$

$$\text{NonXnum}(m) = \begin{cases} 4^k + \text{NonXnum}(m - (4^k - 2^k)) & \text{if } m < 2.(4^k - 2^k) \\ m + 2^{k+1} & \text{if } m \geq 2.(4^k - 2^k) \end{cases} \quad (73)$$

$$= 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \ldots$$

base-4 = 2, 3, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, \ldots

At (73) the $m+2^{k+1}$ case is a high base-4 digit 2 or 3 on the resulting n.
This ensures $\text{NonX}_{\text{pred}}$ and allows the remaining m to run through all digits
below. The descent $4^k + \text{NonXnum}$ is a high base-4 digit 1 and so still restricted
to $\text{NonX}_{\text{pred}}$ in the digits below.

\begin{tabular}{|c|c|}
 \hline
 0, $\text{NonX}_{\text{pred}}$ & $4^k - 2^k$ many \\
 1, $\text{NonX}_{\text{pred}}$ & $4^k - 2^k$ many \\
 2, all digits & 4^k many \\
 3, all digits & 4^k many \\
 \hline
\end{tabular}

The m'th non $x=y$ point can be calculated in a similar way. For it digits 1 and 3 have all digits below, and digit 2 restricted to $\text{NonG}_{\text{pred}}$ below.

For $4^k - 2^k \leq m < 4^{k+1} - 2^{k+1}$

$$\text{NonGnum}(m) = \begin{cases} m + 2^k & \text{if } m < 2.4^k - 2^k \\ 2.4^k + \text{NonGnum}(m - (2.4^k - 2^k)) & \text{if } 2.4^k - 2^k \leq m < 3.4^k - 2^k \\ m + 2^{k+1} & \text{if } m \geq 3.4^k - 2^k \end{cases}$$

$$= 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, \ldots$$

base-4 = 1, 3, 10, 11, 12, 13, 21, 23, 30, 31, 32, 33, \ldots

Each diagonal point is the first visit of the curve to a given horizontal y.
That holds in $k=0$ and in two unfolds like figure 3 the new part 2 likewise.
From the triangular shape, single-visited points in the curve continued infinitely are the x axis and the $x=y$ diagonal.

$$S_{pred}(\infty) = X_{pred}(n) \text{ or } G_{pred}(n)$$

$$= \begin{cases} 1 & \text{if } n \text{ base-4 digits only } 0, 1 \text{ or only } 0, 2 \\ 0 & \text{otherwise} \end{cases}$$

$$= 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, \ldots$$

$$S_{num}(\infty) = 0 \text{ if } m=0 \text{, otherwise}$$

$$m+1 \text{ in binary, extract second highest bit } a$$

$$= 0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, \ldots \quad A126684$$

$$=1 \text{ at } n = 3, 6, 7, 9, 11, 12, 13, 14, 15, 18, 19, 22, 23, 24, \ldots \quad A176237$$

$$D_{pred}(\infty) = \begin{cases} 1 & \text{if all } \text{ base-4 digits any digit } 3 \text{ or both } 1, 2 \\ 0 & \text{otherwise} \end{cases}$$

$$= \text{binary } 1\text{-bit at both odd and even positions}$$

$$= 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, \ldots$$

$$=1 \text{ at } n = 3, 6, 7, 9, 11, 12, 13, 14, 15, 18, 19, 22, 23, 24, \ldots$$

The other procedure of section 5 also identifies single-visited points. An n which has no other n is $S_{pred}(\infty)$. In the bit fields of figure 8 this is $t=0$ and then every second bit also 0 so that there is no $\neq t$ bit. When t and these other 0s fall at odd positions they give base-4 digits 0,1 and when at even positions base-4 digits 0,2.

$S_{pred}(\infty)$ has runs of at most 2 consecutive single-visited points after the initial 3 of $n=0$ to 2.

Within a given expansion level k the points at the end of the triangle are single-visited too. They are either unfolded x points or $x=y$ points according as k odd or even.

$$S_{pred}(k) = \begin{cases} 1 & \text{if } \text{other}(n) \text{ not within } k \text{ bits} \\ 0 & \text{otherwise} \end{cases}$$

$$= S_{pred}(\infty) \text{ or } \begin{cases} X_{pred}(2^k - n) & \text{if } k \text{ even} \\ G_{pred}(2^k - n) & \text{if } k \text{ odd} \end{cases}$$

$$D_{pred}(k) = \begin{cases} 1 & \text{if } \text{other}(n) \text{ within } k \text{ bits} \\ 0 & \text{otherwise} \end{cases}$$

$$= 1 - S_{pred}(k)$$
D_{pred} is 1 at both n and other(n), so half is count D,

$$S_k = \sum_{n=0}^{2^k} D_{\text{pred}}(n) \quad \quad D_k = \frac{1}{2} \sum_{n=0}^{2^k} D_{\text{pred}}(n)$$ \quad (75)

These sums can be calculated from the bit fields of other(n) per figure 8. This is more complicated than singles and doubles by the triangular shape above, but gives a combinatorial interpretation to the number of such points.

At each double-visited points the curve turns either left or right.

$$D_{\text{predLeft}}(n) = D_{\text{pred}}(n) \quad \text{and} \quad \text{turn}(n) = +1$$
$$D_{\text{predRight}}(n) = D_{\text{pred}}(n) \quad \text{and} \quad \text{turn}(n) = -1$$

A double-visited point with right turn encloses area on the left of the curve since the curve must eventually curl around to revisit the point and the triangular shape of the curve does not encircle the curve origin. Similarly a double with a left turn encloses area on the right of the curve.

$$\begin{align*}
\text{double-visited point} & \quad \text{right turn encloses} \\
\text{right turn} & \quad \text{square on left of curve}
\end{align*}$$

Each such double corresponds to an enclosed unit square, so similar to (75)

$$AR_k = \frac{1}{2} \sum_{n=0}^{2^k} D_{\text{predLeft}}(n) \quad \quad AL_k = \frac{1}{2} \sum_{n=0}^{2^k} D_{\text{predRight}}(n)$$

For the curve continued infinitely the left and right doubles are

$$D_{\text{predLeft}}(n) = D_{\text{pred}}(n) \quad \text{and} \quad \text{turn}(n) = +1$$

$$= 0, \ldots$$

$$= 1 \quad \text{at} \quad n = 6, 9, 13, 14, 22, 24, 25, 29, 30, 33, 36, 37, \ldots$$

$$= 0 \quad \text{at} \quad n = 0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15, \ldots$$

$$D_{\text{predRight}}(n) = D_{\text{pred}}(n) \quad \text{and} \quad \text{turn}(n) = -1$$

$$= 0, \ldots$$

$$= 1 \quad \text{at} \quad n = 3, 7, 11, 12, 15, 18, 19, 23, 26, 27, 28, 31, \ldots$$

$$= 0 \quad \text{at} \quad n = 0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 16, \ldots$$

These predicates are cross related,

$$D_{\text{predLeft}}(n) = D_{\text{predRight}}(2n)$$
$$D_{\text{predRight}}(n) = D_{\text{predLeft}}(2n)$$

since expanding to point $2n$ is the same single or double visited nature of n, and flips the turn left/right per the turn recurrence (1).

Single visited points are all on the boundary. They are left turns on the right boundary and conversely right turns on the left.
The counts of such points follow from the triangular shape. There is a single-visit of the respective turn between each boundary square. The start and end points have no turn so +2 in the total (76).

\[S_{\text{left}}_k = RQ_k - 1 = [1, 3, 2^{(k/2)} - 1, 2] \]
\[= 0, 1, 1, 4, 3, 10, 7, 22, 15, 46, \ldots \]
\[S_{\text{right}}_k = LQ_k - 1 = [2, 1], (2^{(k/2)} - 1) \]
\[= 0, 0, 2, 1, 6, 3, 14, 7, 30, 15, \ldots \]
\[S_k = S_{\text{left}}_k + S_{\text{right}}_k + 2 \quad (76) \]

Single-visited points with left turns in the curve continued infinitely are simply the \(x \) axis points \(X_{\text{pred}} \) except for \(n=0 \) where there is no turn. Similarly single-visited points with right turns are the \(x=y \) diagonal \(G_{\text{pred}} \) except for \(n=0 \).

8.1 Boundary Segment Numbers

Segments on the left boundary of the curve continued infinitely are the diagonal stair-step. They are the segments before and after the \(G_{\text{pred}} \) points,

\[L_{\text{pred}}_\infty(n) = G_{\text{pred}}_\infty(n) \text{ or } G_{\text{pred}}_\infty(n+1) \quad (77) \]
\[= \text{base-4 digits 0, 2 with optional low } 13\ldots33 \quad (78) \]
\[gL_{\text{pred}}_\infty(x) = \left(1 + \frac{1}{x}\right) gG_{\text{pred}}(x) - \frac{1}{x} \]
\[L_{\text{num}}_\infty(m) = G_{\text{num}}\left(\left\lfloor \frac{m+1}{2} \right\rfloor\right) - (m \text{ mod } 2) \quad m \geq 0 \quad (79) \]
\[= 0, 1, 2, 7, 8, 9, 10, 31, 32, 33, 34, 39, \ldots \quad \text{A270804} \]

(79) uses the low bit of \(m \) to select \(-1, 0\) for the \(n \) and \(n+1 \) cases at (77). There is no segment preceding point 0, hence \(m+1 \) to skip that.

Gawron and Ulas[6] reach \(L_{\text{pred}}_\infty \) as compositional formal inverse of the Thue-Morse sequence. They give digit form (78) for that result and note also \(L_{\text{num}} \) has runs of 4 consecutive integers so a low 2-bits can be taken from \(m \) to select those runs as

\[L_{\text{num}}(4m+r) = 4G_{\text{num}}(m) + r \quad \text{for } r = -1, 0, 1, 2 \]

Their inverse is for generating functions with terms taken mod 2 composed (either way) to cancel to just \(x \). \(gL_{\text{pred}}_\infty \) is without its constant 1 term.

\[h(x) = gL_{\text{pred}}_\infty(x) - 1 \]
\[g\text{ThueMorse}(h(x)) = h(g\text{ThueMorse}(x)) = x \quad \text{coeffs} \text{ mod 2} \]
ThueMorse\((n) = 0 \text{ or } 1 \equiv \text{CountOneBits}(n) \mod 2
\]
\[
= 0, 1, 1, 0, 0, 1, 1, 0, \ldots \quad \text{A010060}
\]
\[g\text{ThueMorse}(x) = x + x^2 + x^4 + x^7 + \cdots
\]

The inverse is unique since it is successive powers \(g\text{ThueMorse}(x)^j\), which have low term \(x^j\), summed to cancel successive terms other than the low \(x\). Gawron and Ulas reach the general result by solving a suitable identity on \(g\text{ThueMorse}\). An easy similar example is inverse of \(g\text{Xpred}\) without its low 1 term.

\[
h(x) = g\text{Xpred}(x) - 1
\]
\[
g\text{Xpred}(x) = (1+x) g\text{Xpred}(x^4) \quad \text{identity, base-4 low 0 or 1 } \quad (80)
\]
\[
h(x) + 1 = (1+x) (h(x^4) + 1)
\]
\[
h(x) = (1+x) h(x^4) + x \quad \quad \quad \quad \quad \text{(81)}
\]

Inverse \(v(x)\) is to satisfy \(h(v(x)) = x\). Substitute \(x \rightarrow v(x)\) into (81), and using \(g(x^2) = g(x)^2\) for any polynomial with coefficients \(\mod 2\),

\[
h(v(x)) = (1 + v(x)) h(v(x)^2) - v(x)
\]
\[
x = (1 + v(x)) x^2 - v(x)
\]
\[
v(x) = -1 + \frac{1 + x}{1 - x^4} \quad \text{inverse, coeffs \mod 2}
\]

0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, \ldots repeating

Taking a compositional inverse like this requires constant term 0. For \(g\text{Xpred}\) that can also be arranged by a shift up instead of subtract. The inverse of this is the Baum-Sweet sequence, also shifted.

\[
\text{BaumSweet}(n) = \begin{cases}
1 & \text{if } n \text{ in binary all runs of 0-bits are even length} \\
0 & \text{if } n \text{ in binary any run of 0-bits is odd length}
\end{cases}
\]
\[
= 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, \ldots \quad \text{A086747}
\]
\[
g\text{BaumSweet}(x) = x \cdot g\text{BaumSweet}(x^2) + g\text{BaumSweet}(x^4) \quad \quad \quad \quad \quad \text{(82)}
\]

Relation (82) is new low 1-bit copy the sequence and new low 00 bits copy the sequence. The rest low 10 is sequence zeros since the low 0 there is an odd length run.

\[
h(x) = x \cdot g\text{Xpred}(x)
\]
\[
\frac{1}{x} h(x) = (1+x) \frac{1}{x^4} h(x^4) \quad \text{from (80) again}
\]
\[
\frac{1}{v(x)} h(v(x)) = (1 + v(x)) \frac{1}{v(x)^4} h(v(x))^4
\]
\[
\frac{1}{v(x)} x = (1 + v(x)) \frac{1}{v(x)^2} x^2
\]
\[
\frac{1}{x^4} v(x)^4 = \frac{1}{x} v(x) + x, \frac{1}{x^2} v(x)^2 \quad \text{by multiplying } v(x)^5/x^5 \quad \quad \quad \text{(83)}
\]

and (83) \mod 2 is per (82) with \(v(x) = x \cdot g\text{BaumSweet}(x)\). A search of the OEIS
for sample values of v suggested Baum-Sweet, but it’s not too hard to recognise in (83) powers $v(x^2)$ and $v(x^4)$ are something bit-wise, then try factors of x each side.

Segments on the right boundary of the curve continued infinitely are two segments before and one after the X_{pred} points,

$$R_{pred\infty}(n) = X_{pred\infty}(n \text{ or } n+1 \text{ or } n+2)$$

$$= \text{base-4 optional low 03...32 or 03...33 then 0,1}$$

$$= 1,1,1,1,1,0,0,0,0,0,0,\ldots$$

Segment n has point n at its start, so in the following diagram $n+2$ goes forward from the segments marked to the x axis points shown with dots. From the segment expansions all of the axis is of these forms.

The m'th right boundary segment can be written in terms of the X_{pred} base conversion. An even and odd pair of x axis points have total 4 segments before and after, so an X_{num} of $m/2$ and adjust to take those segments. There are no segments before the initial $x=0,1$ pair, hence +1 and the offsets rotated.

$$R_{num\infty}(n) = X_{num}(\lfloor m/2 \rfloor + 1) - [1,0,2,1]$$

$$= 0,1,2,3,4,5,14,15,16,17,18,19,\ldots$$

$$\text{base-4 } = 0,1,2,3,10,11,32,33,100,101,102,103,\ldots$$

8.2 Enclosure Sequence

As each segment is successively appended to the curve it may enclose a new unit square on the right or left of the curve, or not.

A new enclosed unit square is formed when a point is re-visited. So a segment enclosing a unit square has the second-visit of a double-visited point at its end. In the $other(n)$ bit fields (figure 8) a second visit is where the highest bit to flip is a 1, so that $other(n)$ becomes smaller. Any further bits flipped are arbitrary.

$$D_{predFirst_k}(n) = D_{pred_k}(n) \text{ and } n < other(n)$$

$$D_{predFirst\infty}(n) = D_{pred\infty}(n) \text{ and } n < other(n)$$

$$= 0,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,0,1,1,\ldots$$

Draft 9 page 39 of 103
\[D_{\text{predSecond}}(n) = D_{\text{pred}\infty}(n) \text{ and } n > \text{other}(n) \]

\[= 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, \ldots \]

\[= 1 \text{ at } n = 7, 13, 14, 23, 26, 27, 28, 29, 31, 39, 45, \ldots \]

\[D_{\text{predFirst}}(n) \text{ is first visit to a point which will be re-visited within level } k. \]

\[D_{\text{predFirst}}(n) \text{ is the first visit to a point which will eventually be re-visited by the curve continued infinitely, which means a revisit either within } k, \text{ or in } k+1 \text{ across the join.} \]

For \(D_{\text{predSecond}} \) no distinction is needed between a level \(k \) and continuing infinitely since the other visit precedes \(n \).

Totals through to \(2^k \) are the number of double-visited points \(D \),

\[D_k = \sum_{n=0}^{2^k} D_{\text{predFirst}}(n) = \sum_{n=0}^{2^k} D_{\text{predSecond}}(n) \]

At each second-visit the curve turns either left or right. When it turns left it is away from the unit square just enclosed on the right. When it turns right it is away from the unit square just enclosed on the left. The turn is never to the same side as the square as that would overlap a side of that square.

Taking the second-visit predicate with turns is

\[D_{\text{predSecondL}}(n) = D_{\text{predSecond}}(n) \text{ and } \text{TurnLpred}(n) \]

\[= 1 \text{ at } n = 13, 14, 29, 45, 46, 49, 52, 53, 54, 56, 61, \ldots \]

\[D_{\text{predSecondR}}(n) = D_{\text{predSecond}}(n) \text{ and } \text{TurnRpred}(n) \]

\[= 1 \text{ at } n = 7, 23, 26, 27, 28, 31, 39, 55, 58, 71, 87, \ldots \]

The totals of these are then left and right side areas

\[A_{L_k} = \sum_{n=0}^{2^k} D_{\text{predSecondR}}(n) \quad A_{R_k} = \sum_{n=0}^{2^k} D_{\text{predSecondL}}(n) \]

Up to 3 unit squares can be enclosed consecutively on a given side. The next segment encloses the square between those 3 on the opposite side.
This is a run of 3 turns same direction all of which are second visits to double-visited points. The first such run for left enclosures occurs at points \(n=26, 27, 28 \) which are binary 11010, 11011, 11100.

There cannot be 4 or more consecutive same-side enclosures or that would be 4 turns and the segments would overlap.

Runs of right and left enclosures can occur. For example the point \(n=106 \) has a run of 8 consecutive enclosures. The following diagram shows how this run falls within the preceding segments.

A run of 8 is the longest which occurs. That can be seen by expressing \(\text{Dpred-Second} \) as a state machine on the bits of \(n \) and applying some state machine manipulations to make tests of \(n+1, n+2, \) etc. The intersection of \(\text{DpredSecond} \) of 9 terms \(n \) through \(n+8 \) inclusive is empty.

State machine manipulations on the 8 intersection shows the first of each \(\text{DpredSecond} \) run of 8 has base-4 digit pattern

\[
\text{DpredSecondEight} = \begin{array}{c}
\text{high} \\
\text{any} \quad \ldots \quad 1 \\
\ldots \quad 2 \quad \text{or} \quad 3 \\
\ldots \quad 2 \\
\ldots \quad 3 \\
\ldots \quad 22 \\
\text{repeat} \geq 0 \\
\text{low} \\
\text{repeat} \geq 0
\end{array} \quad \text{base-4}
\]

The last segment of a level \(k \) is non-enclosing so a run is entirely within a single level. The number of runs within level \(k \) follows from digit pattern combinations of how long the repeat digits,

\[
\text{EncEight}_k = \begin{cases}
0 & \text{if } k \leq 3 \\
\frac{3}{2} 2^{k-6} - 2 \left[\frac{1}{2} \right] - 2 \left[\frac{1}{3} \right] - 2 \left[\frac{1}{5} \right] + \left[\frac{1}{3} , \frac{1}{4} \right] & \text{if } k \geq 4 \\
= \frac{1}{3} \left(2 \left[\frac{k-5}{2} \right] - 1 \right) \left(2 \left[\frac{k-5}{2} \right] - (-1)^k \right) &
\end{cases}
\]

\[= 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 21, 35, 85, 155, \ldots \quad \text{A097038} \]
Runs of 8 all have the same enclosure side sequence shown in figure 12. This can be seen from turn(n) which is opposite to the enclosed side. It is bit above lowest 1 bit and its position, on base-4 low digits 222 through 301, and is the same when some 3s for 23...322.

9 Cumulative GRS

Brillhart and Morton[3] consider cumulative GRS (their s), and an alternating sign sum (their t)

\[
GRS_{\text{cumul}}(n) = \sum_{j=0}^{n} GRS(j) = 1,2,3,2,3,4,3,4,5,6,\ldots \quad A020986
\]

\[
GRS_{\text{cumulAlt}}(n) = \sum_{j=0}^{n} (-1)^j GRS(j) = 1,0,1,2,3,2,1,0,1,0,\ldots \quad A020990
\]

Per dsum and ddiff (36),(39) these correspond to coordinates in the alternate paperfolding curve. Most of the formulas by Brillhart and Morton have corresponding geometric interpretations.

\[
GRS_{\text{cumul}}(n) = \text{Manhattan}(\text{point}(n+1))
\]

\[
GRS_{\text{cumulAlt}}(n) = \text{Leading}(\text{point}(n+1))
\]

\[
\text{Manhattan}(z) = |\text{Re} z| + |\text{Im} z|
\]

\[
\text{Leading}(z) = |\text{Re} z| - |\text{Im} z|
\]

Or with one expand and per dx, dy at (37),(38),

\[
GRS_{\text{cumul}}(n) = \text{Re point}(2(n+1))
\]

\[
GRS_{\text{cumulAlt}}(n) = \text{Im point}(2(n+1))
\]

Blecksmith and Laud[2] calculate GRS_{cumul} by a chain of probability matrices on the bits of the target n.

Brillhart and Morton show $GRS_{\text{cumulAlt}}(n) = 0$ when $n+1$ written in binary has 0-bits at even positions. This is $G_{\text{pred}}(n+1)$ since $x-y=0$ is the $x=y$ diagonal. They show $GRS_{\text{cumul}}(n) = G_{\text{cumulAlt}}(n)$ when $n+1$ has 0-bits at odd positions. This is $X_{\text{pred}}(n+1)$ since point $x+y=x-y$ is when $y=0$ so the X axis.

They show too that $GRS_{\text{cumul}}(n) = s$ has exactly s many solutions. This corresponds to visits to an $s=x+y$ anti-diagonal. In the triangular shape of the curve there are $\lfloor s/2 \rfloor +1$ points on such a diagonal and the curve makes 2 visits.
to each, except the x axis only 1 visit, and when s even the $x=y$ diagonal point only 1 visit, for total s except $s=0$ which has 1 visit.

Among the many solutions there is a first and last. Brillhart and Morton establish the last one $GRScumulLastN$ (their formula here ahead at (91)), for use in bounds on $GRScumul(n)/\sqrt{n}$.

$$GRScumulFirstN(s) = \text{minimum } n \text{ for which } GRScumul(n) = s$$

$$= 0, 1, 2, 5, 8, 9, 10, 21, 32, 33, \ldots \quad s \geq 1 \quad \text{A212591}$$

$$\text{base-4 } = 0, 1, 2, 11, 20, 21, 22, 111, 200, 201, \ldots$$

$$GRScumulLastN(s) = \text{maximum } n \text{ for which } GRScumul(n) = s$$

$$= 0, 3, 6, 15, 26, 27, 30, 63, 106, 107, \ldots \quad s \geq 1 \quad \text{A020991}$$

$$\text{base-4 } = 0, 3, 12, 33, 122, 123, 333, 1222, 1223, \ldots$$

These correspond to first and last visits to a given $s = x+y$ anti-diagonal of the curve,

$$MfirstN(s) = \text{minimum } n \text{ for which } Manhattan(point(n)) = s$$

$$= GRScumulFirstN(s) + 1 \quad s \geq 1$$

$$= 0, 1, 2, 3, 6, 9, 10, 11, 22, 33, \ldots \quad \text{base-4 } = 0, 1, 2, 3, 12, 13, 22, 23, 24, 32, 33, \ldots$$

$$MlastN(s) = \text{maximum } n \text{ for which } Manhattan(point(n)) = s$$

$$= GRScumulLastN(s) + 1 \quad s \geq 1$$

$$= 0, 1, 4, 7, 16, 27, 28, 31, 64, 107, \ldots \quad \text{base-4 } = 0, 1, 10, 13, 100, 123, 130, 133, 1000, 1223, \ldots$$

Theorem 7. The n which is the first visit to anti-diagonal $s = x+y$ is given by

$$MfirstN(s) = 0 \text{ if } s=0, \text{ or otherwise}$$

$$= Gnum(h).4^k + Xnum(2^k-1) + 1$$

$$\text{for } s = h.2^{k+1} + 2^k$$

$$= 1 + \begin{cases}
\lfloor s/2 \rfloor \text{ in binary modified by:} \\
\text{if } s \text{ even change low 1000 to base-4 digits 1111,} \\
\text{other bits change to base-4 digits 0,2}
\end{cases}$$

$$= Xnum\left(\frac{s-1}{2}\right) + Xnum\left(\frac{s-1}{2}\right) + 1$$

In (85) the low 1000 can be zero or more low 0-bits becoming base-4 digit 1s.

Proof. $s=0, 1$ are $n=0, 1$ only. $s=2^k$ for $k \geq 1$ can be illustrated

![Diagram](image-url)
This anti-diagonal \(s \) is an unfold of the \(x=y \) leading diagonal, pivoting at point \(x=2^k-1 \) marked \(U \). The first point on \(s \) is the last on \(x=y \). The points on \(x=y \) are \(Gnum \) from theorem 6 which are increasing so the last is \(G \) at \(m = 2^{k-1} - 1 \) which becomes point \(M \) on \(s \) so that

\[
M_{\text{first}}(2^k) = 2.4^k - 1 - Gnum(2^{k-1} - 1) = \frac{1}{3}(4^k + 2) = Xnum(2^k - 1) + 1
\]

(87)

\(Xnum \) form (87) is simply that \(M \) is one segment above the \(x \) axis \(x=2^k-1 \). It and the \(\frac{1}{3}(4^k + 2) \) form hold for \(k=0 \) too. For \(2^k < s < 2^{k+1} \), the diagonal passes through the following curve sub-parts

\[
M_{\text{first}}(2^k+s) = 2.4^k - 1 + M_{\text{first}}(s) \quad 2^k < s < 2^{k+1}
\]

Each \(2.4^k - 1 \) here is a base-4 digit 2 corresponding to a bit of \(s \). Each digit is at \(k-1 \) so one position below the bit of \(s \) and thus giving \(Gnum(k).4^k \) of (84). Digits (85) are the \(Gnum \) and \(Xnum \) combination.

For the pair of \(Xnum \) at (86), when \(s \) odd the two are the same so doubling to \(Gnum \) base-4 digits 0,2. When \(s \) even the low 1000 of \(s \) is flipped in the floor thus giving low base-4 digits 1111 and above that the same in both. □

The curve location of the first visit follows from \(M \) on \(s=2^k \) for \(k \geq 1 \) then replications of that for other \(s \), so the lowest 1-bit of \(s \). For \(s=1 \) and all its replications as \(s \) odd, the point is \(\frac{1}{2} \) from the diagonal. In (88) that is handled by the absolute value.

\[
M_{\text{first}}Z(s) = \text{point}\left(M_{\text{first}}(s)\right)
\]

\[
= s \left(\frac{1+2^i}{2} + 2\left|\text{CountLowZeros}(s) - 2\right| \frac{1-2^i}{2}\right) \quad s \geq 1
\]

(88)

\[= \text{unexpand}\left(s + 2\left|\text{CountLowZeros}(s) - 2\right| \cdot 2^i\right)\]

\[= 0, 1, 1+i, 2+i, 3+i, 3+2i, 3+3i, 4+3i, 7+i, \ldots\]
Another geometric interpretation of location M is, for even \(s \), to follow down through gaps when corners of the curve are chamfered off, until reaching the last such gap. On reaching either a non-gap or the \(x \) axis the preceding point is M.

These gaps are all left turns in the curve too, since they are unfolds of the part 0 diagonal \(x = y \) which are right turns. So the M location is the last double-visited left turn of the run of such points starting from the top of the diagonal, if any.

Theorem 8 (variant of Brillhart and Morton). The \(n \) which is the last visit to anti-diagonal \(s = x+y \) is given by

\[
M_{\text{last}}(s) = \begin{cases}
0 & \text{if } s=0, \text{ and otherwise} \\
2^{2k+1} - \text{num}(2^{k+1} - s) & \text{where } 2^k \leq s < 2^{k+1} \\
= \begin{cases}
2^k, & \text{if } s = 2^k. \\
1 + \{\text{s in binary, change to base-4 digits 2,3,} \\
\text{highest change to 3 if } s=2^k, \text{ unchanged 1 if not} \\
\end{cases} & \text{otherwise}
\end{cases}
\]

(89)

(90)

Proof. For \(s=2^k \) the triangular shape means the last point \(n = 4^k \) of level \(2k \) is on the diagonal and is the last visit.

For \(2^k < s < 2^{k+1} \), the diagonal passes through the following curve sub-parts

Figure 13

Sub-parts

for \(M_{\text{last}} \)
Sub-part 3 is the maximum. It is a reverse curve going down from the top $n=2.4^k$, so seek the first n on a leading diagonal $d = x-y = 2^{k+1} - s$. This is in the range $2^{k-1} < d < 2^k$.

![Diagram](image)

The first visit to a leading diagonal is in sub-part 2. This starts at the middle $n=4^k−1$, so base-4 digit 1 for each bit of d until reaching a $d=2^k$ in which case from the triangular shape it is the point on the x axis, hence $Xnum(d)$ and returning to part 3 of figure 13 then (89).

Digits (90) follow from the $Xnum$ subtraction. Bits of $2^{k+1}−s$ are bits of $s−1$ flipped $0\leftrightarrow1$ then subtraction from 2^{2k+1} flips the sense again so base-4 digits 2,3 except the highest stays as 1. When $s=2^k$ changing the highest to 3 too gives the $n=4^k$ result (which is a high digit 1 too).

Brillhart and Morton[3] expand recurrences for $GRScumulLastN$ to reach

$$GRScumulLastN(s) = s - 1 + \frac{2}{3}(4^r-1) + 2 \sum_{j=0}^{r-1} \left\lfloor \frac{s-1}{2^{j+1}} \right\rfloor . 4^j \quad (91)$$

where $2^r \leq s < 2^{r+1}$

This is the digits form (85) of $MfirstN(s-1)$, without 1+. The sum part of (91) is base conversion binary to base-4 digits 0,1,

$$t + 2 \sum_{j=0}^{r-1} \left\lfloor \frac{t}{2^{j+1}} \right\rfloor . 4^j = t \text{ binary change to base-4 digits 0,1}$$

At $j=0$ the sum term is bits of t above the lowest and this is added to t at bit position 1 so doubling those bits, moving them to bit position 2. At $j=1$ the term does similar to bits above the two lowest, and so on spreading bits out to base-4.

$2/3(4^r-1)$ is base-4 all digit 2s so adds to give base-4 digits 2,3. The selection of r in (91) handles the different cases $s=2^k$ or $\neq 2^k$ at (85). Selecting r from s rather than $s−1$ means for $s=2^k$ the resulting r is 1 bigger and $\frac{2}{3}(4^r-1)$ has an extra high 2 to add, so high digit 3.

In theorem 8 the locations of $MlastN$ are the vertical side of sub-part 3 of figure 13. So for $s\geq1$ the real part is the high bit of s and the imaginary part is the remainder.

$$MlastZ(s) = \text{point}(MlastN(s))$$

$$= 2^k + r.i \quad \text{where } s = 2^k+r \text{ with } 0<r<2^k, \quad s\geq1$$

$$= 0, 1, 2, 2+i, 4, 4+i, 4+2i, 4+3i, 8, \ldots$$

Re A053644, Im A053645
The distance of each M_{lastZ} from the $x=y$ diagonal, measuring along the anti-diagonal, is 2^k at $s=2^k$ then decreasing down to 1, so high bit of s subtract remaining bits. Brillhart and Morton have this as

$$GRS_{cumulAlt}(GRS_{cumulLastN}(s)) = 2^k - r$$

where $s = 2^k + r$ with $0 \leq r < 2^k$

$$= 0, 1, 2, 1, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 16, \ldots$$

which corresponds here to

$$Leading(M_{lastZ}(s)) = \begin{cases} 0 & \text{if } s=0 \\ 2^k - r & \text{if } s \geq 1 \end{cases}$$

Visits to columns of given x follow from the anti-diagonals. On **expand** the anti-diagonals become columns. There is an extra point preceding the first, so -1 in (92).

$$V_{firstN}(x) = \text{minimum } n \text{ for which } Reo\text{point}(n) = x$$

$$= 2 M_{firstN}(x) - 1 \quad x \geq 1 \quad (92)$$

$$= 0, 1, 3, 5, 11, 17, 19, 21, 43, 65, \ldots$$

$$V_{lastN}(x) = \text{maximum } n \text{ for which } Reo\text{point}(n) = x$$

$$= 2 M_{lastN}(x)$$

$$= 0, 2, 8, 14, 32, 54, 56, 62, 128, 214, \ldots$$

On further expansion columns become anti-diagonals again, but only the even anti-diagonals. All points on such an even diagonal are from the column so direct relations

$$M_{firstN}(2x) = 2 V_{firstN}(x)$$

$$M_{lastN}(2x) = 2 V_{lastN}(x)$$

Brillhart and Morton consider those n in the range $4^k \leq n < 4^{k+1}$ where $s = GRS_{cumul}(n)$ is a minimum. They show there are two n with equal minimum $s = 2^k + 1$. One is the range start $n = 4^k$. The other, for $k \geq 1$, is their m_k. (At $k=0$ have $m_k = 1$ which is the range start 4^k and the other equal minimum is instead $n=3$.)

$$m_k = \frac{1}{5} (54^k - 2)$$

$$= 1, 6, 26, 106, 426, 1706, 6826, \ldots \quad k \geq 0 \quad A020989$$

$$= GR_{cumulLastN}(2^k + 1) \quad \text{for } k \geq 1$$
With $GRScumul(n) = Manhattan(point(n+1))$ the two n can be illustrated in the curve,

![Diagram](image.png)

Brillhart and Morton observe $GRScumul(n)$ grows as \sqrt{n} and show ratio within

$$\frac{\sqrt{3}}{5} < \frac{GRScumul(n)}{\sqrt{n}} < \sqrt{6} \quad (93)$$

They establish the upper bound by considering ranges of n and possible $GRScumul$ in those ranges. For the lower bound they use $GRScumulLastN$ by showing $s/\sqrt{GRScumulLastN(s)} > \sqrt{\frac{2}{3}}$ for all s.

Some ranges for the lower bound are possible too. Sub-curves of the paper-folding curve help to see which ranges to use.

Theorem 9 (Brillhart and Morton).

$$\frac{\sqrt{3}}{5} < \frac{GRScumul(n)}{\sqrt{n}}$$

Proof. The theorem can be verified explicitly for $n < 8$. Suppose then it is true up to $n < 2.4^k$ for some $k \geq 1$. The following diagram shows sub-curves up to $n = 8.4^k$. Each sub-curve is length $n = \frac{1}{2}4^k$.

![Sub-curves](image.png)

The end of sub-curve 3 is $n = 2.4^k$. All n above there have
\[s = \text{GRScumul}(n) = \text{Manhattan}(\text{point}(n+1)) \geq 2^{2^k} \quad \text{for } n \geq 2.4^k \]

All \(n = 2.4^k \) to \(m_{k+1} \) inclusive can use this minimum \(s \) for

\[\frac{\text{GRScumul}(n)}{\sqrt{n}} \geq \frac{2^{2^k}}{\sqrt{m_{k+1}}} = \frac{2^{2^k}}{\sqrt{3.20.4^k}} = \sqrt{\frac{3}{5}} \]

Sub-curves 14 and 15 are \(n = 7.4^k \) to \(8.4^k \) and they have \(s \geq 3.2^k \) so for them

\[\frac{\text{GRScumul}(n)}{\sqrt{n}} > \frac{3.2^k}{\sqrt{8.4^k}} = \frac{3}{\sqrt{8}} > \sqrt{\frac{3}{5}} \]

Sub-curve 13 is a copy of sub-curve 3 shifted by +2 \(k \) horizontally and \(n \) offset +5.4\(k \). Take an \(n + 5.4^k > m_{k+1} \) in sub-curve 13. This is \(n > m_k \) in sub-curve 3 since \(m_{k+1} = m_k + 5.4^k \). Then

\[
\frac{\text{GRScumul}(n + 5.4^k)}{\sqrt{n + 5.4^k}} = \frac{\text{GRScumul}(n) + 2^k}{\sqrt{n + 5.4^k}} > \frac{\sqrt{n + 2^k}}{\sqrt{n + 5.4^k}} \quad \text{induction}
\]

\[
= \sqrt{\frac{(\sqrt{n + 2^k})^2}{n + 5.4^k}} = \sqrt{\frac{3 + 2\sqrt{n + 2^k} - 2.4^k}{n + 5.4^k}}
\]

\[
> \sqrt{\frac{3 + 2\sqrt{n + 2^k} - 2.4^k}{n + 5.4^k}} = \sqrt{\frac{3}{5}}
\]

Sub-curve 13 after \(m_{k+1} \) has bigger \(n \) so it’s not enough to use just \(s \geq 2^{2^k} \), it must be shown \(s \) becomes bigger too. Appealing to sub-curve 3 handles that by equivalents of sub-curves 14 and 15 within the sub-part, recursively down.

\[n = 2.4^k \]

successive sub-curves like 14 and 15 after \(m_k \) within part 3

Ratios \(s = \text{GRScumul}(n)/\sqrt{n} = x+y \) and \(t = \text{GRScumulAlt}(n)/\sqrt{n} = x-y \) can be illustrated by plotting the paperfolding curve as \(\text{point}(n+1)/\sqrt{n} \). The following diagram is an approximation to the resulting limit set as \(n \to \infty \).
This approximation is made by taking a little triangle on the side of each segment $n+1$. Points of sub-curves there will be shrunk (towards the origin) by between $1/\sqrt{n}$ and $1/\sqrt{n+1}$. Shrinking the triangle corners by each gives a polygon which is an upper bound on where points in the sub-curve might fall. The orientation of the triangle is from the segment direction.

So indentations and holes shown in figure 15 are definitely empty, but the solid areas are only upper bounds and may have more holes or indentations. Many of the holes are small and can be seen only at high resolution.

Brillhart, Erdős and Morton[4] show limits s/\sqrt{n} and t/\sqrt{n} are continuous, which means the shape in figure 15 is connected. Geometrically, the curve path is variously shrunk by $1/\sqrt{n}$ but remains continuous. They draw plots of those coordinate functions against fractional n too.

Brillhart and Morton[3] had shown too all values $\sqrt{2}$ to $\sqrt{6}$ in (93) occur as limits $s = x + y$. The geometric interpretation is that a projection of the shape onto the $x=y$ diagonal fills that extent. Similarly their $t = 0$ to $\sqrt{3}$ is a projection onto an $x=−y$ anti-diagonal.

The portion of the $x=y$ diagonal between $\sqrt{2}$ and $\sqrt{6}$ is in fact filled already by points on that diagonal, as shown by Gawron and Ulas[6] (on squared reciprocal ratios) in the context of $Lnum_{\infty}$ (and $Gnum$) which is 1-bit positions of their inverse of Thue-Morse.

Theorem 10 (Gawron and Ulas). Those n with $GRScumulAlt(n) = 0$, being $n = Gnum(s) − 1$, have ratios $GRScumul(n)/\sqrt{n}$ which are dense in the range $\sqrt{2}$ to $\sqrt{6}$.

Proof. $n = Gnum(s) − 1$ gives $GRScumul(n) = 2s$ so ratios to be considered are $2s/\sqrt{Gnum(s) − 1}$.

The lower bound is approached by $s=2^k$ which has $n = Gnum(2^k) − 1 = 2.4^k−1$.

Figure 15
sub-curve filling, upper bounds,
$k=4$
$n+1 = 4^k$
to $4^{k+1}−1$
The upper bound is approached by \(s = 2^{2^k} - 1 \) which per Brillhart and Morton is \(Gnum(s) = \frac{1}{2} (4.4^k - 1) \).

For \(s \) in between, the ratios are dense if squares of the ratios are dense. The increment from one squared ratio to the next is, for \(k > 3 \),

\[
\frac{4(s+1)^2}{Gnum(s+1) - 1} - \frac{4s^2}{Gnum(s) - 1} < \frac{8s + 4}{2^{2k + 1}} \leq \frac{1}{2^{k-3} - 1} \tag{94}
\]

These increments run from the lower bound to the upper bound and are made arbitrarily small by choosing \(k \) big enough.

Gawron and Ulas show density by constructing a sequence of \(s \) which converges to a given desired \(q \), by taking a new low 1-bit on \(s \) whenever doing so remains \(\geq q \) (corresponding to \(\leq \) ratio here). They show always infinitely many 0-bits and therefore arbitrarily close to \(q \) because the step for 1-bit could not be made.

The increments at (94) can be negative, but the upper bound ensures they cover the range as they go low to high. Increments are negative when enough low 1-bits of \(s \).

Theorem 11. Step \(2s/\sqrt{Gnum(s) - 1} \) to \(2(s+1)/\sqrt{Gnum(s+1) - 1} \) is an increase or decrease according to, with \(k = \lceil \log_2 s \rceil \) so \(2^k \leq s < 2^{k+1} \),

\[
\begin{align*}
\text{increase} & \quad \text{if } \text{CountLowOnes}(s) \leq \lceil k/2 \rceil \\
\text{decrease} & \quad \text{if } \text{CountLowOnes}(s) > \lceil k/2 \rceil \\
\text{unchanged} & \quad \text{never}
\end{align*}
\tag{95}
\]

Proof. Let \(dGnum \) be \(Gnum \) increment.

\[
dGnum(s) = Gnum(s+1) - Gnum(s) \\
= \frac{1}{3} (4 \text{CountLowOnes}(s+1) + 2) \\
= 2, 6, 22, 2, 6, 2, 86, 2, 6, 2, 22, \ldots \tag{96}
\]

(96) is since \(s+1 \) changes \(s \) low bits 0111 to 1000, giving corresponding changes in the bits of \(Gnum \).

GRS ratio squared steps are

\[
\frac{4(s+1)^2}{Gnum(s+1) - 1} - \frac{4s^2}{Gnum(s) - 1} = \frac{(8s+4)(Gnum(s) - 1) - 4s^2 (Gnum(s+1) - Gnum(s))}{(Gnum(s) - 1)(Gnum(s+1) - 1)}
\]

The numerator is

\[
\text{step} = (8s+4) (Gnum(s) - 1) - 4s^2 dGnum(s)
\]

\(\text{step} \neq 0 \) since \(Gnum \) and \(dGnum \) are both even so first term \(\equiv 4 \mod 8 \) and second term \(\equiv 0 \mod 8 \).
To find where \(step \) is an increase, make a lower bound for \(Gnum(s) \) by comparing \(3Gnum(s) \) and \(s2^{k+2} \). They have high 1-bit at the same place, but \(3Gnum(s) \) is each bit of \(s \) repeated so the highest 0-bit of \(s2^{k+2} \) has a 1-bit in \(3Gnum(s) \). For example,

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}
\]

\(Gnum(s)\)
\(s2^{k+2}\)

high 0 of \(s \) -

\(2^{k+1}\) is immediately below the bits of \(s \) in \(s2^{k+2} \), and it can be added without exceeding \(Gnum(s) \). If \(3Gnum(s) \) has a 0-bit there, as shown in the example, then that comes from a 0-bit in \(s2^{k+2} \) at some higher position. The highest 0-bit of \(s2^{k+2} \) has a 1-bit in \(Gnum(s) \) so bigger. Thus, with equality at \(s=1 \),

\[3Gnum(s) \geq s2^{k+2} + 2^{k+1}\]

Using this, writing \(l = \text{CountLowOnes}(s) \), and at (97) using \(s+1 \leq 2^{k+1} \),

\[
\begin{align*}
\text{step} & \geq (8s+4)\left(\frac{1}{3}s2^{k+2} + \frac{1}{3}2^{k+1} - 1\right) - 4s^2\frac{1}{3}(2^{2l+2} + 2) \\
& = \frac{4}{3}s\left(2^{k+3} - 2^{2l+2} + (4s+1)2^{k+1} - (2s+4)(s+1) + 1\right) \\
& \geq \frac{4}{3}s\left(2^{k+3} - 2^{2l+2} + (4s+1)2^{k+1} - (2s+4)2^{k+1} + 1\right) \quad (97) \\
& = \frac{4}{3}s\left(2^{k+3} - 2^{2l+2} + (2s-3)2^{k+1} + 1\right) \\
& > \frac{4}{3}s\left(2^{k+3} - 2^{2l+2}\right) \quad \text{for } s \geq 2 \\
& \geq 0 \quad \text{when } k+3 \geq 2l+2 \text{ so } l \leq \lfloor k/2 \rfloor \text{ per (95)}
\end{align*}
\]

Case \(s=1 \) can be verified explicitly. It is not an increase and does not have \(l \leq \lfloor k/2 \rfloor \).

To find where \(step \) is a decrease, make a simple upper bound for \(Gnum(s) \) by shifting \(s \) up to the same high bit position,

\[Gnum(s) \leq s2^{k+1}\]

\(Gnum \) has \(s \) bits spread down with 0s between, so the second-highest 1-bit of \(s2^{k+1} \) has a 0-bit at corresponding position in \(Gnum \). Equality is when \(s=2^k \) which has no further 1-bit. So

\[
\begin{align*}
\text{step} & \leq (8s+4)(s2^{k+1} - 1) - 4s^2\frac{1}{3}(2^{2l+2} + 2) \\
& = \frac{4}{3}s^2(3.2^{k+2} - 4.2^{2l+4}) + 4s2^{k+1} - 8s^2 - 8s - 4 \\
& < \frac{4}{3}s^2(3.2^{k+2} - 4.2^{2l+4}) - 8s - 4 \quad \text{using } s \geq 2^k \quad (98) \\
& \leq 0 \quad \text{when } 2l \geq k+2 \text{ so } l > \lfloor k/2 \rfloor \text{ converse of (95)}
\end{align*}
\]

At (98), the +4 is overcome when \(2l \geq k+2 \) since difference \(3.2^{k+2} - 4.2^{2l} < 3.2^{k+2} - 4.2^{k+2} = -2^{k+2} \leq -4 \).
10 Midpoint Curve

A midpoint curve can be made by connecting the midpoints of each segment of the alternate paper folding curve.

$$\text{midpoint}(n) = \frac{1}{2}(\text{point}(n) + \text{point}(n+1))$$

The alternate paper folding curve turns $\pm 90^\circ$ so the midpoint curve goes by diagonals. At each midpoint the midpoint curve can turn $+90^\circ$, 0° or -90° according to the paper folding curve $\text{turn}(n)$ (section 2) before and after that midpoint.
Counting the first midpoint point as $n=0$, the first midpoint curve turn is at $n=1$. The alternate paperfolding curve vertices before and after midpoint n are $\text{turn}(n)$ and $\text{turn}(n+1)$. The midpoint turn sequence is then

$$M\text{turn}(n) = \begin{cases} \text{turn}(n) & \text{if } \text{turn}(n) = \text{turn}(n+1) \\ 0 & \text{if } \text{turn}(n) = -\text{turn}(n+1) \end{cases} \quad n \geq 1$$

$$= \frac{1}{2} \text{sturn}(n) \quad \text{from (10)}$$

$$= 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, \ldots$$

11 Graph

The alternate paperfolding curve as a graph is, by its construction, a planar unit distance graph and has an Euler path from start to end (traverse all edges once). It is bipartite like any graph on a square grid since vertices can be separated into those with coordinates $x+y$ odd or even and edges are only between odd and even.

The curve has no Hamiltonian path start to end (visit all vertices once) for $k \geq 3$ since the curve start and end are degree-1, and the other corner of the triangle shape has a hanging square. All three of these would have to be ends of a Hamiltonian path.

If the hanging square is removed then for $k \geq 4$ there is still no Hamiltonian path since start and end lead to vertices with two degree-2 neighbours. A path entering or leaving at the centre vertex shown cannot visit both the upper and lower.

An independent edge set in a graph is a set of edges with no end vertices in common, also called a matching since it is vertices in pairs with edge between. A perfect matching is all vertices in such pairs. A perfect matching is possible only for an even number of vertices.

The alternate paperfolding curve points P_k is even for $k=0$ or $k \geq 3$ but there is no perfect matching except the single pair $k=0$. For $k \geq 3$ the start vertex must pair with the vertex to its right, which leaves the vertex at $1+i$ only able to pair with the vertex to its right, and so on up the $x=y$ diagonal. For k even this leaves the hanging square at the top only able to pair 3 of its 4 vertices. For k odd this leaves the end vertex at the top unpaired.
11.1 Diameter and Wiener Index

Shortest paths in the graph are by stair step. From the triangular shape of the expansions the diameter of the graph is

\[
\text{Diameter}_k = \begin{cases}
1, 2, 4 & \text{if } k \leq 2 \\
2^{\lfloor k/2 \rfloor} + [-1, 1] & \text{if } k \geq 3
\end{cases}
\]

\[
= 1, 2, 4, 5, 7, 9, 15, 17, 31, 33, \ldots
\text{A086341}
\]

The diameter endpoints are unique for all \(k \). In \(k \leq 2 \) they are path start to end. For \(k \geq 3 \) they are curve start to the far corner away from start and end.

For \(k \) odd \(\geq 3 \) the diameter path is unique to the hanging square then 2 choices there. For \(k \) even the path up the triangle can take horizontal and vertical steps in any order not going above the diagonal. The number of such paths A to B is the Catalan numbers (one of their many interpretations).

\[
\text{Catalan}(n) = \frac{1}{n+1} \binom{2n}{n} = 1, 1, 2, 5, 14, 42, 132, \ldots \text{ A000108}
\]

The hanging square at D has 2 paths C to D whereas C-B just one in the triangle A-B, so count 2×. The curve height then gives

\[
\text{DiameterCount}_k = \begin{cases}
1 & \text{if } k \leq 2 \\
2 & \text{if } k \text{ odd } \geq 3 \\
\frac{2}{h-1} \binom{2h-4}{h-2} & \text{if } k \text{ even } \geq 4, \text{ with } h = 2^{k/2}
\end{cases}
\]

\[
= 1, 1, 1, 2, 4, 2, 264, 2, 5348880, \ldots
\]

The Wiener index is a measure of total distance between pairs of vertices in a graph.

\[
\text{Wiener index} = \frac{1}{2} \sum \text{distance}(u, v) \tag{99}
\]

Factor \(\frac{1}{2} \) has the effect of taking distance between a pair \(u, v \) in just one direction, not also its reverse \(v, u \).

Theorem 12. The Wiener index of the alternate paperfolding curve \(k \) graph is

\[
W_k = \left[\frac{1}{15}, \frac{11}{120} \right] 4^k 2^{\lfloor k/2 \rfloor} + \left[\frac{1}{12}, \frac{11}{24} \right] 4^k + \left[\frac{7}{16}, 1 \right] 2^{\lfloor k/2 \rfloor} + \left[\frac{125}{1728}, 2^k \right] 2^k - \left[\frac{12}{5}, \frac{131}{360} \right] 2^{\lfloor k/2 \rfloor}
\]

\[
= 1, 4, 20, 65, 272, 1022, 4768, 20780, \ldots
\]
Proof. For even k it’s convenient to start from a whole triangle and adjust for absent parts.

\[T(n) = \sum_{j=1}^{n} j = \frac{1}{2} n(n+1) \text{ triangular numbers} \quad (100) \]

\[= 0, 1, 3, 6, 10, 15, 21, \ldots \quad A000217 \]

\[W_{\text{triangle}}(n) = 2 \sum_{j=1}^{n-1} T(j) \cdot (T(n) - T(j)) \]

\[= \frac{1}{30} (n-1)n(n+1)(n+2)(2n+1) \]

\[= 0, 0, 4, 28, 108, 308, 728, 1512, \ldots \quad n \geq 2 \quad A067056 \]

The paperfolding curve does not have the top-most vertex. The total path lengths to it to be subtracted are distance down to each row then lengths along are the triangular numbers sums.

\[W_{\text{triangleTop}}(n) = \sum_{j=2}^{n} j(j-1) + T(j-1) = \frac{1}{2} (n-1)n(n+1) \]

\[= 0, 0, 3, 12, 30, 60, 105, 168, \ldots \quad A027480 \]

Along the x axis every second edge is absent in the paperfolding curve. Affected paths are between vertices on the axis and each must be 2 longer to go up and along the $y=1$ row. Affected paths are those across an odd to even x. So for n vertices

\[W_{\text{extra}}(n) = \sum_{x=0}^{n-2} \sum_{x_2=x+2-[0,1]}^{n-1} 2 = (n-1)^2 - [1,0] \]

\[= 0, 0, 0, 4, 8, 16, 24, 36, \ldots \quad A137932 \]

Every second edge of the right-most vertical is absent too. The net Wiener index of the even case curve height n is then

\[W_{\text{even}}(n) = W_{\text{triangle}}(n) - W_{\text{triangleTop}}(n) + W_{\text{extra}}(n) + W_{\text{extra}}(n-1) \quad \text{for } n \geq 1 \]

\[= \frac{1}{30} n (2n^4 + 7n^3 - 8n^2 + 47n - 120) \]

\[= 0, 1, 20, 90, 272, 663, 1404, \ldots \quad n \geq 1 \]

Draft 9 page 56 of 103
For odd k a similar calculation can be made starting from a pyramid of height n. Its total number of vertices is n^2. Rows of edges have a square number of vertices above and the rest below. Columns up to the middle have a triangular number of vertices to the left and the rest to the right. By symmetry the columns after the middle are the same. The paperfolding curve has the right-most x axis vertex absent, and every second edge of the x axis absent.

\[
W_{\text{pyramid}}(n) = \sum_{j=1}^{n-1} j^2 (n^2 - j^2) + 2 \sum_{j=1}^{n-1} T(j) (n^2 - T(j)) \\
= \frac{1}{30} (n-1)n(n+1)(11n^2+1) \\
= 0, 0, 9, 80, 354, 1104, 2779, 6048, \ldots
\]

\[
W_{\text{pyramidEnd}}(n) = \sum_{j=2}^{n} j(j-1) + T(j-1) \\
+ \sum_{j=1}^{n-1} j(2n-1-j) + T(j-1) \\
= \frac{1}{6} (n-1)n(8n-1) \\
= 0, 0, 5, 23, 62, 130, 235, 385, \ldots
\]

\[
W_{\text{odd}}(n) = W_{\text{pyramid}}(n) - W_{\text{pyramidEnd}}(n) \quad n \geq 1 \\
+ W_{\text{extra}}(2n-2) \\
= \frac{1}{30} (n-1)(11n^4 + 11n^3 - 39n^2 + 126n - 240) \\
= 0, 4, 65, 316, 1022, 2624, 5783, \ldots \quad n \geq 1
\]

With height of the paperfolding curve $2^{[k/2]} + 1$ many vertices,

\[
W_k = \left[\text{Weven}(2^{[k/2]} + 1), \text{Wodd}(2^{[k/2]} + 1) \right]
\]

The Wiener index can be used for mean path length between pairs of vertices. Such a mean is usually taken over vertex pairs in one direction (like the Wiener index) and excluding a vertex to itself, so pairs are binomial

\[
\frac{W_k}{\text{Pairs}_k} = 1, 3, 10, 28, 91, 276, 946, \ldots
\]

This mean path length can be expressed as a fraction of Diameter which is the longest path.

\[
\frac{W_k}{\text{Pairs}_k \cdot \text{Diameter}_k} \to \frac{4}{15} = .2666 \ldots \text{ if } k \text{ even} \quad (101) \\
\to \frac{11}{30} = .3666 \ldots \text{ if } k \text{ odd}
\]

A040006
These are the same means as in the whole triangle or whole pyramid graphs respectively, essentially since the modifications made for the alternate paper-folding are only linear out of quadratic total paths.

A geometric distance calculation can be made to give x and y distance between two points n and m in curve k (going 0 to 2^k, not just the distinct locations). Like the Wiener index the sum here is n to m and not also back the other way. So for example $WV_0 = 1$ is the single segment $z=0$ to $z=1$.

$$WV_k = \sum_{n=0}^{2^k} \sum_{m=n+1}^{2^k} ReImDiff\left(point(n), point(m)\right)$$

(102)

$$ReImDiff(z_1, z_2) = |Re(z_1-z_2)| + |Im(z_1-z_2)|i = \left(\left[\frac{1}{15} + \frac{2}{15}i, \frac{7}{15} + \frac{2}{15}i\right]4^k + \left[\frac{2}{3} + \frac{1}{3}i, \frac{2}{3} + \frac{2}{3}i\right]2^k + \left[\frac{1}{3} - \frac{7}{15}i, -\frac{4}{15} + \frac{2}{15}i\right]\right)2^{k/2}$$

(103)

The sum at (102) can be calculated using the triangular shape of level k. Points on the boundary lines are single-visited and points inside are double-visited for total 2^k+1. Working through those sums and locations gives the power form (103). (It can be convenient to start with a triangle or pyramid of height n like above then put in $n = 2^{k/2}$.)

The limit mean x, y distances between points is different in k even or odd. Using height $2^{k/2}$ as a scale factor,

$$WV_{pairs} = \frac{\left(2^{k+1}\right)}{2} = 1, 3, 10, 36, 136, 528, 2080, \ldots$$

A007582

$$\frac{WV_k}{WV_{pairs}, 2^{k/2}} \rightarrow \frac{4}{15} + \frac{4}{15}i = .2666… + .2666…i \text{ if } k \text{ even}$$

$$\rightarrow \frac{7}{15} + \frac{4}{15}i = .4666… + .2666…i \text{ if } k \text{ odd}$$

These limits are the same as two points chosen in the respective triangle or pyramid, ignoring single or double visited. The single-visited points in the curve are only $2^{k/2}$ out of the 2^k total, so do not affect the limit.

The k even Re and Im limits are the same by symmetry and per the coefficient of the high 4^k term in (103). The other terms are different Re, Im since there is no top-most point $2^{k/2}(1+i)$. With Leading for Re − Im difference,

$$Leading(WV_k) = \left(\frac{1}{3}2^k + \frac{2}{3}\right)2^{k/2} \text{ k even}$$
\[= - \sum_{n=0}^{2^k} \text{Leading}\left(2^{k/2}(1+i) - \text{point}(n)\right) \]

\[= 1, 4, 24, 176, 1376, 10944, \ldots \quad k \text{ even} \]

12 Twin Alternate

Two copies of the alternate paperfolding curve can be placed back to back, start to end. Call this a twin alternate. The sides touching are either the \(x\) axis or the \(x=y\) diagonal according as even or odd level. In both cases they mesh perfectly.

It’s convenient to number twin alternates starting \(k=0\) as a unit square, so that level \(k\) is four curves level \(k\), which is two curves \(k+1\). This numbering gives \(2^k\) unit squares inside, and all expansions have non-overlapping segments.

\[k \text{ even} \quad \text{start} \rightarrow \text{end} \quad k \text{ odd} \quad \text{four sides} \]

\[\text{start} \rightarrow \text{end} \quad \text{each level } k \]

The sub-curve shown thick is the plain curve in its normal direction, first segment East. The initial levels are then

\[\text{start} \rightarrow \text{end} \quad k=0 \quad \text{start} \rightarrow \text{end} \quad k=1 \quad \text{start} \rightarrow \text{end} \quad k=2 \quad \text{start} \rightarrow \text{end} \quad k=3 \quad \text{start} \rightarrow \text{end} \quad k=4 \quad \text{start} \rightarrow \text{end} \quad k=5 \]

In terms of two back to back curves the shape is

\[\text{start} \rightarrow \text{end} \quad k \text{ even} \quad \text{start} \rightarrow \text{end} \quad k \text{ odd} \]

The expand rule from figure 2 holds for the twin alternate, with suitable rotation. However the mirror image in that rule means whereas the inside was on the left of the segments going anti-clockwise, after that mirror image the same segments go clockwise and the inside is on the right.

Each twin alternate level is a subset of the preceding. This can be seen in sub-curves of the sides
For $k+1$ odd its sub-curves are two k even twin alternates. The second copy attaches up at the North West corner. Similarly $k+1$ even has sub-curves two k odd. The second copy attaches on the right at the East corner.

The unit squares inside the twin alternate can be numbered according to these copies. A given k is copied either North West or East according as k even or odd. The result is a kind of Z-order replication progressing away from the initial unit square at the origin. Each alternate bit of n goes either $i-1$ North West or $2i$ East. The bottom left corner of each unit square is then

\[
TSquare(n) = (i-1)x + 2y = 2y-x + xi
\]

\[
x = \text{even position bits of } n
\]

\[
y = \text{odd position bits of } n
\]

\[
T_B(k) = 2Bk = 4, 8, 16, 24, 40, 56, 88, \ldots
\]

\[
T_{BQ}(k) = 2BQ_k = 4, 6, 10, 14, 22, 30, 46, \ldots
\]

The number of distinct points is the parallelogram shape extents, less one at each far corner

\[
TP_k = (2^{\left\lfloor k/2 \right\rfloor + 1})(2^{\left\lfloor k/2 \right\rfloor + 1}) - 2
\]

\[
= 2^{k+1} - 2
\]

\[
= 4, 7, 13, 23, 43, 79, 151, 287, \ldots
\]

Theorem 13. The diameter of twin alternate k as a graph is

\[
T_{diameter}k = [3, 4]2^{\left\lfloor k/2 \right\rfloor} - 2
\]

\[
= \frac{1}{2}B_{k+1} = BQ_{k+1} - 1
\]

\[
= 2, 4, 6, 10, 14, 22, 30, \ldots
\]
\[T_{diameterCount} = \begin{cases}
2 & \text{if } k=0 \\
4 \left(\frac{4h-4}{h-2} \right) \frac{4h^2 + 4h + 6}{3h(3h-1)} & \text{if } k \text{ even } \geq 2 \\
4 \left(\frac{3h-4}{h-2} \right) \frac{h^2 + h + 6}{2h(2h-1)} & \text{if } k \text{ odd}
\end{cases}
\]

where \(h = 2^{\lceil k/2 \rceil} \)

\[= 2, 4, 4, 52, 172, 50388, 802620, \ldots \]

Proof. Since the grid is convex, distances between vertices are the geometric stair-step, except within the top or bottom rows where there are absent edges. Those absent edges add +2 to relevant paths but those distances are still smaller than top left to bottom right.

The correspondence to boundary length at (106) is since the lengths across and diagonally up go as the boundaries of the component paperfolding curves.

Diameter paths go A–E through a grid like

It’s convenient to count paths across the parallelogram grid B to D. The hanging square at A has 2 paths A–C whereas 1 path B–C, so 2 times the parallelogram paths. Likewise at E for total 4 times.

Number the parallelogram rows 0 to \(n \) and columns likewise 0 to \(n \) plus possible \(w \) many additional columns up to the edges after \(w \) (drawn thick).

Paths can be counted by the crossings of the edges after \(w \). The number of paths to the vertices in column \(w \) is given by entries of the Catalan triangle. Likewise from the end to the column after \(w \). For distance \(x \) horizontal to a column and \(y \) down (or up), the Catalan triangle is

\[\text{cat}(x, y) = \binom{x+y}{y} \frac{x-y+1}{x+1} \]

Total paths are then products of the counts to each side of each thick edge

\[C(n, w) = \sum_{y=0}^{n} \text{cat}(n+w, y) \cdot \text{cat}(n, u) \quad \text{where } u = n-y \]

\[= \sum_{y=0}^{n} \left(\frac{n+w+y}{y} \right) \frac{n+w-y+1}{n+w+1} \left(\frac{n+u}{u} \right) \frac{n-u+1}{n+1} \]
\[C(n, w) = \sum_{y=0}^{n} \left(\binom{n+w+y}{y-1} + \binom{n+w+y}{y} \frac{1}{n+w+1} \right) \cdot \left(\binom{n+u}{u-1} + \binom{n+u}{u} \frac{w+1}{n+1} \right) \]

When factor \(y = 0 \) is taken out, the resulting binomial has \(y-1 \) negative which is understood as binomial \(= 0 \). Likewise \(u = 0 \). If preferred those terms can be taken separately with indices running from \(y = 1 \) and/or to \(y = n - 1 \) as necessary. In any case the factors depend only on \(n, w \) and can be taken out to leave sums of binomial products of the form,

\[\sum_{y=0}^{n} \left(a + y \right) \left(b + u \right) = \binom{a + b + n + 1}{n} \]

This identity is crossings like figure 17 but of a full rectangle, so that the number of paths to the crossing column is binomial of distance \(a \) left, \(b \) right, and rows 0 to \(n \). The binomials are how many ways to arrange the vertical steps among the total steps in each case.

![Rectangular grid](image)

Working through the terms and bringing them to common base \(n \) in the binomial gives

\[C(n, w) = \binom{3n+w+1}{n} \frac{(n+w+2)(n+w+3) - 2n}{(2n+w+2)(2n+w+3)} \]

The binomial numerator runs \(3n+w+1 \) down to \(2n+w+2 \). The smallest two can cancel with the denominator of the factor if preferred, and which shows the result is of course an integer.

For the twin alternate, the relevant height and width are

\[n = h - 2, \quad w = \begin{cases} h + 1 & \text{if } k \text{ even} \\ 1 & \text{if } k \text{ odd} \end{cases} \quad \text{where } h = 2^{\lfloor k/2 \rfloor} \]

\[T(diameterCount_k) = 4 \ C(n, w) \quad k \geq 1 \]

As a remark, the parallelogram cross-products above are conceived for \(w \geq 0 \) but some similar calculation shows the formula holds for \(w = -1, -2 \) too, which
is rows shortened, and Catalan triangle entries taken as 0 outside the triangle.

\[w = -2 \] gives factor \(n(n-1)/(2n(2n+1)) \) which can be incorporated into a reduced binomial,

\[C(n, -2) = \binom{3n-1}{n-2} = 1, 8, 55, 364, 2380, \ldots \quad n \geq 2 \quad \text{A013698} \]

Theorem 14. The Wiener index of twin alternate \(k \) as a graph is

\[
TW_k = \left[\frac{43}{20}, \frac{16}{5}, 4^k \cdot 2^{\lfloor k/2 \rfloor} \right] + 8.4^k + \frac{1}{12} [31, 32] 2^k \cdot 2^{\lfloor k/2 \rfloor}
\]

\[
+ [2, -2] 2^k - \frac{1}{11} [101, 92] 2^{\lfloor k/2 \rfloor}
\]

\[
= 8, 40, 212, 936, 4420, 21552, 104616, \ldots
\]

Proof. Similar to the curve Wiener index in theorem 12, it’s convenient to start from an equivalent size full grid and subtract. For the twin alternate this is a parallelogram grid. Consider width \(w \) and height \(h \) many vertices.

![Diagram of parity grid](attachment:parity_grid.png)

All shortest paths go by stair steps. Total paths can be calculated by crossings of vertical and horizontal edges, with triangular numbers \(T \) from (100).

\[
W_{par}(w,h) = \sum_{y=1}^{h-1} yw (h-y)w \quad \text{rows of vertical edges} \quad (108)
\]

\[
+ 2 \sum_{x=1}^{m-1} T(x) \left(wh - T(x) \right) \quad \text{columns slope} \quad (109)
\]

\[
+ \sum_{x=1}^{M-m-1} (T(m) + xm) \left(wh - (T(m) + xm) \right) \quad \text{middle} \quad (110)
\]

where \(m = \min(w,h) \), \(M = \max(w,h) \)

Vertical edges in a row are crossed by paths going between the vertices above and the vertices below. For \(y \) vertex rows below there are \(yw \) vertices below and \((h-y)w \) above, per (108).

Similarly horizontal edges in columns. Columns in the sloping part have a triangular number of vertices to the left and the rest to the right. The parallelogram is symmetric so the same in the sloping part on the right, for (109). The middle columns have the triangle sloping part plus some full columns of \(h \) vertices to the left, for (110). The size of the sloping part is \(\min(w,h) \), and the middle extends to \(\max(w,h) \).

Working through the sums, and taking \(w=1 \) to mean no edges,
\[
W_{\text{par}}(w, h) = \begin{cases}
0 & \text{if } w \leq 1 \\
5whm(2M(M+h) + m^2 - 3) - 10w^2h & \text{if } w \geq 2 \\
-(m-2)(m-1)m(m+1)(m+2) &
\end{cases}
\]

where \(m = \min(w, h) \), \(M = \max(w, h) \)

\[
h = 1 = 0, 1, 4, 10, 20, 35, 56, \ldots \]

\[
h = 2 = 0, 10, 28, 60, 110, 182, 280, \ldots \]

\[
h = 3 = 0, 35, 88, 176, 308, 493, 740, \ldots \]

The twin alternate does not have the degree-1 bottom right vertex. Its contribution to \(W_{\text{par}} \) is distance \(2y \) to get to each row which sums to a triangular number, times the \(w \) vertices in each row. Then across each row a triangular number sum of distances.

\[
W_{\text{parEnd}}(w, h) = \begin{cases}
2wT(h-1) + hT(w-1) & \text{if } w \geq 2 \\
\frac{1}{2}wh(w+2h-3) &
\end{cases}
\]

The twin alternate also does not have the degree-1 top left vertex. By symmetry its contribution is the same \(W_{\text{parEnd}} \). Subtracting both removes the path between them twice. This is length \((w-1) + 2(h-1)\) so add that back.

The twin alternate also has every second edge on the bottom row absent. Extra distance caused by this is \(W_{\text{extra}} \) from theorem 12, provided there is a full row above to go along, which means \(h \geq 3 \). Likewise the top row edges.

\[
TW_{\text{par}}(w, h) = W_{\text{par}}(w, h) + 2W_{\text{extra}}(w-1) & \geq 2, \ h \geq 3 \\
-2W_{\text{parEnd}}(w, h) + (w-1) + 2(h-1)
\]

\[
TW_k = TW_{\text{par}}\left(2^{\left\lceil \frac{k+1}{2} \right\rceil} + 1, \ 2^{\left\lfloor \frac{k+1}{2} \right\rfloor} + 1\right) \quad (112)
\]

\(k = 0 \) at (112) is \(w=3, h=2 \). It does not have \(h \geq 3 \) but its \(W_{\text{extra}}(w-1) = 0 \) so formula (111) holds there too.

The twin alternate has \(TP \) many vertices (105) and the number of pairs of distinct vertices is a binomial.

\[
T_{\text{pairs}}_k = \binom{TP_k}{2} = 6, 21, 78, 253, 903, 3081, \ldots
\]

Mean path length between such a pair is then

\[
\frac{TW_k}{T_{\text{pairs}}_k} = \frac{4}{3}, \frac{40}{21}, \frac{106}{39}, \frac{936}{253}, \frac{4420}{903}, \ldots
\]

This mean path length can be expressed as a fraction of \(T_{\text{diameter}} \) which is the longest path. Limits follow from the coefficients of the highest powers in each term.

\[
\frac{TW_k}{T_{\text{pairs}}_k \cdot T_{\text{diameter}}_k} \rightarrow \begin{cases}
\frac{43}{160} = \frac{129}{480} = .26875 \ & \text{if } k \text{ even} \\
\frac{4}{15} = \frac{128}{480} = .2666 \ & \text{if } k \text{ odd}
\end{cases}
\]
The odd limit is the same as the even limit of the plain curve at (101). Two even curves back-to-back make an odd twin alternate.

12.1 Twin Alternate Area Tree

When the corners of the twin alternate curve are chamfered off, the unit squares enclosed inside the curve are connected through the resulting gaps. Call this an area tree.

An equivalent definition is to connect unit squares which are on the left of consecutive curve segments. When the curve turns to the right the unit squares on the left of the segments are distinct. A turn is always left or right (never straight ahead) so those connections are at corners of the squares.

Mandelbrot[11] conceives these area connections as rivers. The curve is the riverbank going upstream until reaching a source and then back down along the other side of the river and tributaries. For a closed curve like the twin alternate the squares inside the curve form entirely inland waterways. For area enclosed on the outside of a curve (or any unclosed curve), the rivers flow eventually to the “sea” outside.

It’s convenient to draw the tree turned $+45^\circ$ using factor $b/2$. The start of the curve at the origin can be taken as the root. Successive levels extend by copying.

\[
\begin{aligned}
\text{TAVertexToZ}(n) &= T\text{Square}(n).\frac{b}{2} \\
&= y - x + yi \\
\text{Z-order } x, y \text{ per (104) (114)}
\end{aligned}
\]

In this layout, edges are horizontal and vertical. From the Z-order point numbering, the negative x axis is points $n = X\text{num}(x)$. The leading diagonal $x=y$ North East is points $n = G\text{num}(y)$ (the same as the curve in fact).

The area tree is quite sparse when straightened to a line of its diameter.
The twin alternate curve is symmetric in 180° rotation so the squares connected by the new middle edge are at equivalent positions in each half. So the middle edge is the centre and the two halves are isomorphic. Likewise each half has isomorphic halves across its centre edge, etc, all the way down to a single vertex.

halves identical across centre edge,
each half likewise identical across centre edge

A tree with this recursive isomorphic halves property always has 2^k vertices. Various such trees can be made by choosing which vertex of each half to connect. The connection can be between the same vertex in each half, like the twin alternate area tree has, or between any two of equal eccentricity.

A straight-line path of 2^k vertices is trivially such a tree and is the only such tree for $k \leq 2$. For $k=3$ there is the 8-path and one non-path. The twin alternate area tree is the 8-path. For $k \geq 4$ the twin alternate area tree is one among several trees.

Theorem 15. Label vertices of twin alternate area tree k with point numbers n per $TAVertexToZ$ at (114). A horizontal edge is between a given n and least significant bit toggled,

\[
\text{left} \quad h \quad 1 \quad \longleftrightarrow \quad h \quad 0 \quad \text{right}
\]

edge, horizontal, $k \geq 1$

A vertical edge is between two n points of the following form

\[
\text{upper} \quad h \quad \begin{array}{c} \ddownarrow \end{array} \quad \begin{array}{c} 11 \quad 00\ldots00 \end{array} \quad \text{edge, vertical, } k \geq 2
\quad h \quad 00\ldots11 \quad \text{upper} \quad h \quad \begin{array}{c} \uparrow \end{array} \quad \begin{array}{c} 11 \quad 00\ldots00 \end{array} \quad \text{edge, vertical, } k \geq 2
\]

Proof. In twin alternate k suppose the unit squares at corners are point numbers s_k start, e_k end, and a_k, c_k opposite corners. Corner c is at the connection to the copy for the next level and a is the other corner. Twin alternate curve $k+1$ consists of two copies of k
The vertex numbers in each part 1 have 2^k added which is a high 1-bit. The start is $s_k = 0$ always. The end point e is in the 1-part each time so add 2^k always for all 1-bits.

Corner a_{k+1} is the start in part 1 each time. Corner c is e in part 0 each time. So

$$e_k = 2^k - 1 \quad k \text{ many 1-bits}$$

$$a_k = \begin{cases} 0 & \text{if } k = 0 \\ 2^{k-1} & \text{if } k \geq 1 \end{cases}$$

$$c_k = \begin{cases} 0 & \text{if } k = 0 \\ e_{k-1} & \text{if } k \geq 1 \end{cases} = \begin{cases} 0 & \text{if } k = 0 \\ 2^{k-1} - 1 & \text{if } k \geq 1 \end{cases}$$

The connection in level $k+1$ is from c in part 0 to a in part 1 which is c_k to $2^k + a_k$. For $k=0$ this is $c_0 = 0$ to $a_0 + 2^0 = 1$. For $k \geq 1$ it is $2^{k-1} - 1$ to $3 \cdot 2^{k-1}$ per the theorem. Expansions replicate the connections of previous levels.

The direction of the edges follows by $k=0$ explicitly, and then $k \geq 1$ by considering the direction of the last segment of the sub-curves, which by the unfoldings is down for k even and up for k odd.

Or the bit patterns give the direction too. $k=0$ is a change of the low bit x only so horizontal. $k \geq 1$ increments both x and y going lower to upper, so that $TAVertexToZ$ has real part $y-x$ unchanged so vertical. □

$$\begin{align*}
\text{Z-order vertex bit patterns for } k=4 \text{ twin alternate area tree} \\
1111 & \rightarrow 1110 & 1011 & \rightarrow 1010 \\
1101 & \rightarrow 1100 & 1001 & \rightarrow 1000 \\
0111 & \rightarrow 0110 & 0011 & \rightarrow 0010 \\
0101 & \rightarrow 0100 & 0001 & \rightarrow 0000
\end{align*}$$

These bit patterns can be used to construct the tree for computer calculation, including drawing it in sheared Z-order shape by following the edge directions. For a whole tree it’s probably most efficient to make edges upper to lower by a loop over bit patterns. If going by n or an isolated part of the tree then horizontal edges are always simply the low bit toggled, and some bit-twiddling on n can identify when n has an edge to an upper and/or lower vertex.

Draft 9

page 67 of 103
TAVertexToLower(n) \quad n \geq 0
\begin{align*}
 mask &= \text{BITXOR}(n, n-1) \\
 \text{if } \text{BITAND}(n, mask+1) \neq 0 \quad \text{bit above lowest 1} \\
 \text{then } n \text{ is an upper and has edge downwards to} \\
 lower &= n - mask - 2
\end{align*}

TAVertexToUpper(n)
\begin{align*}
 mask &= \text{BITXOR}(n, n+1) \\
 \text{if } \text{BITAND}(n, mask+1) = 0 \quad \text{bit above lowest 0} \\
 \text{then } n \text{ is a lower and has edge upwards to} \\
 upper &= n + mask + 2
\end{align*}

Direction upper or lower from n can also be a parameter 0 = go down, or 1 = go up. A possible low run of that bit is skipped and the next run (opposite bit) must be more than a single bit long. mask is the same as above but applied with an XOR to toggle the low run and next two bits.

TAVertexToOther(n, direction = 0 down or 1 up)
\begin{align*}
 transitions &= \text{BITXOR}(n, 2n+direction) \\
 mask &= \text{BITXOR}(transitions, transitions-1) \\
 \text{if } \text{BITAND}(transitions, mask+1) = 0 \\
 \text{then } \text{there is an edge to} \\
 &\quad \text{BITXOR}(n, 2mask + 1)
\end{align*}

Predicates for when a vertex n has an upper or lower neighbour follow from the bit patterns. They are simply a test of bit above lowest 1-bit or 0-bit.
\begin{align*}
 \text{TAVertexToUpperPred}(\infty)(n) &= (\text{BitAboveLowestZero}(n) = 0) \\
 &= 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, \ldots \\
 \text{TAVertexToLowerPred}(n) &= (n \geq 1 \text{ and } \text{BitAboveLowestOne}(n) = 1)
\end{align*}

Going to lower always reduces n so the same in a tree level k or tree continued infinitely. Going to upper increases n and (115) is for the tree continued infinitely.

Theorem 16. The number of vertices of degree 0, 1, 2 or 3 in twin alternate area tree k are
\begin{align*}
 \text{TADegCount}(k, 0) &= \begin{cases}
 1 & \text{if } k = 0 \\
 0 & \text{if } k \geq 1
\end{cases} \\
 \text{TADegCount}(k, 1) &= \begin{cases}
 0, 2, 2 & \text{if } k = 0 \text{ to } 2 \\
 2^k - 2 & \text{if } k \geq 3
\end{cases} \\
 &= 0, 2, 2, 4, 8, 16, 32, 64, 128, \ldots
\end{align*}
\[TADegCount(k, 2) = \begin{cases}
0, 0, 2 & \text{if } k = 0 \text{ to } 2 \\
2^{k-1} + 2 & \text{if } k \geq 3
\end{cases} \\
= 0, 0, 2, 6, 10, 18, 34, 66, 130, 258, \ldots \quad k \geq 3 \text{ A052548}
\]

\[TADegCount(k, 3) = \begin{cases}
0 & \text{if } k \leq 2 \\
2^k - 2 & \text{if } k \geq 3
\end{cases} \\
= 0, 0, 0, 2, 6, 14, 30, 62, 126, \ldots \quad k \geq 3 \text{ A000918}
\]

Proof. The degree of the connecting vertices \(c_k \) and \(a_k \) are the same by symmetry. The degree follows either from the curve ends which meet there, or from edges by the bit patterns. In either case for \(k \geq 3 \) they are degree 2.

The connection increases them to degree 3 and leaves other vertices replicated. So

\[
TADegCount(k + 1, 1) = 2 TADegCount(k, 1) \quad k \geq 3
\]
\[
TADegCount(k + 1, 2) = 2 TADegCount(k, 2) - 2
\]
\[
TADegCount(k + 1, 3) = 2 TADegCount(k, 3) + 2 \square
\]

Second Proof of Theorem 16. Vertex degrees can also be counted from the bit patterns of theorem 15.

For \(k \geq 1 \) every vertex can toggle its low bit for the left to right edge so degree \(\geq 1 \). \(n \) is only one of these left or right so degree cannot be 4, only at most 3.

Degree-1 vertices those \(n \) which are neither \textit{upper} nor \textit{lower} forms. For \(k \geq 3 \), an \(n \) with one or more trailing 1-bits is not \textit{lower} when entirely 11...11 or 011...11, but they are both \textit{upper} so not degree 1. The other not \textit{lower} are \(\ldots 1011 \ldots 11 \) and must have only one trailing 1-bit to avoid being \textit{upper}, thus \(n \equiv 5 \mod 8 \). Similarly \(n \) with trailing 0-bits giving only \(n \equiv 2 \mod 8 \).

\[TADegCount(k, 1) = \text{count } n \equiv 2, 5 \mod 8 \]
\[= 2.2^{k-3} \quad k \geq 3 \]

Degree-2 vertices are \textit{upper} but not \textit{lower} or vice-versa. For \(k \geq 3 \), an \(n = \ldots 0011 \ldots 11 \) with \(\geq 1 \) trailing 1-bits is a \textit{lower} and to avoid being an \textit{upper} must be just one trailing 1-bit so \(\ldots 001 \). Conversely, an entire 11...11 or 011...11 is not \textit{lower} but is \textit{upper}. Other non-\textit{lower} are \(\ldots 1011 \ldots 11 \) is and if \(\geq 2 \) trailing 1-bits then it is an \textit{upper}. With \(h \) many high bits for the latter, and \(n \) with trailing 0-bits treated the same flipped,

\[TADegCount(k, 2) = 2 \left(2^{k-3} + 2 + \sum_{h=0}^{k-4} 2^h \right) \quad k \geq 3 \]

Degree-3 vertices are those \(n \) which are both \textit{upper} and \textit{lower} forms. Even \(n = 1100 \ldots 00 \) is an \textit{upper}. It is also a \textit{lower} only in no trailing 1s form 00, so must have \(\geq 2 \) trailing 0-bits. Similarly odd \(n = 0011 \ldots 11 \) must have \(\geq 2 \) trailing 1-bits.
The bits above these endings are arbitrary so with \(h \) many such bits,

\[
TADegCount(k, 3) = 2 \sum_{h=0}^{k-4} 2^h
\]

A yet further approach for \(TADegCount(k, 1) \) is that a degree-1 vertex has all sides of the twin alternate unit square consecutive and so is on the left of a sequence of 3 left turns (70). There are \(\text{Turn}_3\text{left}_{k+1} \) of these in each of the two curves making up a twin alternate. For \(k \geq 2 \) the start and end turn away so they do not form any further 3-left, so that

\[
TADegCount(k, 1) = 2 \text{Turn}_3\text{left}_{k+1} \quad k \geq 2
\]

The total of all degrees is twice total edges in the usual way for any graph. The twin alternate has \(2^k \) unit squares inside so the area tree has \(2^k - 1 \) edges.

\[
2^k - 1 = \frac{1}{2} \sum_{d=0}^{3} d \cdot TADegCount(k, d)
\]

The degree of a given vertex \(n \) follows from the bit patterns. An \textit{upper} is a 1-bit above lowest 0. A \textit{lower} is a 0-bit above lowest 1. But in both cases the bit above cannot be outside \(k \) bits for a level \(k \) tree.

\[
TADegree_k(n) = \begin{cases}
1 \text{ if } k \geq 1 \\
+ TAVertexToLowerPred(n) \\
+ TAVertexToUpperPred_k(n)
\end{cases}
\]

\[
TAVertexToUpperPred_k(n) = TAVertexToUpperPred_\infty(n) \quad \text{and } n \neq 2^k - 1, 2^{k-1} - 1
\]

For the tree continued infinitely there is no restriction,

\[
TADegree_\infty(n) = \begin{cases}
2 \text{ if } n = 0 \\
2 - \text{BitAboveLowestZero}(n) + \text{BitAboveLowestOne}(n) \text{ if } n \geq 1
\end{cases}
\]

\[
= 2, 2, 1, 3, 2, 1, 2, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 2, 1, \ldots
\]

Using \(\text{BitAboveLowestZero}(n) = \text{BitAboveLowestOne}(n+1) \) per the bit patterns in figure 4, this can be written as increment

\[
TADegree_\infty(n) = \begin{cases}
2 \text{ if } n = 0 \\
2 - d\text{BitAboveLowestOne}(n) \text{ if } n \geq 1
\end{cases}
\]

where, for \(n \geq 1 \),

\[
d\text{BitAboveLowestOne}(n) = \text{BitAboveLowestZero}(n) - \text{BitAboveLowestOne}(n)
\]

\[
= \text{BitAboveLowestOne}(n+1) - \text{BitAboveLowestOne}(n)
\]
Each 1 in $dBitAboveLowestOne$ is at $n \equiv 2$ or 5 mod 8 and are the degree-1 vertices from the second proof above. In between them is exactly one -1 for a degree-3 vertex. This can be seen firstly by $n \equiv 1 = \text{binary} 001$ and $n \equiv 6 = \text{binary} 110$ are always $dBitAboveLowestOne(n) = 0$. Then at $n \equiv 3$ mod 4 further bits to the lowest zero are some $x01\ldots1$. This increments to $n \equiv 4$ mod $4 = x00\ldots00$. They have $dBitAboveLowestOne = x-1$ and $-x$ respectively so one is 0 and the other -1, hence exactly one -1.

The cases can be written out

$$dBitAboveLowestOne(n) = \begin{cases}
-BitAboveLowestOne(n) & n \equiv 0 \mod 4 \\ BitAboveLowestOne(n+1) & n \equiv 1 \mod 4 \\ 1 - BitAboveLowestOne(n) & n \equiv 2 \mod 4 \\ BitAboveLowestOne(n+1) - 1 & n \equiv 3 \mod 4 \end{cases}$$

Locations of the various degree vertices in the tree can be illustrated,

The degree-3 locations are pairs of vertices in the same layout as the whole twin alternate area tree. That can be seen in an initial level such as a single pair in $k=4$, then replication of the tree replicates the pairs (and makes the degree-2 connection vertices into degree-3).

The connection argument for the degree counts above also gives counts of edges which have vertices of degree 1, 2 or 3 at each end. Twin alternate $k \geq 4$ has corner square degree-2 as above, and also the squares connected to that corner are degrees 2 and 3. When the degree-2 of each half are linked their adjacent edges change from 2,2 and 2,3 to 2,3 and 3,3 and the new edge is 3,3 also. So

$$\begin{align*}
TAEdgeCount(k, 2, 2) &= 2 \cdot TAE_{k-1, 2, 2} - 2 & k \geq 6 \\
TAEdgeCount(k, 3, 3) &= 2 \cdot TAE_{k-1, 3, 3} + 3 \\
TAEdgeCount(k, \text{other}) &= 2 \cdot TAE_{k-1, \text{other}}
\end{align*}$$

With initial counts calculated explicitly,

$$\begin{align*}
TAEdgeCount(k, 1,1) &= \begin{cases}
1 & \text{if } k = 1 \\
0 & \text{otherwise}
\end{cases} \\
TAEdgeCount(k, 1,2) &= \begin{cases}
0, 0, 2, 2 & \text{if } k = 0 \text{ to } 3 \\
2^{k-3} & \text{if } k \geq 4
\end{cases} \\
&= 0, 0, 2, 2, 4, 8, 16, 32, \ldots
\end{align*}$$
Various graph-theoretic topological indices are based on sums over edges and their vertex degrees. Notice all the edge types (except the solitary 1,1 in \(k=1 \)) go as a power \(2^k \) so all contribute to a limit if taking a mean index over number of edges.

As an example, the second Zagreb index \(M_2 \) of Gutman and Trinajstić[8] is product of vertex degrees at the ends of each edge.

\[
\text{ZagrebM}_2(\text{graph}) = \sum_{\text{edges}} \text{degree}_1 \cdot \text{degree}_2
\]

\[
\text{TAZagrebM}_k = \sum_{d_1,d_2=2,3} d_1.d_2.TAEdgeCount(k, d_1,d_2)
\]

\[
= \begin{cases}
0, 1, 8, 24, 63 & \text{if } k = 0 \text{ to } 4 \\
81.2^{k-3} - 19 & \text{if } k \geq 5
\end{cases}
\]

\[= 0, 1, 8, 24, 63, 143, 305, 629, 1277, \ldots \]

12.1.1 Twin Alternate Area Tree Diameter, Wiener Index

Theorem 17. The diameter of twin alternate area tree \(k \) is

\[
\text{TAdiameter}_k = [7, 10], 2^{k/2} - 2k - 7 \quad (116)
\]

\[= 0, 1, 3, 7, 13, 23, 37, 59, 89, \ldots \]

This is uniquely attained between the geometrically most distant vertices of the parallelogram shape.

Proof. The twin alternate curve has connection corner \(c \) and other corner \(a \) on alternating sides of start and end in the manner of figure 18.
Let $TA_{\text{corner Ecc}}$ be the eccentricity of vertex a or c. The twin alternate is symmetric in 180° rotation so they have the same eccentricity. The claim will be this eccentricity is

$$TA_{\text{corner Ecc}}_k = [5, 7].2^k - k - 5 \quad (117)$$

$= 0, 1, 3, 6, 11, 18, 29, 44, 67, \ldots$

Formulas (116) and (117) hold trivially for $k=0$ which is a single vertex so that $TAdiameter_0 = TA_{\text{corner Ecc}}_0 = 0$.

Tree $k+1$ comprises two sub-trees as per figure 16. A path which goes between the two halves has length which is the eccentricity of the corner on both sides and an edge between,

$$TAdiameter_{k+1} = 2 TA_{\text{corner Ecc}}_k + 1$$

which is the theorem (116). Also per that formula this distance is greater than $TAdiameter_k$ which would be the maximum staying only in one half of the tree.

For $TA_{\text{corner Ecc}}_{k+1}$, new corner C in $k+1$ is shown in the following diagram.

![Diagram](image)

The longest path going from C to anything in the other tree half is distance to the middle connection vertex, the edge across, and eccentricity of the corner in the other half. Going to the middle requires following unit squares on the boundary of the curve sides marked r or l for the odd or even cases respectively. There are RQ_k or LQ_k boundary squares, so that many vertices, less 1 to count edges between them, plus 1 for the middle edge between the tree halves,

$$LRQ_k = \begin{cases} LQ_k & \text{if } k \text{ even} \\ RQ_k & \text{if } k \text{ odd} \end{cases} \quad (118)$$

$$= BQ_{k-1} \text{ for } k \geq 1 \quad (119)$$

$$TA_{\text{corner Ecc}}_{k+1} = TA_{\text{corner Ecc}}_k + LRQ_k \quad (120)$$

$$TA_{\text{corner Ecc}}_k = \sum_{j=0}^{k-1} LRQ_j$$

This is per (117), and comparing to the diameter formula is greater than $TAdiameter_k$ which is an upper bound on any path from C to a vertex in the first tree half.

The corner eccentricity construction repeatedly goes to the far half sub-tree. Working through the expansions this is the far corner of the parallelogram shape.

As a remark, in figure 19 it can be seen the new A corners are the same right or left side to the middle so that their eccentricity is the same as C, per the 180° symmetry noted above.
The LRQ count of boundary squares on alternating sides at (118) occurs below too. Form (119) as BQ is the curve unfolding from (68),(69).

Theorem 18. The height of twin alternate area tree k (eccentricity of its start) is

$$TA_{\text{height}}_k = [4, 6] \cdot 2^{k/2} - k - 4$$

$$= \text{NumOpred}_{k+2}$$

$$= 0, 1, 2, 5, 8, 15, 22, 37, 52, \ldots$$

Proof. Tree $k=0$ is a single vertex so height 0. For $k \geq 1$, in figure 19 suppose the eccentricity of the start for tree $k+1$ is attained by going into the second tree half. Per figure 19 it goes around the right or left side boundary squares to the midpoint then corner eccentricity k at the middle.

$$RLQ = \begin{cases} RQ_k & \text{if } k \text{ even} \vspace{2pt} \\ LQ_k & \text{if } k \text{ odd} \vspace{2pt} \end{cases}$$

$$TA_{\text{height}}_{k+1} = TA_{\text{corner Ecc}}_k + RLQ_k$$

$$= TA_{\text{corner Ecc}}_k + 2^{k/2}$$

This is the theorem (121), and working through the formulas shows it is greater than TA_{height}_k which would be the height staying only in the first half. Notice at (122) the left/right sides are swapped from the corresponding corner eccentricity (120), so RLQ here instead of LRQ. \hfill \Box

Theorem 19. The Wiener index (99) of twin alternate area tree k is

$$TAW_k = \left[\begin{bmatrix} \frac{15}{14} & \frac{43}{28} \end{bmatrix} \right] \cdot 4^k \cdot 2^{k/2} - \left(\frac{1}{4} k + 1 \right) 4^k - \frac{1}{14} \cdot 2^k$$

$$= 0, 10, 84, 584, 3984, 24864, \ldots$$

Proof. As in figure 18, the tree comprises two halves connected across middle edge c, a.

Let $TAwS_k$ be the sum of distances from start vertex s to all other vertices, and let $TAwC_k$ be the sum of distances from corner connection vertex c to all other vertices.

$$TAwS_k = \sum_v \text{distance}(s, v)$$

$$TAwC_k = \sum_v \text{distance}(c, v)$$

$$= 0, 1, 4, 18, 56, 200, \ldots$$

$$= 0, 1, 6, 22, 80, 248, \ldots$$
\(\text{TAWs} \) can be calculated from the two \(k-1 \) sub-trees. For \(s \) to vertices in the lower half the total distance is \(\text{TAWs}_{k-1} \). For \(s \) to vertices in the upper half take first the distance from \(s \) to \(c \), which is \(\text{RLQ}_{k-1} \) as from the diameter in theorem 17. There are \(2^{k-1} \) vertices in the upper half, so that factor on this distance. Then \(a \) is the same as \(c \) by symmetry so \(\text{TAWc}_{k-1} \) from \(a \) to the upper vertices.

Similarly \(\text{TAWc} \), except the distance \(e \) to \(c \) is \(\text{LRQ}_{k-1} \). The \(\text{TAW} \) of the two tree halves. Distance between vertex pairs both in the upper half is \(\text{TAW}_{k-1} \), and the same for both in the lower half. For one vertex in the lower half and one in the upper there is distance \(\text{TAWc}_{k-1} \) to go from lower vertices to \(c \), multiplied by \(2^{k-1} \) upper vertices which each one then goes to. The same upper vertices to \(a \). Then add \(4^{k-1} \) total paths going across edge \(c, a \).

\[
\text{TAW}_{k} = 2 \text{TAW}_{k-1} + 2^{k-1} \text{TAWc}_{k-1} + 4^{k-1}
\]

\[
= 2^{k-1}(2^k-1) + 2^{k-1} \sum_{j=0}^{k-1} \text{TAWc}_{k-1}
\]

The result is sums and sums of sums of powers of 2 which can be worked through for \(123 \).

Second Proof of Theorem 19. The Wiener index can also be calculated bottom-up by considering traversals of edges.

Take each of the \(2^k \) vertices in tree \(k \) and possible edges in directions \(a, b, c, d \) to adjacent unit squares. Let \(a, b, c, d \) be the number of vertices in the sub-tree on the other side of each such edge respectively. (Vertices are at most degree-3 so at least one of these counts is 0 for no other vertices and no edge there.)

\[
\text{TAW}_{k} = \frac{1}{2} \sum_{\text{vertices } t=s,a,c,e} \sum_{i=t} t (2^k-t) \tag{126}
\]

The Wiener index is sum of crossings of each edge. The number of paths crossing an edge is product of number of vertices on each side. For example \(e \) on one side and everything else \(2^k-e \) on the other. Summing over all edges at each vertex counts edges twice (the vertex at each end) so \(\frac{1}{2} \) at (126).
Each vertex expands 1, 2 and 3 times per the following diagrams. A little care is needed for which original edge goes to which new vertex. It’s convenient to use the definition of the tree as unit squares inside curves. Each segment expands to 2 segments and the edges remain between the original segment ends. Segments are drawn here expanding on the left to \(k+1 \), then on the right to \(k+2 \), then on the left to \(k+3 \). Done this way the \(a, b, c, d \) corners are fixed locations. By symmetry a right, left, right alternating expansion is the same final result.

In \(k+3 \), the horizontal pairs of vertices shown encircled are the expansion of each vertex in \(k+2 \). Crossings of the edges from one pair to another and from a pair to the outside are the same as \(k+2 \) but with \(2x \) vertices each side so \(4 \text{TAW}_{k+2} \).

The two L vertices are leaves so their edges are crossed 1 for each of the \(2^{k+3} - 1 \) vertices on the other side.

The two M edge crossings by vertices on each side are

\[
(8a+8d+3)(8b+8c+5) + (8a+8d+5)(8b+8c+3) = 32(2a+2d+1)(2b+2c+1) - 2
\]

Product \((2a+2d+1)(2b+2c+1)\) is crossings of the middle edge in \(k+1 \). \(\text{TAW}_{k+1} \) also counts crossings of its outer edges. They are \(4\text{TAW}_k \) since \(k \) is entirely outer edges. So net for \(k+3 \) is

\[
\text{TAW}_{k+3} = 4 \text{TAW}_{k+2} + 2(2^{k+3} - 1).2^k \quad \text{L pairs}
\]

\[
+ 32 \left(\text{TAW}_{k+1} - 4 \text{TAW}_k \right) - 2.2^k \quad \text{M pairs}
\]

The Wiener index divided by number of vertex pairs is a mean distance between vertices. Such a mean is usually taken over vertex pairs in one direction (like the Wiener index) and excluding a vertex to itself, so number of pairs is binomial \(\binom{2k}{2} = \frac{1}{2}(4^k - 2^k) \). This mean can be expressed as a fraction of \(TAdiameter \). The limit of that fraction as \(k \to \infty \) follows from coefficients of the highest powers in each term.
\[
\frac{1}{2}(4^k - 2^k) \cdot TAdiameter_k \rightarrow \frac{15}{49} = 0.306122\ldots \quad k \text{ even}
\]
\[
\rightarrow \frac{43}{140} = 0.307142\ldots \quad k \text{ odd}
\]

Like the mean in the whole twin alternate graph at (113), the odd and even cases are not the same but differ by just 1.

Gutman, Furtula and Petrović [7] consider a terminal Wiener index which is distances between pairs of terminal vertices (ie. leaf nodes, degree 1).

Theorem 20. The terminal Wiener index of twin alternate area tree \(k \) is, in terms of the full Wiener index,

\[
TATW_k = \begin{cases}
0, 1, 3, 7 & \text{if } k = 0 \text{ to } 3 \\
\frac{1}{16} TAW_k + \frac{1}{16} 4^k - \frac{13}{32} 2^k & \text{if } k \geq 4
\end{cases}
\]

(127)

Proof. Make a calculation similar to TAW theorem 19 above. \(c \) and \(a \) are non-terminal vertices for \(k-1 \geq 3 \) and remain so on joining. So the calculation simply replaces vertex count \(2^k \) with \(TADegCount(k,1) \).

\[
TAtwS_k = \sum_{\text{leaf } v} distance(S,v) \quad TAtwC_k = \sum_{\text{leaf } v} distance(C,v)
\]

\[
\begin{align*}
TAtwS_k & = TAtwS_{k-1} + TADegCount(k-1,1).RLQ_{k-1} + TAtwC_{k-1} \\
TAtwC_k & = TAtwS_{k-1} + TADegCount(k-1,1).LRQ_{k-1} + TAtwC_{k-1}
\end{align*}
\]

starting \(TAtwS_3 = 7 \), \(TAtwC_3 = 7 \)

\[
\begin{align*}
TAtwSC_k & = TAtwS_k + TAtwC_k \\
& = 2TAtwSC_{k-1} + 2^k - 3 BQ_{k-1} \\
& = 14.2^k - 3 + 2^k - 3 \sum_{j=3}^{k-1} 2BQ_j \\
TAtwC_k & = TAtwSC_{k-1} + 2^k - 3 LRQ_{k-1} \\
TATW_k & = 2TATW_{k-1} + 2 TADegCount(k-1,1).TAtwC_{k-1} + TADegCount(k-1,1)^2 \\
& = 2 \cdot 4^k - 3 + 5 \cdot 2^k - 3 + 2^k - 2 \sum_{j=3}^{k-1} TAtwC_{k-1} \\
& \geq 4 \quad \square
\end{align*}
\]

TATW term \(\frac{1}{16} TAW \) in (127) arises essentially from the number of terminal
vertices \(TADegCount(k, 1) \) being \(\frac{1}{4} \) of the total \(2^k \) (for \(k \geq 3 \)).

The mean distance between distinct pairs of terminal vertices as a fraction of the diameter has the same limit as the full \(TAW \).

\[
\frac{TATW_k}{\left(\frac{TADegCount(k, 1)}{2} \right)} \cdot TAdiameter_k \rightarrow \left[\frac{15}{49}, \frac{43}{140} \right]
\]

same as \(TAW \)

12.1.2 Twin Alternate Area Tree Parent, Depth, Width

Theorem 21. Label the vertices of twin alternate area tree \(k \) with point numbers \(n \) and layout per \(TAVertexToZ \) at (114). The parent of vertex \(n \geq 1 \) is in the direction given by the following state machine on bits of \(n \) high to low.

\[
\begin{align*}
\text{TAParent}(n) = & \text{TAParent}(n, \text{TAParentDir}(n)) \\
= & 0, 3, 0, 7, 4, 1, 6, 9, 14, 11, 8, 3, 12, 15, 12, 19, 16, \ldots \quad n \geq 1
\end{align*}
\]

The initial state is \(d=3 \). Since \(n \geq 1 \) there is always a high 1-bit so always a transition from there to \(d=0 \) (right). If \(n=1 \) then that is the only transition.

Proof. In the corners of theorem 15, the parent node is towards the start \(s \). The expansion of figure 18 shows how aiming towards a given corner in \(k+1 \) becomes some corner of \(k \) according to the high bit of \(n \).

For example when aiming for \(s \), if the high bit of \(n \) is 1 then must go towards the 0-1 connection at \(2^k+a \), across that edge, and from there to the start. For finding the parent it’s enough to know the new state is “to a or if already there then across”.

Draft 9 page 78 of 103
For the direction, if \(k=1 \) with \(k=0 \) sub-parts then “to \(a \)” is edge across horizontal to the right (the \(k \) odd case in figure 18, turned +45°). Similarly “to \(c \)” is horizontal to the left.

The “to \(s \)” and “to \(e \)” cases occur when “to \(a \)” or “to \(c \)” was \(k \geq 1 \) and therefore is an edge down or up.

The \(TAparentDir \) state machine in figure 20 has the same structure as the \(dir \mod 4 \) state machine in figure 7, but directions +1 mod 4 there, and an 0→1 bit flip for the transitions out of states 1, 2 there, which are states 0, 1 here.

The effect of these transition bit changes is that the runs of 1-bits which \(dir \) identifies become like

\[
\begin{array}{cccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\(TAparentDir(n) \)

A high run of 1-bits in \(dir \) becomes alternating 1010 in \(TAparentDir \). That alternating run ends with a bit \(a \). The following run of 0-bits in \(dir \) becomes either 1000 or 0111, whichever repeats bit \(a \) instead of alternates. The next run of 1-bits in \(dir \) is again alternating bits in \(TAparentDir \), beginning with \(a \).

The bit changes from \(dir \) to \(TAparentDir \) can be expressed by bit pairs as

\[
Flip1110(n) = \begin{cases}
\text{at } 11 \text{ pair in } n, \text{ output flip pair low and all below} \\
\text{at } 10 \text{ pair in } n, \text{ output flip pair low} \\
0, 1, 3, 2, 6, 7, 4, 5, 12, 13, 15, 14, 9, 8, 11, 10, 24, \ldots \\
binary = 0, 1, 11, 10, 110, 111, 100, 101, 1100, 1101, \ldots
\end{cases}
\]

\[
TAparentDir(Flip1110(n)) + 1 \equiv dir(n) \mod 4
\]

Pairs 11 or 10 are found in \(n \) without any flips. The output begins as \(n \) and is modified by 0→1 flips. The flip at a pair is the lower bit of that pair, and for 11 also all bits below it. These flips are cumulative, so some will cancel.

An even length run of 1-bits has an odd number of 11 pairs, thereby giving the different styles 1010 or 0101 for run of 1-bits below. An odd length run of 1-bits has an even number of 11 pairs so net unchanged below. The 10 flip is at the bottom of each run of 1-bits and gives 1000 or 0111 for the 0-bit runs.

The inverse, from \(TAparentDir \) runs to those of \(dir \) is a flip the other way around. 10 is low and all below, and 11 just the low.

\[
UnFlip1110(n) = \begin{cases}
\text{at } 10 \text{ pair in } n, \text{ output flip low and all below} \\
\text{at } 11 \text{ pair in } n, \text{ output flip low} \\
0, 1, 3, 2, 6, 7, 4, 5, 13, 12, 15, 14, 8, 9, 11, 10, 26, \ldots
\end{cases}
\]
binary = 0, 1, 11, 10, 110, 111, 100, 101, 1101, 1100, …

UnFlip1110(Flip1110(n)) = n \quad \text{inverse}

dir(UnFlip1110(n)) − 1 \equiv \text{TAParentDir}(n) \mod 4

The state machine of figure 20 is bits high to low. Some usual state machine manipulations can take bits low to high instead.

The start state is 2 to test for \text{TAParentDir}(n) = 0 (right), or start state 1 to test for \text{TAParentDir}(n) = 3 (down). In both cases an \(n \) is accepted by ever reaching “yes”, or ending in the double-circle accepting states. Reaching “non” or ending in a non-accepting is an \(n \) not of the respective parent direction.

The start state is 4 or 5 to test for \text{TAParentDir}(n) = 2 or 1 respectively. For these the sense of accepting or not accepting is opposite.

State 1 is never a final state since \(n \geq 1 \) has at least one 1-bit. So the accepting-ness of that state does not matter. It is reckoned non-accepting for a little symmetry.

For \(d = 0 \), an even \(n \) goes immediately to “non”. This is simply that even \(n \) has no edge to the right at all (its horizontal edge is to the left). For odd \(n \) the low 1 goes to state 3. From there base-4 digits 0 or 3 return to state 3 each time. This can be written as

\[
\text{TAParentDir}(n) = 0 \quad \text{iff} \quad n \text{ odd and } \lfloor n/2 \rfloor \text{ base-4 entirely 0,3, or lowest non-0,3 is 2}
\]

For \(d = 3 \), state 1 skips low bits 100...00 before this test.

A state machine low to high with a single start and a direction result according to final state is possible, by what is effectively simultaneous transitions from the various starts. Written out as a full DFA it becomes a little complicated.

High 0-bits on \(n \) do not change the state machine results. In all states a run of 0s remains the same accepting-ness. Geometrically these 0s are simply vertices \(n \) in the first half, quarter, etc, within a bigger tree.

The way the tree is constructed extending at corner \(c_k \) means there are two spines continuing infinitely. A given \(k \) is extended at \(c_k = 2^{k-1} \). The next expansion is at \(c_{k+1} = 2^k - 1 = c_k \). Ie. the further copy is from a vertex \(c_k \) in the original level \(k \).

One spine is the verticals upward from the root. The other spine is stair-step North West.
From the c_k connection replication, these are vertices

$$T_{\text{spine}}V(m) = 3 \times \text{Xnum}(m)$$
vertical
$$= 0, 3, 12, 15, 48, 51, 60, 63, 192, 195, \ldots$$
\[A001196\]

$$T_{\text{spineNW}}(m) = \left\lfloor \frac{3}{2} \times \text{Xnum}(m) \right\rfloor$$
stair-step
$$= 0, 1, 6, 7, 24, 25, 30, 31, 96, 97, \ldots$$
\[128\]

The North West $x = -y$ line is $6 \times \text{Xnum}$ then each following horizontal is $+1$. The floor at \[128\] combines these.

Also from the tree construction, the vertices in these two halves are those n with odd or even length in binary.

vertical spine part vertices = 0, 2, 3, 8, 9, 10, 11, 12, 13, 14, \ldots \[A053754\]
NW spine part vertices = 1, 4, 5, 6, 7, 16, 17, 18, 19, 20, \ldots \[A053738\]

The “aiming for” procedure of $T_{\text{parentDir}}$ can be applied to go towards end e. Starting from $n=0$ or $n=1$ this steps along the two infinite spines. Starting from other n goes first to the spine of its respective half then descends that spine.

$$T_{\text{atospineDir}}(n) = \text{final state of figure 20 starting from } d=1$$
$$= 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 1, 0, \ldots$$

$$T_{\text{atospine}}(n) = T_{\text{atospineDir}}(n), T_{\text{atospineDir}}(n))$$
$$= 3, 6, 3, 12, 7, 4, 7, 24, 9, 14, 11, 8, 15, 12, \ldots$$

$$T_{\text{spine}}(m, n) = T_{\text{atospine}}(T_{\text{atospine}}(\ldots(n))) \quad m \text{ times}$$

$$T_{\text{spine}}(m, 0) = T_{\text{spine}}V(m)$$
$$T_{\text{spine}}(m, 1) = T_{\text{spineNW}}(m+1)$$

\[129\]
n=0 has $TA_{tospine}(0) = 3$ so that under the state machine rule it goes up the vertical spine. Starting from $n=1$ at (129) goes up the stair-step.

The depth of a vertex is its distance to the root. The root itself is depth 0. The aiming-for corner procedure for parent direction gives the depth of vertex n by summing distances across preceding trees.

Theorem 22. The depth of vertex n in the twin alternate area tree is given by sums RLQ followed by run LRQ according to bit runs in n,

\[
\begin{array}{ccccccc}
\text{high} & \text{low} \\
101...01 & 100...00 & 10...10 & 011...11 & 0101... \\
\end{array}
\] (130)

\[
TA_{depth}(n) = RLQ_k + LRQ_{k-1} + RLQ_p + LRQ_{p-1} + \cdots + RLQ_{k-t} + LRQ_{p-q}
\] (131)

These are the runs of 1-bits in $UnFlip1110(n)$,

\[
UnFlip1110(n) = \begin{array}{ccccccc}
111...11 & 000...00 & 111...11 & 000...00 & 11... \\
\end{array}
\]

The bit runs in n at (130) are alternating 1, 0. Between each is a run either 1000 or 0111. It starts with a repeat bit a, i.e. not alternate, and has zero or more opposite bits $1-a$. The next alternating run starts with a.

The indices k etc for RLQ and LRQ terms are the bit positions of all alternating 1, 0 run bits. Bit positions are counted starting 0 for the least significant bit as usual.

Proof. In the manner of T_{parent}, the distance to the start s follows by the state machine of figure 21.

On expansion, when the target corner is in the opposite half of the tree the distance across that other half is added. In the manner of $T_{diameter}$ theorem 17 this is either RLQ or LRQ following the boundary squares on the right or left side of the sub-curve.

The positions where RLQ or LRQ distances are added are then the n bit runs of the theorem, and per the dir to $T_{parentDir}$ correspondence these runs are the bits of $UnFlip1110$.

\[\square\]
UnFlip1110(n) itself has a geometric interpretation as the total sizes of all power-of-2 sub-trees traversed to reach n.

Let \(\text{WidthS}(k, d) \) be the number of vertices at depth \(d \) from the tree start. Let \(\text{WidthC}(k, d) \) be the number of vertices at depth \(d \) from the corner connection \(c \), in the manner of \(\text{TAcornerEcc} \) from theorem 17. Mutual recurrences follow by the tree as two \(k-1 \) halves,

\[
\text{WidthS}(k, d) = \text{WidthS}(k-1, d) + \text{WidthC}(k-1, d-\text{RLQ}_{k-1}) \tag{132}
\]

\[
\text{WidthC}(k, d) = \text{WidthS}(k-1, d) + \text{WidthC}(k-1, d-\text{LRQ}_{k-1}) \tag{133}
\]

starting

\[
\text{WidthS}(k, 0) = \text{WidthC}(k, 0) = 1
\]

\[
\text{WidthS}(k, d) = \text{WidthC}(k, d) = 0 \quad \text{if } d < 0
\]

so, depths \(d = 0 \) to \(\text{TAheight}_k \),

\[
\begin{align*}
\text{WidthS}(0, d) & = 1 \\
\text{WidthS}(1, d) & = 1, 1 \\
\text{WidthS}(2, d) & = 1, 2, 1 \\
\text{WidthS}(3, d) & = 1, 2, 2, 1, 1, 1 \\
\text{WidthS}(4, d) & = 1, 2, 3, 3, 2, 1, 1, 1 \\
\text{WidthS}(5, d) & = 1, 2, 3, 3, 4, 3, 2, 2, 1, 1, 1, 1
\end{align*}
\]

The two terms of (132), (133) are vertices from the first and second \(k-1 \) sub-parts. For the second sub-part the depth \(d \) is reduced by the distance to the connection point and is then \(\text{WidthC} \).

The sum of widths at all depths is the total \(2^k \) vertices

\[
2^k = \sum_{d=0}^{\text{TAheight}_k} \text{WidthS}(k, d) = \sum_{d=0}^{\text{TAcornerEcc}_k} \text{WidthC}(k, d)
\]

The maximum width is unbounded with increasing \(k \) since there are \(2^k \) vertices within \(\text{TAheight}_k \) and the latter grows only as \(2^{\lfloor k/2 \rfloor} \).

The width at \(d \) is the number of solutions to \(\text{TAdepth}(n) = d \) so from (131)

\[
d = \text{RLQ}_w + \text{LRQ}_{w-1} + \cdots + \text{LRQ}_x + \text{RLQ}_y + \text{LRQ}_{y-1} + \cdots + \text{LRQ}_z + \cdots
\]

\[
k-1 \geq w \quad \uparrow \quad \text{index gap} \geq 1 \quad \uparrow \quad \text{index gap} \geq 1
\]

These runs are in the \(\text{WidthS} \) recurrence (132) too. An \(\text{RLQ} \) subtraction from \(d \) goes to \(C \) and \(\text{WidthC} \) can stay there for a run of \(\text{LRQ} \) subtractions.

So a combinatorial interpretation of \(\text{WidthS} \) is the number of ways to write \(d \) as sums of \(\text{RLQ} \) and \(\text{LRQ} \) terms in such runs.
The index positions are significant. The RLQ values repeat, and values 1,2 repeat LRQ at the low end too. These become distinct ways to make d, where runs and gaps permit.

$$\text{WidthS}(4, 3) = 3 \text{ ways}$$

$$3 = RLQ_3 + RLQ_1 = 2 + \text{gap} + 1 + \text{gap}$$
$$3 = RLQ_3 + RLQ_0 = 2 + \text{gap} + \text{gap} + 1$$
$$3 = RLQ_2 + RLQ_1 = \text{gap} + 2 + \text{gap} + 1$$

$RLQ_0 = LRQ_0 = 1$ are the same but the runs and gaps mean they never make distinct forms. RLQ_0 only occurs when the position above it (index 1) is a gap, whereas LRQ_0 only occurs when not a gap.

As a remark, all of RLQ and LRQ are distinct except for 1 and 2 noted and RLQ repeat pairs. From the power formulas two LRQ fall between each $RLQ_k = 2^\lfloor k/2 \rfloor$ pair,

$$RLQ_{2k+3} = RLQ_{2k+2} \quad LRQ_{2k} > LRQ_{2k-1} > RLQ_{2k+1} = RLQ_{2k} \quad k \geq 2$$

The same run forms apply for WidthC except it starts in an LRQ run already. So start LRQ_{k-1} and further LRQ terms then a gap etc, or gap immediately with no high LRQ_{k-1} at all.

Repeatedly expanding (132) is WidthS as sum of WidthC, where depth < 0 is taken to have width 0.

$$\text{WidthS}(k, d) = \sum_{j=0}^{k-1} \text{WidthC}(j, d - RLQ_j) \quad d \geq 1$$

For a given d these WidthC terms are 0 when j big enough that $d - RLQ_j < 0$. So when k is big enough $\text{WidthS}(k, d)$ does not change with further increases in k. This is the width of a twin alternate area tree continued infinitely. (WidthC treated similarly would be the same as WidthS since (133) becomes only its WidthS term when k big enough that $d - LRQ_{k-1} < 0$.)

$$\text{WidthS}(\infty, d) = \text{WidthS}(k, d) \text{ for } k \text{ where } RLQ_k > d$$

$$= 1, 2, 3, 3, 4, 6, 6, 5, 6, 8, 9, 9, 11, 13, 11, 9, 10, 12, 12, \ldots$$
12.1.3 Twin Alternate Area Tree Independence and Domination

The twin alternate area tree has a perfect matching (section 11) by horizontal pairs of vertices. This is the expansion of each \(k-1 \) vertex to 2 adjacent vertices in \(k \) (the low bit toggle in the numbering of theorem 15). Or top-down \(k \) is two copies of \(k-1 \) starting from perfect matching of the 2 vertices in \(k=1 \).

An independent set in a graph is a set of vertices which have no edges between them, so no adjacent vertices in the set. The independence number is the size of the largest independent set of the graph. The independence ratio is the proportion of this to the number of vertices.

Any tree with a perfect matching has independence ratio \(\frac{1}{2} \). An independent set can have at most one vertex of each pair, and a set of that size can be constructed working outwards taking neighbours opposite present/absent. So for twin alternate area tree \(k \),

\[
TA_{\text{indnum}}_k = \begin{cases}
1 & \text{if } k=0 \\
2^{k-1} & \text{if } k \geq 1
\end{cases} \\
TA_{\text{indRatio}}_k = \begin{cases}
1 & \text{if } k=0 \\
\frac{1}{2} & \text{if } k \geq 1
\end{cases}
\]

Taking neighbours alternately present/absent is unique up to complement, but there are various other sets attaining \(TA_{\text{indnum}}_k \) too. At each vertex absent from the set its neighbours in other pairs can be either present or absent.

A dominating set in a graph is a set of vertices which has every vertex of the graph either in the set or adjacent to one or more of the set. The domination number is the size of the smallest set which dominates in the graph.

Theorem 23. The domination number of twin alternate area tree \(k \) is

\[
TA_{\text{domnum}}_k = \begin{cases}
1, 1, 2 & \text{if } k = 0, 1, 2 \\
3, 2^{k-3} & \text{if } k \geq 3
\end{cases}
= 1, 1, 2, 3, 6, 12, 24, 48, 96, 192, \ldots
\]

The number of dominating sets of this size is

\[
TA_{\text{domnumCount}}_k = \begin{cases}
1, 2, 4 & \text{if } k = 0, 1, 2 \\
2^{2^{k-2}} & \text{if } k \geq 3
\end{cases}
= 1, 2, 4, 4, 16, 256, 65536, 4294967296, \ldots
\]

Proof. The domination number for \(k \leq 3 \) can be verified explicitly. In \(k=3 \) it can be noted that if any combination of the start, end and connection vertices are
optionally allowed to be undominated then the size of the smallest dominating set is still T_{Adomnum}.

In figure 22 the optional undominating would mean only vertices 2, 5 and the middle 1,6 need be dominated. Their separation means $T_{\text{Adomnum}} \geq 3$ vertices are still required to do so.

Suppose the theorem and optional undominating is true of some $k-1 \geq 3$. When two copies of $k-1$ join, there could be a cross-domination allowing the connection vertex in one half to be undominated. But that does not reduce $T_{\text{Adomnum}} k-1$ in that half, so the two halves

$$T_{\text{Adomnum}} k = 2 T_{\text{Adomnum}} k-1 \quad k \geq 4$$

In k the optional undominated vertices are some of the start, end and connection vertices of the two $k-1$, so that their optional undominating in k again still gives $T_{\text{Adomnum}} k$ there.

The count of dominating sets can be verified explicitly for $k \leq 3$. Thereafter the sets are all those in each half, so product

$$T_{\text{AdomnumCount}} k = T_{\text{AdomnumCount}} \left(k-1 \right) \quad k \geq 4 \quad \Box$$

The domination ratio is the ratio of domination number to number of vertices in a graph. For the twin alternate area tree this is

$$T_{\text{AdomRatio}} k = \frac{T_{\text{Adomnum}} k}{2^k} = \begin{cases} 1, & \frac{1}{2}, \frac{1}{2} \quad \text{if} \quad k = 0, 1, 2 \\ \frac{3}{8} & \text{if} \quad k \geq 3 \end{cases}$$

An independent dominating set in a graph is a set of vertices which is both independent and dominating. This is equivalent to being a maximal independent set. A maximal independent set is an independent set to which no further vertex can be added and still be an independent set. This means dominating since any undominated vertex would have no neighbour and so could be added and still be independent.

The independent domination number of a graph is the size of the smallest independent dominating set. Or equivalently, the size of the smallest maximal independent set and as such also called the lower independence number.

The independent domination number is always \geq the domination number, since requiring independence restricts the dominating sets considered. The two are equal for the twin alternate area tree, but a smaller count of sets.

Theorem 24. The independent domination number of twin alternate area tree k is equal to the domination number

$$T_{\text{Adomnum}} k = T_{\text{Adomnum}} k$$

The number of independent dominating sets of this size is
Proof. The theorem can be verified explicitly for $k \leq 4$. Then for $k=4$,

$$TA_{\text{indomnumCount}}_k = \begin{cases} 1, 2, 3, 4 & \text{if } k = 0 \text{ to } 3 \\ 7^k - 4 & \text{if } k \geq 4 \end{cases}$$

$$= 1, 2, 3, 4, 7, 49, 2401, 5764801, \ldots \quad k \geq 4 \quad \text{A165425}$$

Similar to theorem 23, for $k=4$ if any combination of the start, end and connection vertices are optionally allowed to be undominated then the size of the smallest independent dominating set is still $TA_{\text{indomnum}}_4 = TAdomnum_4 = 6$. Those vertices undominated separate the rest into 5 parts. The middle is a path-4 requiring 2 vertices for domination.

The number of independent dominating sets in $k=4$ can be seen by considering how the vertices shown in figure 23 might be rearranged. 1, 4 dominate as many vertices as possible in their tail. But 2 can come inwards to 3. Doing so allows 1 to move up to 6, and when that happens 4 can then move outwards too. These moves are 3 sets. Likewise by symmetry 13 etc in the upper half. But 3 and 13 cannot both move inwards or not an independent set. So $TA_{\text{indomnumCount}}_4 = 1+3+3 = 7$.

All these $k=4$ independent dominating sets have all of start, end and connection vertices absent. So on joining all combinations of sets in $k-1$ remain independent in k, giving

$$TA_{\text{indomnumCount}}_k = TA_{\text{indomnumCount}}_{k-1}^2 \quad k \geq 5 \quad \square$$

A total dominating set in a graph is a set of vertices for which all graph vertices are adjacent to one or more in the set. This differs from an ordinary dominating set in that a vertex in the set does not dominate itself, it must have some neighbour.

Theorem 25. The number of total dominating sets in twin alternate area tree k is

$$TA_{\text{totdomsets}}_k = \begin{cases} 0, 1, 4, 25 & \text{if } k = 0 \text{ to } 3 \\ 30^{2^{k-3}} & \text{if } k \geq 4 \end{cases}$$

$$= 0, 1, 4, 25, 900, 810000, 656100000000, \ldots$$

Proof. The theorem can be verified explicitly for $k \leq 4$. Then for $k=4,$
Vertex 3 must be present to dominate leaf vertex 2, and 3 then also dominates the start vertex s. Similarly 4, 11, 12 required and dominate a, c, e.

All higher k are formed by connections across those s, a, c, e. Since they are already dominated in their $k=4$ parts there are no additional sets formed by cross-domination at those connections, only the sets formed within $k=4$. It can be verified explicitly that $k=4$ has $30^2 = 900$ sets. Further k squares that successively.

The total domination number is the size of the smallest total dominating set of a graph. Similar to theorem 25, from no cross-domination the total domination number and count of sets of that size are

$$TAtotdomnum_k = \begin{cases}
\text{none} & \text{if } k=0 \\
2 & \text{if } k=1 \\
2^{k-1} & \text{if } k \geq 2
\end{cases}$$

$$= \text{none}, 2, 4, 8, 16, 32, \ldots$$

$$TAtotdomnumCount_k = \begin{cases}
0 & \text{if } k = 0 \\
1 & \text{if } k = 1 \text{ to } 3 \\
2^{2^{k-3}} & \text{if } k \geq 4
\end{cases}$$

$$= 0, 1, 1, 4, 16, 256, 65536, 4294967296, \ldots$$

The total domination polynomial of a graph has terms $c_n x^n$ where c_n is the number of total dominating sets of n vertices. Again similar to theorem 25, from no cross-domination after $k=4$ this is a power

$$TAtotdompoly(x) = \begin{cases}
0 & \text{if } k = 0 \\
x^2 & \text{if } k = 1 \\
x^2 (x+1)^2 & \text{if } k = 2 \\
x^2 (x^2+3x+1)^2 & \text{if } k = 3 \\
\left(x^4 (x+1) (x+2) (x^2+3x+1) \right)^{2^{k-3}} & \text{if } k \geq 4
\end{cases}$$

A semi-total dominating set in a graph is a set of vertices where each not in the set has a neighbour in the set, and each in the set has a neighbour or distance 2 away in the set (or both). Semi-total is similar to total domination, but relaxes to allow set members dominated up to distance 2 away. It is still a plain dominating set and so falls between the conditions of total and plain dominating.

The semi-total domination number of a graph is the size of the smallest semi-total dominating set.
Theorem 26. The semi-total domination number of twin alternate area tree k is the same as the domination number for $k \geq 4$.

$$T_{\text{asemitotdomnum}}_k = \begin{cases} \text{none, 2, 2, 4} & \text{if } k \leq 3 \\ T_{\text{domnum}}_k & \text{if } k \geq 4 \end{cases}$$

The number of semi-total dominating sets of this size is

$$T_{\text{asemitotdomnumCount}}_k = \begin{cases} 0, 1, 3, 11 & \text{if } k = 0 \text{ to } 3 \\ 1 & \text{if } k \geq 4 \end{cases}$$

Proof. The theorem can be verified explicitly for $k \leq 3$. For $k=4$ the unique minimum semi-total dominating set is

![Diagram of a twin alternate area tree](image)

$T_{\text{asemitotdomnum}}_4 = 6$

Similar to theorem 23, if any or all of the start, end and connection vertices are optionally allowed to be undominated, and/or their neighbours allowed to be present and undominated, then the size of the smallest set is still this sole $T_{\text{asemitotdomnum}}_4 = 6$.

So on connecting to $k \geq 5$ by two $k-1$ halves, any cross-domination to one of the halves doesn’t reduce the size there, and hence $T_{\text{asemitotdomnum}}_k = 2 T_{\text{asemitotdomnum}}_{k-1}$ is the best, and attained by the single set each half. \[\square\]

A perfect dominating set in a graph is a dominating set where each vertex not in the set is dominated by just one from the set. The perfect domination number of a graph is the size of the smallest perfect dominating set.

Theorem 27. The perfect domination number of twindragon area tree k is the same as the domination number.

$$T_{\text{aperfdomnum}}_k = T_{\text{domnum}}_k$$

The number of perfect dominating sets of this size is

$$T_{\text{aperfdomnumCount}}_k = \begin{cases} 1, 2, 2, 2 & \text{if } k = 0 \text{ to } 3 \\ 2^{2^{k-1}} & \text{if } k \geq 4 \end{cases} = 1, 2, 2, 2, 4, 16, 256, 65536, \ldots$$

Proof. The theorem can be verified explicitly for $k \leq 4$. For $k=4$ the two perfect dominating sets are
Both sets have all start, end and connections absent so on joining for \(k=5 \) there is no cross-domination and they remain perfect dominating. The new start, end and connections are likewise absent so likewise perfect dominating in bigger \(k \) too. The number of sets formed this way is product in each half so

\[
T_{\text{perfdomnum}}\text{Count}_k = 2 T_{\text{perfdomnum}}\text{Count}_{k-1}^2
\]

Suppose there are no other such sets in some \(k-1 \geq 3 \). This is so for \(k-1 = 3 \) above. If the connection \(C \) is in the set then this is not of these forms and therefore is at least 1 vertex bigger. In the other half its connection would be undominated. From \(T_{\text{Adomnum}} \) theorem 23, such an undominated does not reduce the size of any dominating set there, so total in \(k \) is too big.

The disjoint domination number of a graph is the smallest combined size of two disjoint dominating sets. For the twin alternate area tree the two sets can both be the minimum \(T_{\text{Adomnum}} \) size.

Theorem 28. The disjoint domination number of twin alternate area tree \(k \) is

\[
T_{\text{disdomnum}} k = \begin{cases}
\text{none} & \text{if } k=0 \\
2 T_{\text{domnum}} k & \text{if } k \geq 1
\end{cases}

= 2, 4, 6, 12, 24, 48, 96, \ldots \text{ } k \geq 1 \text{ A058764}
\]

The number of pairs of such sets is

\[
T_{\text{disdomnum}} \text{Count}_k = \begin{cases}
0, 1, 2 & \text{if } k = 0, 1, 2 \\
2^{k-3} - 1 & \text{if } k \geq 3
\end{cases}

= 0, 1, 2, 1, 2, 8, 128, 32768, \ldots \text{ } k \geq 3 \text{ A058891}
\]

Proof. For \(k<3 \) the theorem can be verified explicitly. For \(k=3 \) the tree is a path and figure 22 shows a \(T_{\text{domnum}}_3 = 3 \) dominating set. Reversing it along the path, so 2, 6, 2, is a further dominating set of 3 vertices and is disjoint.

For \(k \geq 4 \), the replications in theorem 23 constructing \(T_{\text{domnum}} \) mean the two sets remain disjoint, thus giving two sets each \(T_{\text{domnum}} \), and no extra sets by cross-domination. The \(k=3 \) pair is the only pair in \(k=3 \). Further \(k \) is product counts in each half, and \(2 \times \) since can also flip the pairings in the second half relative to the first.

\[
T_{\text{disdomnum}} \text{Count}_k = 2 T_{\text{disdomnum}} \text{Count}_{k-1}^2 \quad k \geq 4 \quad \square
\]

The various independent and dominating set counts go as a power \(c^n \) where \(n=2^k \) is the number of vertices. \(c=1 \) is for a single set (1 choice each vertex), and \(c=2 \) would be all sets (2 choices present or absent each vertex), or \(c=3 \).
for set pairs of $T\text{AdisdomnumCount}$ the (set A,B or none). The counts can be compared by their base c.

$$2^{k} \sqrt{T\text{Atotdomsets}_{k}} = 30^{1/8} = 1.529819 \ldots \quad k \geq 4$$

$$2^{k} \sqrt{T\text{AdomnumCount}_{k}} = 2^{1/4} = 1.189207 \ldots \quad k \geq 3 \quad \text{A010767}$$

$$2^{k} \sqrt{T\text{AindomnumCount}_{k}} = 7^{1/16} = 1.129324 \ldots \quad k \geq 4 \quad \text{A011240}$$

$$2^{k} \sqrt{T\text{AtotdomnumCount}_{k}} = 2^{1/8} = 1.090507 \ldots \quad k \geq 4 \quad \text{A010770}$$

$$2^{k} \sqrt{T\text{AdisdomnumCount}_{k}} \rightarrow 2^{1/8}$$

$$2^{k} \sqrt{T\text{AperfdomnumCount}_{k}} = 2^{1/16} = 1.044273 \ldots \quad k \geq 4 \quad \text{A010778}$$

$$2^{k} \sqrt{T\text{AsemilitotdomnumCount}_{k}} = 1 \quad k \geq 4$$

12.2 Twin Alternate Turn Tree

For any non-crossing closed curve or curve continuing infinitely and not encircling its start on a square grid, the turn at revisited points is the same for each visit. An opposite turn would either enclose either the end or the start.

The twin alternate is a closed curve of this type. Some of its points are right turns. Those points and the segments between them form a tree.

This is a subdivision of twin alternate area tree $k-1$, ie. an extra vertex inserted in each edge. That follows from the same sort of connection arguments used in that tree. The connection c between the two twin alternate halves is on the boundary so it is a left turn. The connection changes it to a right turn and the rest of the halves are copies of the previous level.

As from the turn recurrence (2), the turn at odd n is alternately L,R at $n \equiv 1, 3 \text{ mod 4}$ respectively. Since the curve turns either left or right at every point, this gives the odd turns at every second point in a 2×2 grid.
The R turns are at $z \equiv i \mod 2$ in the pattern. The turns with one trailing 0-bit, so $n \equiv 2, 6 \mod 8$, are then a copy at 45° and opposite R,L, and so on.

The effect is to make twin alternate curves tiling the plane. The left turns likewise, turned 90°.

13 Fractional Locations

A fractional point $0 \leq f \leq 1$ in the alternate paperfolding curve fractal is a limit

$$f_{\text{point}}(f) = \lim_{k \to \infty} \text{unexpand}^k\left(\text{point}\left([f.2^k]\right)\right)$$

The \pm signs are per the rule at (47), flip below each 11 bit pair.

As from point in section 4, f_{point} is a change of f bits 2^{-j} to terms $\pm \text{End}_{-j}$. The \pm signs are per the rule at (47), flip below each 11 bit pair.
When \(f \) is rational its bits are an initial fixed part then a repeating periodic part (of length at most denominator \(-1\)). The \(\text{End} \) terms and sign changes are then likewise periodic and give a location as some \(x+iy \) with rational \(x, y \).

If the periodic part of \(f \) has an odd number of 11 bit pairs then that is a net negative on the resulting \(\text{End} \) terms. This can be accounted for in the calculation, or doubling the length of the periodic part ensures an even number of sign changes for purely periodic in \(\text{End} \) terms.

When \(f \) is irrational it might give a rational \(\Re \) or \(\Im \). The simplest is when there are 1-bits only at even positions so \(\text{End} \) terms all real and \(\Im = 0 \). An example eventually all even positions is the Kempner-Mahler number, a sum of powers of powers of 2 of a type Kempner\[9\] showed is transcendental.

\[
KM = \sum_{j=0}^{\infty} \frac{1}{2^j} = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{256} + \frac{1}{65536} \ldots
\]

\[
= 0.81642150 \ldots A007404
\]

\[
= 0.11010001 \ldots \text{ binary } A036987
\]

After the initial \(\frac{1}{2} \) all 1-bits are at even positions. The \(\text{End} \) terms effectively halve the number of 0s between so with the \(KM \) bit pattern this is \(j-1 \) in each term, so limit

\[
fpoint(KM) = \frac{3}{2} + \frac{1}{2}i - KM = 0.683578\ldots + 0.5i
\]

For the alternating signs sum \(C(2, \infty) \) of Shallit from (15), the alternating signs in the sum give 1-bits in runs. Working through their positions is

\[
fpoint(C(2, k)) = \frac{1}{2} + \frac{1}{2}i + \sum_{j=0}^{k-1} \frac{i^{j-1}}{2^j}
\]

\[
= \left(\frac{1}{2} + \sum_{j=0}^{\lfloor k/2 \rfloor - 1} \frac{(-1)^j}{4^j} \right) + \left(\frac{1}{2} - \sum_{j=0}^{\lfloor k/2 \rfloor - 1} \frac{(-1)^j}{2^j} \right) i
\]

\[
\to 0.746093\ldots + 0.062484\ldots i
\]

The \(i \) power in (134) is a kind of rotating sum with terms \(1, i, -1, -i \) instead of \(\pm 1 \). The real and imaginary parts are separated at (135), with \(2j \) or \(2j+1 \) worked into the denominator. The resulting \(4^j \) powers in each are variants Kempner also noted have transcendental limits.
Theorem 29. Fractional points \(f \) on the \(x \) axis (right boundary) are

\[
\text{fXpred}(f) = 1 \text{ if } f = \begin{cases} 1 & \text{or base-4 digits only 0,1} \\ \text{or } (n+\frac{3}{4})/4^k \text{ where } n \text{ odd integer} \\ \text{of } k \text{ many base-4 digits 0,1} \end{cases}
\]

Fractional points \(f \) on the \(x=y \) diagonal are

\[
\text{fGpred}(f) = 1 \text{ if } f = \begin{cases} \text{base-4 digits only 0,2} \\ \text{or } (n+\frac{5}{6})/4^k \text{ where } n \text{ integer} \\ \text{of } k \text{ many base-4 digits 0,2} \end{cases}
\]

Fractional points \(f \) on the vertical at \(x=1 \) are

\[
\text{fVpred}(f) = 1 \text{ if } f = \begin{cases} \text{base-4 digits only 2,3} \\ \text{or } (n+\frac{1}{3})/4^k \text{ where } n \text{ even integer} \\ \text{of } k \text{ many base-4 digits 2,3} \end{cases}
\]

\(\text{fGpred} \) and \(\text{fVpred} \) both allow \(k=0 \) for no digits just \(f=\frac{5}{6} \) or \(f=\frac{1}{3} \) respectively.

Proof. \(f \) at the top corner \(z=1+i \) is found by considering two expansions,

\[
\begin{array}{c}
1+i \\
\text{start 0}
\end{array} \\
\text{--- sub-part 2} \\
\begin{array}{c}
\text{end 1}
\end{array}
\]

Only sub-curve 2 touches the top corner point \(z=1+i \). Likewise in sub-curves of it so that \(f=.222... \) base-4 = \(\frac{7}{3} \) is the only \(f \) there.

\(f \) at the start of the curve is only \(f=0 \) by a similar argument. Only sub-curve 0 touches the start so \(f=.000... \) base-4.

For the theorem, take the curve sides \(x \) axis, \(g \) diagonal, and \(v \) vertical. The curve comprises self-similar halves,

\[
\begin{array}{c}
\text{start} \\
\text{end}
\end{array} \\
\begin{array}{c}
0 \\
1
\end{array}
\]

The respective sides are then

\[
x = 0g \text{ or } 1111... \\
g = 0x \text{ or } 1\bar{v} \\
v = 0\bar{g} \text{ or } 0101...
\]

\(x \) is \(g \) of part 0, so a 0 bit followed by \(g \). Also the start of the unfolded part 1, which is \(f=0 \) unfolded to \(f=1 \) and represented as binary .111....

\(g \) is \(x \) of part 0, and \(v \) of part 1. The unfolding means the latter is reversed \(1-v \) which is indicated by \(\bar{v} \). The effect of that negation is to flip bits \(0\leftrightarrow1 \).

Draft 9 page 94 of 103
Side \(v \) is the top corner of part 0 which is \(f = \frac{2}{3} \) so bit 0 followed by 1010.... Also \(g \) of part 1, in reverse which is bit flipped.

These descents, with sides forward and reversed, are then a state machine

The starting state is the desired \(x,g,v \) side. An \(f \) with bits remaining always in the state machine is on the boundary. Any absent transition is a non-boundary \(f \).

The base-4 digit conditions and offsets of the theorem can be expressed as state machines and are the same as figure 24.

The \(f_{X_{\text{pred}}} \) case of digits all 0,1 includes exact fractions \(n/4^k \) when infinite trailing 0 digits. The state machine in figure 24 matches such fractions ending zero bits 1000... and also ending infinite 1-bits 0111.... Similarly \(f_{G_{\text{pred}}} \) case digits 0,2.

The \(f_{V_{\text{pred}}} \) case of digits all 2,3 includes exact fractions \(n/4^k \) when all trailing 3s. The state machine in figure 24 matches those both as trailing 1-bits and trailing 0-bits.

When considering whether a given \(f \) is on the boundary it might be known or proved \(f \) is not a 3rd or 6th and so not subject to the \(+\frac{2}{3} \) etc cases. For example any irrational \(f \) is not a 3rd. The conditions then become, reckoning the first bit below the binary point as position \(-1\) so odd,

\[
\begin{align*}
 f_{X_{\text{pred}}} &= \text{0s at all odd bit positions} \\
 f_{G_{\text{pred}}} &= \text{0s at all even bit positions} \\
 f_{V_{\text{pred}}} &= \text{1s at all odd bit positions}
\end{align*}
\]

The remaining combination would be 1s at all even bit positions. This is an \(f_{M_{\text{pred}}} \) on the middle anti-diagonal line \(x+y=1 \) between the two half sub-curves. Points there are 0\(v \) or 1\(\bar{x} \), both of which are 1s at even positions.

The \(f_{X_{\text{pred}}} \) case \(n+\frac{2}{3} \) is the top point of sub-curves directed West. In the finite iterations these are in enclosed unit squares on the \(x \) axis. The first such is \(n=6 \) to 7 which is the biggest such sub-curve in the fractionals and goes \(\frac{6}{16} \) to \(\frac{7}{16} \) with top point \(f = (6 + \frac{2}{3})/16 = \frac{5}{12} \) at \(x=\frac{1}{2} \).

\[
\begin{align*}
 f_{X_{\text{pred}}} \text{ case} \quad (n+\frac{2}{3})/4^k
\end{align*}
\]
Theorem 30. Fractional locations \(z \) in the alternate paperfolding curve fractal are visited 1, 2, 3 or 6 times each.

- Curve start \(z=0 \) and the top \(z=1+i \) have 1 visit each.
- Curve end \(z=1 \) has 2 visits.
- Other exact binary locations \(z = \frac{(x+iy)}{2^k} \) for integer \(x, y, k \) have 3 visits when on the boundary or 6 visits when inside.
- Other locations straight or 45° diagonal between exact binary points have 1 visit when on the boundary or 2 visits when inside.
- Other locations have 1 visit.

Proof. As in the proof of theorem 29, curve start and top are 1 visit and the curve end is 2 visits (top of part 0 and start of part 1).

Successive expansions put sub-curve ends at new exact binary locations between existing ones. At an exact binary \(z \) this is as follows. The dashed sub-curves have expanded to A,P,B and C,P,D.

Sub-curve A end has 2 visits, being \(f=\frac{1}{2} \) and \(f=1 \) in that sub-curve. Likewise B, but its \(f=1 \) is the same as in A so 3 visits. If \(z \) is on the boundary (the boundary being A across to D) then these are the only visits. If \(z \) is not on the boundary then sub-curves C and D are 3 more visits.

A location \(z \) straight or 45° diagonal between exact binary points is between sub-curves

Since \(z \) here is not an exact binary fraction, subsequent expansions have the location always between two such sub-curves this way. So only ever 2 bit patterns of \(f \) adjacent to the point and so 2 visits when inside the curve or 1 visit when the boundary.

Otherwise \(z \) is inside a sub-curve and remains inside on every expansion so is always a finite distance away from anything except its contained sub-curve and so just 1 visit.

Theorem 31. The number of visits for a point \(f \) in the alternate paperfolding curve fractal are

\[
\begin{align*}
O &= f \text{ odd position bits eventually all 0s or all 1s} \\
E &= f \text{ even position bits eventually all 0s or all 1s}
\end{align*}
\]
\begin{align*}
 \text{visits}(f) =
 \begin{cases}
 1 & \text{if } f = 0 \text{ or } \frac{2}{3} \\
 2 & \text{if } f = 1 \text{ or } \frac{1}{3} \\
 3 & \text{if neither } O, E \\
 1 & \text{if one of } O, E \text{ and } f \text{ on the boundary} \\
 2 & \text{if one of } O, E \text{ and } f \text{ not on the boundary} \\
 6 & \text{if both } O, E \text{ and } f \text{ on the boundary} \\
 5 & \text{if both } O, E \text{ and } f \text{ not on the boundary}
 \end{cases}
\end{align*}

\textbf{Proof.} An } f \text{ which is eventually } O \text{ or } E \text{ is one of } fXpred, fGpred \text{ or } fVpred \text{ for those bits, so on the boundary of some sub-curve.}

When both } O \text{ and } E, \ f \text{ is eventually } 0 \text{ or } 1 \text{ when } O \text{ and } E \text{ both } 0 \text{ or both } 1, \text{ or eventually } \frac{1}{3} \text{ when they are opposites. These are at a corner of the sub-curve which is an exact binary } z \text{ so } 3 \text{ or } 6 \text{ visits.}

When just one } O \text{ or } E, \text{ the location is on a sub-curve boundary but never an exact binary and so its } z \text{ straight or 45° between exact binary and so } 1 \text{ or } 2 \text{ visits.}

Neither } O \text{ nor } E \text{ means never on the boundary of a sub-curve so its } z \text{ always within a sub-curve and so } 1 \text{ visit.} \quad \square

The case of one of } O, E \text{ can be } f \text{ either rational or irrational. When rational it is an } f \text{ with an eventually repeating pattern of base-4 digits. A denominator for the repeating part is some } 4^k - 1, \text{ but not } 3 \text{ since that is an exact binary location. Such a denominator has factor } 3, \text{ but also other factors. For example } fpoint(\frac{7}{15}) = \frac{2}{3} + \frac{1}{3}i \text{ is on the } x+y=1 \text{ anti-diagonal and not an exact binary.}

The case of neither } O, E \text{ can be } f \text{ either rational or irrational. A rational example is } fpoint(\frac{5}{12}) = \frac{1}{3} + \frac{1}{3}i. \text{ Its expansions go in a cycle of } f \text{ within sub-curves } \frac{2}{3} \rightarrow \frac{1}{3} \rightarrow \frac{2}{3} \text{ and so never on a sub-curve boundary and only } 1 \text{ visit to its location.}

\textbf{Theorem 32.} The fixed points } fpoint(f) = f \text{ of the alternate paperfolding curve are the endpoints } f=0 \text{ and } f=1.

\textbf{Proof.} The fixed point requires } y=0, \text{ so an } fXpred \text{ boundary point. From its cases or bit patterns the maximum } f, \text{ other than } f=1, \text{ is } f = .011010... = \frac{\sqrt{5} - 1}{2}. \text{ So there are no fixed points in the range } \frac{\sqrt{5} - 1}{2} < f < 1.

The fixed point requires } x-f = 0 \text{ but can see } x > f \text{ in the range } 0 < f < \frac{1}{2} \text{ by considering sub-curves in that range.}

\begin{center}
\begin{tikzpicture}
 \draw[thick] (0,0) -- (1,0) -- (0.5,0.5) -- (0,0);
 \draw[thick] (0,0) -- (0.5,-0.5) -- (0,0);
 \node at (0,0) [left] {0};
 \node at (0.5,0.5) [above] {1};
 \node at (0.5,-0.5) [below] {3};
 \node at (1,0) [right] {2};
 \node at (0.25,0) [below] {1};
 \node at (0.75,0) [below] {1};
 \node at (0.25,0.25) [right] {1};
 \node at (0.75,0.25) [right] {1};
 \node at (0.5,0.75) [right] {f=\frac{1}{2}};
 \node at (0.5,-0.25) [right] {f=\frac{1}{2}};
 \node at (0.25,-0.5) [right] {f=\frac{1}{2}};
 \node at (0.75,-0.5) [right] {f=\frac{1}{2}};
 \node at (0.5,0.5) [right] {f=\frac{1}{2}};
 \node at (0.5,-0.5) [right] {f=\frac{1}{2}};
 \node at (0,0) [below] {x=0};
 \node at (1,0) [below] {x=1};
 \node at (0.5,0.5) [below] {x=\frac{1}{2}};
 \node at (0.5,-0.5) [below] {x=\frac{1}{2}};
 \node at (0.25,-0.5) [below] {1};
 \node at (0.75,-0.5) [below] {1};
 \node at (0.25,0.25) [below] {1};
 \node at (0.75,0.25) [below] {1};
 \node at (0,0) [right] {x=0};
 \node at (0.5,0.5) [right] {x=\frac{1}{2}};
 \node at (0.5,-0.5) [right] {x=\frac{1}{2}};
 \node at (1,0) [right] {x=1};
 \node at (0.5,0.5) [above] {f=\frac{1}{2}};
 \node at (0.5,-0.5) [above] {f=\frac{1}{2}};
 \node at (0,0) [above] {f=\frac{1}{2}};
 \node at (1,0) [above] {f=\frac{1}{2}};
\end{tikzpicture}
\end{center}

Parts 2 and 3 are } f = \frac{1}{4} \text{ to } \frac{1}{2} \text{ and } x = \frac{1}{2} \text{ to } 1. \text{ So } x > f \text{ other than } f=\frac{1}{2}. \text{ }$
Part 1 is \(f = \frac{1}{8} \) to \(\frac{1}{4} \) and \(x = \frac{1}{4} \) to \(\frac{1}{2} \). Only \(f = \frac{1}{4} \) is common to these and that point is \(x = \frac{1}{2} \), so \(x > f \).

Part 0 can be taken in further sub-curves. They scale \(x/2 \) and \(f/4 \) so that \(f \) is yet smaller, giving \(x > f \) other than at \(f = 0 \).

\(x - f \) and \(y \) can be illustrated by plotting as functions of \(f \).

A fixed point would be an \(f \)-axis touch by \(x - f \) and \(y \) at the same place. But \(x - f \) touches only at and above \(\frac{1}{2} \) and \(y \) touches only at and below \(\frac{5}{12} \).

Theorem 33. The diagonal fixed points \(f \) point \((f) = (1+i) f \) of the alternate paper folding curve are curve start \(f = 0 \) and the middle \(f = \frac{1}{2} \) at \(z = \frac{1}{2} + \frac{1}{2} i \).

Proof. A diagonal fixed point requires both \(x = f \) and \(y = f \). As from theorem 32, \(x > f \) for \(0 < f < \frac{1}{4} \) so there are no diagonal fixed points in that range. For \(\frac{3}{4} < f \leq 1 \) have \(y < \frac{1}{2} \), so \(f > y \) and no diagonal fixed points in that range.

For \(\frac{1}{2} < f < \frac{3}{4} \), consider 4 sub-parts of it as follows,

\[
\begin{array}{cccc}
\text{f} & \text{f=\frac{1}{2}} & \text{f=\frac{2}{3}} & \text{2} \\
\text{f=3/4} & \text{0} & \text{1} & \text{f=3/4} \\
\text{x=1} & \text{x=\frac{1}{2}+\frac{1}{4}} & \text{x=\frac{1}{2}} & \text{x=0} \\
x=\frac{1}{2} & \text{1} & \text{2} & \text{3}
\end{array}
\]

Parts 1, 2, 3 are at least \(+ \frac{1}{4} \) from the start at \(x = \frac{1}{2} \) so \(x \geq \frac{3}{4} \). But those parts have \(f \) at most \(+ \frac{1}{4} \) from the start \(f = \frac{1}{2} \) so \(f < \frac{3}{4} \) and \(x > f \). In part 0, a corresponding argument applies but with \(x \) offset halved and \(f \) offset quartered, so again \(x > f \), and so on in successive sub-parts.

The conditions for a diagonal fixed point can be illustrated by plotting \(x - f \) and \(y - f \) as functions of \(f \).
A diagonal fixed point would be an f axis touch by $x-f$ and $y-f$ at the same place. $x-f$ is in black the same as figure 25. $y-f$ is in grey. It descends to $y-f=-1$ which is $y=0$ at $f=1$.

For $f > \frac{3}{4}$, $y-f$ is all negative with no axis touches so no diagonal fixed points. There are $x-f$ axis touches in that range, but no $y-f$.

Conversely, in $0 < f \leq \frac{3}{4}$ have various $y-f$ axis touches, but $x-f$ is positive except at $f=\frac{1}{2}$.

References

http://www.jjj.de/fxt/fxtpage.html

http://www.jstor.org/stable/2918067

http://projecteuclid.org/euclid.ijm/1256048841

http://msp.org/pjm/1983/107-1/p04.xhtml

http://arxiv.org/abs/1601.04840

DOI 10.1007/s10910-008-9476-2

http://www.jstor.org/stable/1988833

http://www-cs-faculty.stanford.edu/~uno/fg.html

http://www.numdam.org/item?id=BSMF_1981__109__207_0

http://www.cs.uwaterloo.ca/~shallit/papers.html
http://www.cs.uwaterloo.ca/~shallit/Papers/scf.ps
Index

A area, 31
AL area left side, 31
AR area right side, 31
area, 30
area tree, 65

b base, 16
B boundary segments, 30
Baum-Sweet sequence, 38
BitAboveLowestOne difference, 70
dBitAboveLowestOne, 3
d1, d2 boundary numbers, 37
BQ boundary segments, 30

cat, Catalan triangle, 61
Catalan number, 55
Catalan triangle, 61
combinatorial, 36, 83
continued fraction, 6
coordinates, 16
CountLowZeros, 3

D double-visited points, 32
DA area, 32
DBitAboveLowestOne difference, 70
d1, d2 boundary numbers, 37
Diameter shortest path, 55
DiameterCount, 55
dir, direction, 10
dnorm increment, 21
dominating set, 85
domination number, 85
domination ratio, 86
Dpred double-visited point, 35
DpredFirst visit, 39
DpredLeft double-visited left turn, 36
DpredRight double-visited right turn, 36
DpredSecond visit, 40
dsum step \(x+y \), 14
dx, dy steps, 14

End location, 16
Euler planar graph formula, 33

fGpred on diagonal, 94
fixed point, 97, 98
fpont fractional, 92
fractal, 92
fractional locations, 92
visits, 97
fvpred on vertical, 94
xpred on x axis, 94

Gnum on diagonal, 33
Golay-Rudin-Shapiro sequence, 14
Gpred on diagonal, 33
graph, 54
Gray code, 12
GRS, Golay-Rudin-Shapiro sequence, 14

GSalt, alternating, 15
GRScumul cumulative, 42
GRScumulAlt alternating, 42
GRScumulFirstN, 43
GRScumulLastN, 43

Hamiltonian path, 54

dependent number, 85
dependent domination, 86
dependent domination number, 86
dependent edge set, see matching
dependent set, 85

Kempner-Mahler number, 93

L left boundary, 30
Leading distance, 42
Lnum left boundary, 37
lower independence number, 86
Lpred left boundary, 37
LQ left boundary squares, 30
LRQ boundary squares, 73

Manhattan distance, 42
MaskAboveLowestOne, 3
mapping, 54, 85
maximal independent set, see
dependent domination
MfirstN on anti-diagonal, 43
MfirstZ on anti-diagonal, 44
midpoint curve, 53
midpoint of segment, 53
MlastN on anti-diagonal, 43
MlastZ on anti-diagonal, 46
Mturn midpoint turns, 54

101
OEIS A-Numbers

\[
\begin{array}{ccc}
\text{OEIS} & \text{A-Numbers} \\
\hline
k \geq 1, & 90 \\
A000007, & 68 \\
A000007, & 55 \\
A0000217, & 56 \\
A0000292, & 64 \\
A0000695, & 33, 34 \\
A0000918, & 69 \\
A0001196, & 81 \\
A0002620, & 27 \\
A0003188, & 12 \\
A0005418, & 28 \\
A0006331, & 64 \\
A0007179, & 29 \\
A0007404, & 93 \\
A0007582, & 58 \\
A0007814, & 3 \\
A0009766, & 61 \\
A010060, & 38 \\
A010767, & 91 \\
A010770, & 91 \\
A010778, & 91 \\
A011240, & 91 \\
A013698, & 63 \\
A014577, & 68 \\
A016116, & 17 \\
A020985, & 14 \\
A020986, & 17, 42 \\
A020989, & 47 \\
A020990, & 17, 42 \\
\end{array}
\]

Wiener index, 74

\[
\begin{array}{c}
\text{Wiener index, 74} \\
\text{Xnum on x axis, 33} \\
\text{XorY coordinate, 22} \\
\text{Xpred on x axis, 33} \\
\text{YorX coordinate, 22} \\
\text{Zagreb index, 72} \\
\end{array}
\]