[1] R. B. Lehoucq, D. C. Sorensen, and C. Yang ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, ISBN 0-89871-407-9 // http://www.caam.rice.edu/software/ARPACK/
[2] Babbuška, I: Error bounds for finite element method, Numer. Math. 16, 322-333.
[3] Y. Achdou and O. Pironneau: Computational Methods for Option Pricing. SIAM monograph (2005).
[4] D. Bernardi, F.Hecht, K. Ohtsuka, O. Pironneau: freefem+ documentation, on the web at ftp://www.freefem.org/freefemplus.
[5] D. Bernardi, F.Hecht, O. Pironneau, C. Prud’homme: freefem documentation, on the web at http://www. freefem.fr/freefem
[6] Davis, T. A: Algorithm 8xx: UMFPACK V4.1, an unsymmetric-pattern multifrontal method TOMS, 2003 (under submission) http://www.cise.ufl.edu/research/sparse/umfpack
[7] George, P.L: Automatic triangulation, Wiley 1996.
[8] Hecht F. Outils et algorithmes pour la méthode des éléments finis, HdR, Université Pierre et Marie Curie, France, 1992
[9] Hecht, F: The mesh adapting software: bamg. INRIA report 1998.
[10] Library Modulef , INRIA, http://www.inria-rocq/modulef
[11] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ symmetric systems and Second-order PDEs, SIAM J. Numer. Anal., (2005). See also: Theory and Practice of Finite Elements, vol. 159 of Applied Mathematical Sciences, Springer-Verlag, New York, NY, 2004.
[12] F. Hecht. C++ Tools to construct our user-level language. Vol 36, N°, 2002 pp 809-836, Modél. math et Anal Numér.
[13] J.L. Lions, O. Pironneau: Parallel Algorithms for boundary value problems, Note CRAS. Dec 1998. Also : Superpositions for composite domains (to appear)
[14] B. Lucquin, O. Pironneau: Introduction to Scientific Computing Wiley 1998.
[15] I. Danaila, F. Hecht, and O. Pironneau. Simulation numérique en C++. Dunod, Paris, 2003.
[16] J. Nečas and L/ Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: An introduction, Elsevier, 1981.
[17] K. Ohtsuka, O. Pironneau and F. Hecht: Theoretical and Numerical analysis of energy release rate in 2D fracture, INFORMATION 3 (2000), 303–315.
[18] F. Preparata, M. Shamos Computational Geometry Springer series in Computer sciences, 1984.
[19] R. Rannacher: On Chorin’s projection method for the incompressible Navier-Stokes equations, in ”Navier-Stokes Equations: Theory and Numerical Methods” (R. Rautmann, et al., eds.), Proc. Oberwolfach Conf., August 19-23, 1991, Springer, 1992
[20] Roberts, J.E. and Thomas J.-M: Mixed and Hybrid Methods, Handbook of Numerical Anaysis, Vol.II, North-Holland, 1993
[21] J.L. Steger: The Chimera method of flow simulation, Workshop on applied CFD, Univ of Tennessee Space Institute, August 1991.
[22] Tabata, M: Numerical solutions of partial differential equations II (in Japanese), Iwanami Applied Math., 1994
[23] Thomasset, F: Implementation of finite element methods of Navier-Stokes Equations, Springer-Verlag, 1981
[24] N. Wirth: Algorthims + Data Structures = Programs, Prentice Hall, 1976
[26] Bjarne Stroustrup: The C++ , programming language, Third edition, Addison-Wesley 1997.
[27] COOOL: a package of tools for writing optimization code and solving optimization problems, http://coool.mines.edu
[28] B. Riviere, M. Wheeler, V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001), no. 3, 902–931 (electronic).
[29] R. GLOWINSKI and O.PIRONNEAU, Numerical methods for the Stokes problem, Chapter 13 of Energy Methods in Finite Element Analysis, R.Glowinski, E.Y. Rodin, O.C. Zienkiewicz eds., J.Wiley & Sons, Chichester, UK, 1979, pp. 243-264.
[30] R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, NY, 1984.
[31] R. GLOWINSKI, Finite Element Methods for Incompressible Viscous Flow. In Handbook of Numerical Analysis, Vol. IX, P.G. Ciarlet and J.L. Lions, eds., North-Holland, Amsterdam, 2003, pp.3-1176.
[32] Horgan, C; Saccomandi, G; “Constitutive Models for Compressible Nonlinearly Elastic Materials with Limiting Chain Extensibility,” Journal of Elasticity, Volume 77, Number 2, November 2004, pp. 123-138(16).
[33] Kazufumi Ito, and Karl Kunisch, Semi smooth newton methods for variational inequalities of the first kind , M2AN, vol 37, N∘, 2003, pp 41-62.
[34] Ogden, RW; Non-Linear Elastic Deformations, Dover, 1984.
[35] Raviart, P; Thomas J; Introduction à l’analyse numérique des équations aux dérivées partielles, Masson, 1983.
[36] Hang Si, TetGen Users’ Guide: A quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator // http://tetgen.berlios.de
[37] Shewchuk J. R., Tetrahedral Mesh Generation by Delaunay Refinement Proceeding of the Fourteenth Anual Symposium on Computational Geometry (Minneapolis, Minnesota), pp 86–95, 1998.
[38] M. A. Taylor, B. A. Wingate , L. P. Bos, Several new quadrature formulas for polynomial integration in the triangle , Report-no: SAND2005-0034J, http://xyz.lanl.gov/format/math.NA/0501496
[39] Wilmott, Paul and Howison, Sam and Dewynne, Jeff : A student introduction to mathematical finance, Cambridge University Press (1995).
Book Description
Fruit of a long maturing process freefem, in its last avatar, FreeFem++, is a high level integrated development environment (IDE) for partial differential equations (PDE). It is the ideal tool for teaching the finite element method but it is also perfect for research to quickly test new ideas or multi-physics and complex applications.
FreeFem++has an advanced automatic mesh generator, capable of a posteriori mesh adaptation; it has a general purpose elliptic solver interfaced with fast algorithms such as the multi-frontal method UMFPACK. Hyperbolic and parabolic problems are solved by iterative algorithms prescribed by the user with the high level language of FreeFem++. It has several triangular finite elements, including discontinuous elements. Finally everything is there in FreeFem++to prepare research quality reports: color display online with zooming and other features and postscript printouts.
This book is ideal for students at Master level, for researchers at any level and for engineers also in financial mathematics.
Editorial Reviews
”…Impossible to put the book down, suspense right up to the last page…”
A. Tanh, Siam Chronicle.
”…The chapter on discontinuous fems is so hilarious ….” B. Galerkine,
.