Terminales S – corrigé du devoir en classe nº 3

EXERCICE 1

Partie A

$$f(x) = -x^3 + 3x + 3 \text{ avec } x \in \mathbb{R}$$

1. Variations, limites de f en $-\infty$ et $+\infty$

La fonction f est dérivable sur \mathbb{R} et pour tout réel x on a $f'(x) = -3x^2 + 3 = -3(x-1)(x+1)$.

La dérivée de f est donc un trinôme du second degré qui s'annule en 1 et -1.

On a aussi
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-x^3) = -\infty$$
, de même $\lim_{x \to -\infty} f(x) = +\infty$.

Les variations de f sont résumées dans le tableau suivant :

χ	$-\infty$		-1		1		$+\infty$
f'(x)		_	0	+	0	+	
f(x)	$+\infty$		1		5		$-\infty$

- 2. Étude de l'équation f(x) = 0
 - L'image de l'intervalle $]-\infty$; 1] par la fonction *continue* f est l'intervalle $[1; +\infty[$. Comme $0 \notin [1; +\infty[$, l'équation f(x) = 0 n'a pas de solution dans $]-\infty$; 1].
 - La fonction f est continue et strictement décroissante sur $[1; +\infty[$ et l'image de l'intervalle $[1; +\infty[$ par f est l'intervalle $]-\infty; 5]$.

D'après le théorème des fonctions continues strictement monotones, f prend une fois et une seule toutes les valeurs de $]-\infty$; 5].

Comme $0 \in]-\infty$; 5], il existe α unique dans $[1; +\infty[$ tel que $f(\alpha) = 0$.

Conclusion : l'équation f(x) = 0 possède une seule solution réelle α et on a $\alpha \ge 1$.

3. Encadrement de \propto d'amplitude 10^{-2}

Par la méthode du balayage on obtient 2,10 $\leq \alpha \leq$ 2,11.

Partie B

$$g(x) = \frac{f(x)}{x^3 + 1} \text{ avec } x \in \mathbb{R} - \{-1\}$$

1. a. Signe de $x^3 + 1$

pour tout réel x on a $(x + 1)(x^2 - x + 1) = x^3 - x^2 + x + x^2 - x + 1 = x^3 + 1$.

Le trinôme $x^2 - x + 1$ n'a pas de racine réelle donc, pour tout réel x, on a $x^2 - x + 1 > 0$, ainsi le signe de $x^3 + 1$ est celui de x + 1, donc :

- $x^3 + 1 > 0$ pour tout x > -1;
- $x^3 + 1 < 0$ pour tout x < -1;
- $x^3 + 1 = 0$ si, et seulement si, x = -1.
- b. Limites, à gauche et à droite, de g en -1

$$\begin{cases}
\lim_{\substack{x \to -1 \\ x < -1}} f(x) = 1 \\
\lim_{\substack{x \to -1 \\ x < -1}} (x^3 + 1) = 0 \\
x < -1 \text{ donc } x^3 + 1 < 0
\end{cases}$$

$$\begin{cases}
\text{donc } \lim_{\substack{x \to -1 \\ x < -1}} g(x) = -\infty, \text{ de même, } \lim_{\substack{x \to -1 \\ x > -1}} g(x) = +\infty.
\end{cases}$$

On en déduit que la courbe $\mathscr C$ possède une asymptote (parallèle à l'axe des ordonnées) d'équation x=-1.

2. a. Asymptote à \mathscr{C} en $+\infty$ et en $-\infty$

$$\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} \left(\frac{-x^3}{x^3}\right) = -1, \text{ de même, } \lim_{x\to -\infty} g(x) = -1.$$

Ainsi la droite Δ (parallèle à l'axe des abscisses) d'équation y=-1 est asymptote à $\mathscr C$ en $+\infty$ et en $-\infty$.

b. Position relative de $\mathscr C$ par rapport à Δ

Pour tout réel $x \neq -1$ on a :

$$g(x) + 1 = \frac{f(x)}{x^3 + 1} + 1 = \frac{f(x) + x^3 + 1}{x^3 + 1} = \frac{-x^3 + 3x + 3 + x^3 + 1}{x^3 + 1} = \frac{3x + 4}{x^3 + 1}.$$

Le signe de g(x) + 1 est donné dans le tableau suivant :

x	$-\infty$	$-\frac{2}{3}$	1 -	-1	$+\infty$
3x+4	-	- 0	+	+	-
$x^{3} + 1$	_	_	_ (0 +	-
g(x) + 1	-	+ 0	_	+	-

On a donc:

- \mathscr{C} est au-dessus de Δ sur $]-\infty$; $-\frac{4}{3}[$ et sur]-1; $+\infty[$;
- \mathscr{C} est au-dessus de Δ sur $\left]-\frac{4}{3}; -1\right[$;
- \mathscr{C} coupe Δ au point de coordonnées $\left(-\frac{4}{3}; -1\right)$.

EXERCICE 2

$$f_1(x) = \sqrt{x^2 + 1}$$
, $f_2(x) = x$ et $k(x) = f_1(x) - f_2(x)$ avec $x \in [0; +\infty[$

- 1. Limites de f_1 et f_2 en $+\infty$
 - En posant $y=x^2+1$ on a $\lim_{x\to+\infty}y=+\infty$ donc $\lim_{x\to+\infty}f_1(x)=\lim_{y\to+\infty}\sqrt{y}=+\infty$, d'après le théorème de la limite d'une fonction composée.
 - $\lim_{x \to +\infty} f_2(x) = \lim_{x \to +\infty} x = +\infty.$

Ainsi, on ne peut pas en déduire la limite de $k = f_1 - f_2$ en $+\infty$ car on obtient la forme indéterminée « $\infty - \infty$ ».

2. Nouvelle expression de k

Pour tout réel
$$x \ge 0$$
 on a $(\sqrt{x^2 + 1} + x)(\sqrt{x^2 + 1} - x) = (\sqrt{x^2 + 1})^2 - x^2 = x^2 + 1 - x^2 = 1$.
Donc, pour tout réel $x \ge 0$ on a $\sqrt{x^2 + 1} + x \ne 0$ et $k(x) = \sqrt{x^2 + 1} - x = \frac{1}{\sqrt{x^2 + 1} + x}$.

3. Encadrement de k

Pour tout x>0 on a $x^2+1\geqslant x^2$ donc $\sqrt{x^2+1}\geqslant \sqrt{x^2}$ (la fonction racine carrée est croissante). On obtient donc $\sqrt{x^2+1}\geqslant x$ d'où $\sqrt{x^2+1}+x\geqslant 2x>0$ et en utilisant la fonction inverse (qui est décroissante) on a $0<\frac{1}{\sqrt{x^2+1}+x}\leqslant \frac{1}{2x}$ soit $0\leqslant k(x)\leqslant \frac{1}{2x}$.

4. Limite de k en $+\infty$

$$0 \leqslant k(x) \leqslant \frac{1}{2x}$$
 et $\lim_{x \to +\infty} \frac{1}{2x} = 0$ donc, d'après le théorème des gendarmes, $\lim_{x \to +\infty} k(x) = 0$.

EXERCICE 3

$$f(x) = \frac{x^3 - 3x - 6}{x + 2} \text{ et } g(x) = (x - 1)^2 \text{ avec } x \in]-2; +\infty[$$

1. Conjecture pour les « grandes valeurs » de x

On constate que, pour les grandes valeurs de x, les représentations graphiques de f et g sont très proches l'une de l'autre. On peut conjecturer que ces courbes sont asymptotes l'une de l'autre.

2. a. Calcul de g(x) - f(x)

Pour tout réel x > -2:

$$g(x) - f(x) = (x - 1)^2 - \frac{x^3 - 3x - 6}{x + 2} = \frac{(x - 1)^2(x + 2) - (x^3 - 3x - 6)}{x + 2} = \dots = \frac{8}{x + 2}.$$

b. Validation de la conjecture

Comme
$$\lim_{x \to +\infty} (x+2) = 0$$
 alors $\lim_{x \to +\infty} [g(x) - f(x)] = \lim_{x \to +\infty} \frac{8}{x+2} = 0$.

La conjecture est validée, en effet g(x) - f(x) représente la différence des ordonnées entre un point sur la représentation graphique de g et le point sur la représentation graphique de g ayant la même abscisse.

3. a. But de l'algorithme

L'algorithme proposé détermine la plus petite valeur entière de x supérieure ou égale à -1 telle que $\frac{8}{x+2} \le 10^{-N}$, où l'entier naturel N est choisi par l'utilisateur.

b. Affichage lorsque N = 2

L'algorithme affiche 798.

Remarque : on peut déterminer cette valeur en résolvant l'inéquation $\frac{8}{x+2} \le 10^{-2}$ dans l'intervalle]-2; $+\infty[$.