mico32_camera

October 24, 2011

1 Introduction

The mico32-camera is a wishbone compatible component and provides an inter-
face between LatticeMico82 microprocessor and a CMOS camera HV7131GP.
The mico32_camera is configured in slave mode to acquire a video stream from
the CMOS camera, and is later switched to master mode to transfer the stream
to a memory device.

Wishbone
Bus

Mico32 le—] mico32_camera cmos camera

Figure 1: Using mico32_camera to communicate with a CMOS camera
HV7181GP

2 Version

This document is version 1.003 of the mico32_camera component.

3 Features

The mico32_camera gets data from CMOS Image Sensor HV7131GP produced
by MagnaChip Semiconductor Ltd. The HV7131GP datasheet is available on
the internet.

The mico32_camera offers following features:

e WISHBONE B.3 interface.

e Cofiguration in master and slave modes.
e Interrupt request to the processor can be done after image capture.

e Library of basic data structures and software routines for working with
the controller.

e Configurable clock (MCLK) frequency for CMOS Image Sensor.
e Control of capture image size and resolution.

e Location of captured image storage in memory.

4 Functional Description

The I/O pins, timing cycle, and output signals of the mico32_camera’s CMOS
Image Sensor are described below.

4.1 HV7131GP output signals

mclk

rst
—l

enb
—

hsync HV7131GP
vsync

data 8bits
4—

pEIk

Figure 2: hv7131gp pins

e mclk: The hv7131gp is essentially a synchronous logic circuit. Hence, it
needs a signal clock to work.

e rst: Sensor Reset (for more information please refer hv7131gp datasheet).

e enb: enb low : sleep mode, enb high : normal mode. (for more informa-
tion please refer hv7131gp datasheet).

e pclk: Video Output Clock

e hsync: Video Horizontal Line Synchronization signal. Image data is valid
when hsync is high.

e vsync: Video Frame Synchronization signal. wvsync is active at the start
of the image data frame.

e data: Video Luminance Data[7:0]

Note: The i2c¢ bus is not shown in the figure as it is managed by the micropro-
Cessor.

4.2 HV7131GP timing signals

end frame(N-1) end frame(N) start frame(N+1)
start frame(N) -

vsync

row(0) -frame(N) row(M-1) -frame(N)

hsync

Figure 3: wsync and hsync timing

The mico32_camera polls for the vsync signal coming from the CMOS Image
Sensor hv3171gp. After reset, on receiving the first sync signal, the component
goes from RESET to IDLE state. Subsquently, the rising edge of the vsync
signal is processed by the mico32_camera as end of the current frame. The
falling edge of the wsync signal is processed by the mico32_camera as start of a
new frame (Fig.3).

4.3 How mico32_camera works?

The mico32_camera can attain six different states (Fig.4). The current status of
the component (STATE_BITS) is placed in an internal register (STATE) and
can be read by the programmer anytime.

RST WAITING START/ADDR_NEXT = ADDR WAITING I BEGIN_FRAME
START/ADDR_CJURR= ADDR FIRST NEXT

BEGIN_FRAMH

FIRST VSYNC END_FRAME/RAISE_IRQ; ADDR_CURRENT = ADDR_NEXT
— ™ o

END_FRAME/RAISE_IRQ START/ADDR_NEXT = ADDR
PYIN r \
C(IJ_AST G COPYING

Figure 4: mico32_camera state diagram

Six different states of the component:

. Reset: STATE_BITS = 3’b000. while in Reset state, the component
sends an impulse signal to the hv7131gp sensor and the vsync signal
is processed by the mico32_camera as end of the current frame. If the
CMOS image sensor is not connected on the board, the vsync signal is
not received and the Reset state remains unchanged.

. Idle: STATE_BITS = 3°b001. The component is waiting for a start com-
mand (CNTR_START). On receving this (CNTR_START is asserted),
the component goes from Idle state to Waiting First state. During this
process, the address value is sampled and stored in the internal register

ADDR_CURR.

. Waiting First: STATE_BITS = 38’b010. The component is waiting for
the start of a new frame (falling edge of the wvsync signal). On receving
this (CNTR_START is asserted), the component goes fromWaiting First
state to Waiting Next state. During this process, the address value is
sampled and stored in the internal register ADDR_NFEXT. This value read
will be used for storing the next received frame. While the component is
expecting a new command, the captured frame will get stored. On recev-
ing another new frame (falling edge of the wsync signal), the component
goes to Copying Last state.

. Waiting Next: STATE_BITS = 3°b011. The component is waiting for
the start of a new frame (falling edge of the wsync signal). While the
captured frame is being being stored in the memory, arrival of another
new frame switches the component to the Copying state. Meanwhile,
every another new start command (CNTR_START is asserted) received
is ignored.

. Copying: STATE_BITS = 3b’100. The component is writing the current
frame into the memory and the next received frame is scheduled to be
written in the memory. Once the writing process is completed (rising
edge of the wsync signal), the component sets the FLAG_IF to “1” (refer
sec. 9.3), and goes to Waiting First state. If the JE_FLAG = 1’b1 (refer
sec.9.5), it requests an interrupt to the mico32 processor. Meanwhile,
every another new start command (CNTR_START is asserted) received
is ignored.

. Copying Last: STATE_BITS = 3°b101. The component is writing the
current frame into the memory, and this also happens to be the last frame
being written. Once the writing process is completed (rising edge of the
vsync signal), the component sets the FLAG_IF to “1”, and goes to Idle
state.When the writing finishes (rising vsync signal see Fig.3) the com-
ponent sets FLAG_IF and switches to the Idle state. If the IE_FLAG
= 1’b1 (refer sec.9.5), it requests an interrupt to the mico32 proces-
sor. Meanwhile, a new start command (CNTR_START is asserted) re-
ceived, switches the component to Copying state. During this process,
the ADDR value is sampled and will be used for the next frame.

Note: At any moment, the receipt of reset command (CNTR_RST is asserted)
will switch the component from any given state to the Reset state.

5 Configuration

I/O port configuration, HDL (hardware description language) and GUI (graph-
ical user interface) parameters for operating the mico32_camera are described
below:

’ Field \ Note \ Default ‘
Instance Specifies the name of the camera
Name mico32_camera instance.

Base Specifies the base address for the 0280000000
Address device. The minimum byte alignment

is 0x80.
Fifo Depth | Specifies the Fifo depth for storing 16

data while wishbone bus is busy.

Table 1: GUI for mico32_camera configuration

6 I/0 pins

The WISHBONE interface for operating the mico32_camera in master mode
uses the CTI_O signal to boost cycle transfers. In this mode, at any given
time, only fixed 4 bytes of data can be written on the memory bus. Hence, the
SEL_O signal is fixed at 1111. Also, cache line wrap is not supported in this
mode. Hence, the BTE_O signal is fixed at 00.

The RTY_O and ERR_O signals are not supported when the WISHBONE in-
terface is operating the mico32_camera in slave mode. In the mode, the INT_O
signal requests an interrupt to the mico32 processor.

The I/O pin configuration for communicating with the CMOS Image Sensor
hv7131gp are described below:

/0 Active | Direction| Initial | Description

Port State

mclk HIGH 0 X Input clock signal for HV7131GP
camera sensor

rst HIGH 0 HIGH | Sensor Reset

enb LOW 0 HIGH | Signal Sleep Sensor

vSYnc HIGH 1 LOW | Video Frame Synchronization signal.
vsync is active at start of image data
frame

hsync HIGH 1 LOW | Video Horizontal Line Synchronization
signal. Image data is valid, when
HSYNC is high.

pclk HIGH 1 LOW | Video Output Clock

y X I X Video Luminance Data[7:0]

7 Device Driver

Table 2: Pin for HV7131GP module

The mico32_camera driver functions are located in a header file MicoCamera.h.
These are inline functions with macro values (of internal states of the compo-
nent) and bit mask for registers.

o Mico_camera_read_address

o Mico_camera_write_address

o Mico_camera_read_status_register

o Mico_camera_read_IF_flag

o Mico_camera_read_ERR_flag

e Mico_camera_start

o Mico_camera_clear_IRQ_flag

o Mico_camera_reset

o Mico_camera_enable_IRQ)

e Mico_camera_disable_IRQ)

e Mico_camera_IRQ_enabled

o Mico_camera_write_divisor

o Mico_camera_read_divisor

o Mico_camera_frame_terminated

o Mico_camera_size_value

e Mico_camera_size_frame_error

8 mico32_camera registers

When the mico32_camera is connected to the Wishbone bus, the following reg-
isters are available from BASE_ADDRESS component:
| Name Register | Offset | Num. Bits | Type |

ADDR 0200 32 R/W
STATE 0204 32 R
FLAG 0208 32 R
CNTR1 0z0C 32 W
CNTR? 0210 32 R/W
DIV 0z1] 32 R/W
COUNT 0218 32 R/W

8.1 Read a mico32_camera register

The registers ADDR, STATE, FLAG, CNTR2, DIV and COUNT permit their
values to be read. The following program shows, for example, how to read the
COUNT register:

/* Offsets mico32_camera resister from address_base */

O~ O Ui W

[O N R e i e e e e e
N = O OO0 Uk WO

#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

int main(void) {

/* Macro CAMERA_BASE_ADDRESS is placed in system_conf.h file %/
(CAMERA BASE_ADDRESS + COUNT.OFF) ;

unsigned long xregister
unsigned long count_value;

/* Read count register. x/
count_value

return 0;

xregister;

8.2 Write in a mico32_camera register

The registers ADDR, CNTR1, CNTR2, DIV and COUNT permit their values
to be written. The follow program shows how to write the ADDR register:

O~ O Ui W

[N N R N R R e e e e e e i
B WD OO0 Ulk WwNn—OO

0O Utk WN -

/* Value to write in ADDR register =/
#define ADDRVALUE 0x00010000

/* Offsets mico32_camera resister from address_base */
#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

int main(void) {

/* Macro CAMERA_BASE_ADDRESS is placed in system_conf.h file x/
unsigned long xreg_addr = (CAMERA BASE ADDRESS + ADDR.OFF);

/+* Write in the addr register. */
*reg_addr = ADDRVALUE;

return 0;

9 mico32 camera’s registers

As mentioned in Sec. 8, the mico32_camera has seven registers. These registers
are described below in detail:

9.1 ADDR register (dim: 32 bits, type: R/W, offset:
0x00000000)

Before acquiring a new frame, the mico32_camera should know the first valid
storage location address. For all subsquent frame acquisitions, while the current
frame is being saved, the mico32_camera increments the memory pointer to the
appropriate storage location address.

] ADDR31 \ ADDR30 \ \ ADDRO ‘
Note: The value written in the ADDR register must point to a valid memory
address. The ADDR pointing to an invalid memory area could corrupt the

program list code in the memory!!!

The following program shows how to write a valid storage location address value
in the ADDR register:

/*
SDRAM device is reserved only for data.
It is mapped on WishBone from: 0x04000000 to O0x05FFFFFF

*/

/*
Value to write in ADDR register

9
10
11
12
13
14

16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

We want write the data image im sdram memory

*/

#define ADDRVALUE 0x04010000

/+* Image 640 = 480 1 byte color
Image size in memory is: 640%x480x1/4 (The
mico32_camera write 4 byte for time in memory)

*

#define IMAGE_SIZE

640%480%1/4

/* Offsets mico32_camera resister from address_base */
#define ADDR.OFF
#define STATE.OFF
#define FLAG_OFF
#define CNTR2.OFF
#define DIV_OFF

#define COUNT.OFF

int

main(void) {

0x00000000
0x00000004
0x00000008
0x00000010
0x00000014
0x00000018

/* Macro CAMERA_BASE_ADDRESS is placed system_conf.h file x/
unsigned long xreg_addr = (CAMERABASEADDRESS + ADDR.OFF);

/v

SDRAM_SIZE > (ADDR.VALUE + IMAGE_SIZE)

*/

xreg_addr= ADDR.VALUE;

return 0;

9.2 STATE register (dim: 32 bits, type: R, offset: 0x00000004)

The STATE register stores all the nternal state information of the mico32_camera.

| Bit51 | Bit30 |

| Bit3 | STATE_S2 | STATE_S1 | STATE_S0 |

9.2.1

STATE_S (dim: 3 bits, type: R, offset: 0x00, reset value: 000)

The internal states are encoded with three least significant bits (STATE.S);

while other bits always fixed to “0” value:

000 => Reset
001 => Idle

010 => Waiting
011 => Waiting
100 => Copying

101 => Copying

First

Next

Last

0O~ O Ui W

The following program shows polling done by the STATE register until the

mico32_camera goes into IDLE state:

/* Offsets mico32_camera resister from address_base */

#define ADDR.OFF
#define STATE.OFF
#define FLAG.OFF
#define CNTR2.OFF
#define DIV.OFF

#define COUNT.OFF

0x00000000
0x00000004
0x00000008
0x00000010
0x00000014
0x00000018

/* mico82_camera states x/

#define RESET
#define IDLE

#define WAITING_FIRST
#define WAITINGNEXT

#define COPYING

#define COPYING_LAST

int main(void) {

/* Macro CAMERA_BASE_ADDRESS is

T W N~ O

defined in system_conf.h file */

unsigned long xreg_state = (CAMERABASE ADDRESS + STATE.OFF);
unsigned long state;

/* Waiting IDLE mico32_camera state */

do {

state = *xreg_state;

} while (state != IDLE);

return 0;

9.3 FLAG register (dim: 32 bits, type: R, offset: 0x00000008)
The FLAG register is composed of three different bits:

| Bit31 | Bit30 |

[SIZE_ERR | ERR_FLAG | IF_-FLAG |

9.3.1 IF_FLAG (dim: 1 bit, type: R, mask: 0x00000001, reset value:

0).

This bit switches from “0” to “1” at end of an frame acquisition.

e From 0 to 1 => A frame has been completely written, and the mico32_camera
has either switched from Writing Last state to Idle state or from Writ-
ing state to Waiting Next state.

e 0 => No frame has been acquired since the last assertion of IF_.RESET.

10

0O Utk WN

WWWWRNNNNNNDNNNNNRFERRRRRRFR R 2 &
WNFRF OO URE WNHFE OO Ut WN —~OO

S U W N

e An interrupt to the Mico32 processor is raised if the programmer has set
the interrupt enable bit IE_FLAG = 1°b1. Else, after finishing with all
frame acquisitions, the IF_.RESET should set the IF_FLAG value to “0”.

The following program shows polling done by the IF_FLAG register to check
the end of frame capture i.e. the rising edge of the vsync signal:

/* Mask of the IF-FLAG x/
#define MASK.IF FLAG 0x00000001

/* Offsets mico32_camera resister from address_base */

#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

int main(void) {
/* Macro CAMERA_BASE_ADDRESS is defined system_conf.h file x/

unsigned long xreg_flag = (CAMERA BASEADDRESS + FLAG.OFF);
unsigned long bit_if_flag;

/+* Start capture image x/
/* Read bit IF.FLAG for end capture x/

do {

bit_if_flag = xreg_-flag & MASK_IF FLAG;
} while (!bit_if_flag);

return 0;

9.3.2 ERR FLAG (dim: 1 bit, type R, mask: 0x00000002, reset:
0).

This flag is set to “1” if during a bus cycle access any Wishbone error is en-
countered or there is an overflow in the FIFO Master. This flag will be reset
to “0” when a new frame is being acquired.

The following program checks the value of FRR_FLAG post frame acquisition:

/* Mask of the ERRFLAG x/
#define MASKFLAGERR 0x00000002

/+ Size image: 640x480xz2 colors (2 byte).
#define IMAGE_SIZE (640%480%2)

11

/% Offsets mico32_camera resister from address_base */

#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

int main(void) {

/* Macro CAMERA_BASE_ADDRESS from system_conf.h x/
unsigned long xreg_flag = (CAMERABASEADDRESS + FLAG.OFF);

unsigned long bit_err_flag;
/+* Start capture image x/

/% Read bit ERRFLAG */

bit_err_flag = xreg_flag & MASK ERRFLAG;

if (bit_err_flag) {
/* There was a error
} else {

/* There was not erro

return 0;

on wishbone and/or overflow data fifo */

r %/

0O Utk WN

9.3.3 SIZE_ERR (dim: 1 bit, type R, mask: 0x00000004, reset: 0).

This bit is set to “1” if the frame size (in bytes) stored in the memory is different
from the value specified by the user in the COUNT register. This bit assumes
“0” value when above condtion is not met.

The following program checks the value of SIZE_ERR after writing the acquired
frame:

/* Mask of the SIZE_ERR x/
#define MASK_SIZE_ERR 0x00000004

/* Size image: 6402480 colors (2 byte). x/
#define IMAGESIZE ((640%480%2)/4)UL

/* Offsets mico32_camera register from address_base x/

== =
= O O

#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR2.OFF 0x00000010

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

W N

#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

int main(void) {
/* Macro CAMERA_BASE_ADDRESS from system_conf.h x/
unsigned long xreg_count = (CAMERA BASE_ADDRESS + COUNT.OFF);

unsigned long xreg_flag = (CAMERABASEADDRESS + FLAG.OFF);
unsigned long bit_size_err;

/* With a write in count register we enable the image size control. */
sreg_count = IMAGE_SIZE;

/* Capture an image */

/* Read bit SIZE_ERR %/
bit_size_err = xreg_flag & MASK_SIZE_ERR;
if (bit-size_err) {

/¥ There was a size error x/

} else {

/* There was not size error x/

return 0;

9.4 CNTRI1 register (dim: 32 bits, type: W, offset: 0x0000000C)

This register is composed of three functional bits:
] Bit31 \ Bit30 \ \ CNTR_RST \ IF_RESET \ CNTR_S ‘

9.4.1 CNTR_START (dim: 1 bit, type: W, mask: 0x00000001, re-
set: -)

When this bit is set to “1”, the mico82_camera starts to acquire a new frame.
Note: Before acquiring a new image, ensure that the ADDR points to a valid
memory area. The ADDR pointing to an invalid memory area could corrupt
the program list code in the memory!!!

The following program writes a valid address value in the ADDR register and
subsquently starts to acquire image.

/* SDRAM is mapped on WishBone from: 0x04000000 to 0z05FFFFFF x/

/* Value to write in ADDR register

13

O UL W N

We want write the data image in sdram memory x/
#define ADDRVALUE 0x04010000

/* Mask of the CNTR.START x/
#define MASK.CNTR.START 0x00000001

/* Offsets mico32_camera resister from address_base */

#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR1.OFF 0x0000000C
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

int main(void) {

9.4.2

/* Macro CAMERA_BASE_ADDRESS from system_conf.h x/

unsigned long xreg_addr = (CAMERABASE ADDRESS + ADDR.OFF);
unsigned long xreg_cntrl = (CAMERABASEADDRESS + CNTRI1.OFF);
unsigned long xreg_flag = (CAMERABASE ADDRESS + FLAG.OFF);

/¥ The ADDR register must points a valid memory area */
*reg_addr = ADDR.VALUE;

/* Start capture image */

xreg_cntrl = MASK.CNTRSTART;

/* Read bit IF_.FLAG for end capture x/

do {
/* Polling bit IF_.FLAG from FLAg register.
bit_if_flag = xreg_flag & MASK_ IF_ FLAG;

} while (!'bit_if_flag);

return 0;

IF _RESET (dim: 1 bit, type: W, mask: 0x00000002, reset: -)

When this bit is set to “1”, the IF_.FLAG is reset to “0”.

The following program shows polling done by the IF_FLAG register to check
the end of frame capture i.e. the rising edge of the vsync signal, and subsquently
the IF-FLAG register will be reset to “0”:

/* Number capture image x/
#define NUM_.CAPIMAG 3

/* Mask of the IF_FLAG x/
#define MASK.IF FLAG 0x00000001

14

/* Mask of the IF_RESET x/

#define MASK_IF_RESET

0x00000002

/* Offsets mico32_camera resister from address_base x/

#define ADDR.OFF
#define STATE.OFF
#define FLAG.OFF
#define CNTR1.OFF
#define CNTR2.OFF
#define DIV_OFF

#define COUNT.OFF

int main(void) {

0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018

/* Macro CAMERA_BASE_ADDRESS from system_conf.h x/
unsigned long xreg_flag = (CAMERABASEADDRESS + FLAG.OFF);
(CAMERA BASE_ADDRESS + CNTRI1.OFF);

unsigned long xreg_cntrl =
unsigned long bit_if_flag;

unsigned int i;
/* Start capture

i = 0;

image */

/* Read bit IF.FLAG for end capture x/

do {

/% Start capture image */
xreg_cntrl = MASK.CNTR.START;

do{

/* Read if_flag from FRAG register x/
bit_if_flag = xreg_flag & MASKIF_FLAG;

} while (!bit_if_flag);

/* Clear IF_.RESET by program,

¥reg_cntrl

} while (++i < NUM.CAPIMAG);

return 0;

necessary for mext capture */

9.4.3 CNTR_RST (dim: 1 bit, type: W, mask: 0x00000004, reset:

-)

When this bit is set to “1”, the component switches to Reset state.
The following program shows resetting of the Mico32_camera:

15

© 00O U WwN

11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33

N O U WN -

/* Mask of the CNTR.RST bit x/
#define MASK CNTRRST 0x00000004

/% Offsets mico32_camera resister from address_base */

#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR1.OFF 0x0000000C
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

int main(void) {
/* Macro CAMERA_BASE_ADDRESS from system_conf.h =/
unsigned long xreg_state = (CAMERABASEADDRESS + STATE.OFF);
unsigned long xreg_cntrl = (CAMERA BASE ADDRESS + CNTRI1.OFF);
unsigned lond state;

/* Reset mico32_.camera */
sreg_cntrl = MASK.CNTRRST;

/* Waiting IDLE mico32_camera state x/
do {
state = xregister_state;

} while (state != IDLE);

return 0;

9.5 CNTR2 register (dim: 32 bits, type: R/W, offset:

0x10)
9.5.1 IE FLAG (dim: 1 bit, type: R/W, mask: 0x00000001, reset:
0).
This bit is a mask to IF_FLAG.
| Bits1 | Bit30 | oo | Bitl | IE.FLAG |

e 1 => Interrupts are enabled.
e 0 => Interrupts are disabled.

The following program shows enabling/disabling of interrupts:

#define MASK IE FLAG 0x00000001
#define MASK.CNTR.START 0x00000001
#define MASK_IF_RESET 0x00000002

/¥ Offsets mico32_camera resister from address_base */
#define ADDR.OFF 0x00000000

16

#define STATE.OFF 0x00000004

#define FLAG.OFF 0x00000008
#define CNTR1.OFF 0x0000000C
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT_OFF 0x00000018

/* Macro CAMERA_BASE_ADDRESS from system_conf.h x/

unsigned long xreg_cntrl = (CAMERA BASE ADDRESS + CNTRI1.OFF);
unsigned long xreg_cntr2 = (CAMERABASE ADDRESS + CNTR2.OFF);

/* Prototype Interrupt handler end image acquisition x/

void frame_isr(void);

int main(void) {
V&

Record handler camera interrupt

See: LatticeMico82 Software Developer User Guide,

on Lattice Semiconductor Web site

*/
J*

Enable Mico32 external interrupt
(in this case from mico32_camera).

*/

MicoEnableInterrupt (mico32_camera_irq);

V&

Record handler camera interrupt

See: LatticeMico32 Software Dewveloper User Guide,

on Lattice Semiconductor Web site

*/

MicoRegisterISR (mico32_camera_irq, NULL, frame_isr);

/* mico32_camera is enabled to send an interrupt x/

sreg_cntr2 = MASKIEFLAG;

/* Start capture image x/
sreg_cntrl = MASK.CNTR.START;

return 0;

}

/* Interrupt handler end image acquisition */
void frame_isr(void) {

/* Acknowledge interrupt */
xreg_cntrl = MASKIF RESET;

17

© 00 O U W~

[S N I N B N B N B N B e i e T R e e
U WN R O OO Uk W —=O

9.6 DIV register (dim: 32 bits, type: R/W, offset: 0x14)

This register is used for scaling the frequency of master clock (mclk) for the

CMOS Image Sensor hv3171gp.

.................

[Bit8 [DIV_VT [ceceoeennne [DIV_V1 [DIV_V0

9.6.1 DIV_VALUE (dim: 8 bits, type: R/W, reset: 0).

The value of the mclk is obtained by dividing the w_clk (clock Wishbone) by

2 % (div_value + 1) as shown below:

’ DIV_VALUE ‘ w_clk(MHz) ‘ mclk(Mhz) ‘
0 50 50/(2 * (divvalue + 1)) = 25Mhz
1 50 50/(2 * (div_value + 1)) = 12.5Mhz
2 50 50/(2 * (div_value + 1)) = 8.333M hz
3 50 50/(2 * (div_value + 1)) = 6.25Mhz

The following program shows how to write in the DIV_VALUF register:

/¥ Offsets mico32_camera resister from address_base */

#define
#define
#define
#define
#define
#define
#define

ADDR.OFF
STATE_OFF
FLAG.OFF
CNTRI1.OFF
CNTR2_OFF
DIV_.OFF
COUNT_OFF

0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018

/* Macro CAMERA_BASE_ADDRESS from system_conf.h */
unsigned long xreg_div = (CAMERABASEADDRESS + DIV_OFF);

int main(void) {

/v

*/

With w_clk = 50MHz and div wvalue 3,
we have a mclk = 50/(2+(3+1))= 6.25MHz.

*reg_div = MASK.CNTR START;

return 0;

9.7 COUNT register (dim: 32 bits, type: R/W, offset:

0x18)

This register should be set to the size value of the frame in word (4 bytes) to
be stored in the memory. When checking of the frame size is not required, set

this value

tO “077 .

18

| COUNTS31 | cvvvvvnnnnnnns | COUNT7 | vvvvvnnnnnnns | COUNTO |

The following program shows how to write the frame size in word (4 bytes) to
be stored in the memory in the COUNT register:

/* Image size in byte: 640 z 480, 1 byte data. x/
#define IMAGESIZEWORD ((680x480x1)/4)

0~ O Utk WN -

/* Offsets mico32_camera resister from address_base */

#define ADDR.OFF 0x00000000
#define STATE.OFF 0x00000004
#define FLAG.OFF 0x00000008
#define CNTR1.OFF 0x0000000C
#define CNTR2.OFF 0x00000010
#define DIV_OFF 0x00000014
#define COUNT.OFF 0x00000018

/* Macro CAMERA_BASE_ADDRESS from system_conf.h %/
unsigned long xreg_count = (CAMERABASE ADDRESS + COUNT.OFF);
= (CAMERA BASE ADDRESS + FLAG.OFF);

unsigned long xreg_flag

int main(void) {

/v

*/

COUNT register the component is enabled to

size control

s on.

xreg_count = IMAGE_SIZE;

/x Start capture image x/
*reg_cntrl = MASK CNTR START;

/% End capture image. */

/* Read bit SIZE_ERR x/
bit_size_err = *xreg_flag & MASK_SIZE_ERR;

if (bit_size_err) {

/* There was a size error */

} else {

/* There was not size error x/

return 0;

}

/* Interrupt handler end image acquisition */

19

54
55
56
57
58
59
60
61

void frame_isr(void) {

/* Acknowledge interrupt */
xreg_cntrl = MASKIF RESET;

20

