Corrigé du devoir surveillé nº 2

Exercice

1. (a) u n'est pas l'endomorphisme nul donc il existe $x \in \mathbb{R}^3$ tel que $u(x) \neq 0$. Montrons qu'alors la famille $\langle x, u(x) \rangle$ est libre:

Soient $(\alpha, \beta) \in \mathbb{R}^2$ tels que $\alpha x + \beta u(x) = 0$, en composant par u on a $\alpha u(x) + \beta u^2(x) = 0$

 $u^2 + id = \overline{0}$, donc $u^2(x) = -x$, ce qui donne le système :

$$\begin{cases} \alpha x + \beta u(x) &= 0 \\ -\beta x + \alpha u(x) &= 0 \end{cases} \text{ qui implique } \begin{cases} \alpha x + \beta u(x) &= 0 \\ (\alpha^2 + \beta^2) x &= 0 \end{cases} L_2 \leftarrow \alpha L_1 - \beta L_2$$
La deuxième équation donne $\alpha^2 + \beta^2 = 0$ et comme $x \neq 0$ et α et β réels, on en déduit $\alpha = \beta = 0$.

Remarque : Si $\beta = 0$, le système devient $\alpha x = \alpha u(x) = 0$ donc $\alpha = 0$.

$$\forall (\alpha, \beta) \in \mathbb{R}^2, \ \alpha x + \beta u(x) = 0 \Longrightarrow \alpha = \beta = 0 \text{ donc la famille } \langle x, u(x) \rangle \text{ est libre}$$

- (b) La famille $\langle x, u(x) \rangle$ est libre donc elle engendre un espace vectoriel de dimension deux. Comme $\dim(\mathbb{R}^3) = 3$, il existe $y \in \mathbb{R}^3$ tel que $y \notin \operatorname{Vect}(x, u(x))$, donc (x, u(x), y) est libre. C'est une famille libre de cardinal 3, donc une base de \mathbb{R}^3 .
- (c) Soient $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ tels que $\alpha x + \beta u(x) + \gamma y + \delta u(y) = 0$, en composant par u on a $\alpha u(x) + \beta u^2(x) + \gamma u(y) + \delta u^2(y) = 0.$

$$\begin{cases} \alpha x + \beta u(x) + \gamma y + \delta u(y) = 0 \\ -\beta x + \alpha u(x) - \delta y + \gamma u(y) = 0 \end{cases}$$

$$\begin{cases}
\alpha x + \beta u(x) + \gamma y + \delta u(y) &= 0 \\
-\beta x + \alpha u(x) - \delta y + \gamma u(y) &= 0
\end{cases}$$

$$\begin{cases}
\alpha x + \beta u(x) + \gamma y + \delta u(y) &= 0 \\
(\alpha x + \beta u(x) + \gamma y + \delta u(y) &= 0 \\
(\alpha \gamma + \beta \delta) x + (\beta \gamma - \alpha \delta) u(x) + (\gamma^2 + \delta^2) y &= 0 \quad L_2 \leftarrow \gamma L_1 - \delta L_2
\end{cases}$$

La famille $\langle x\,,\,u(x),\,y\rangle$ est libre donc $\alpha\,\gamma+\beta\,\delta=\beta\,\gamma-\alpha\,\delta=\gamma^2+\delta^2=0$

 $\gamma^2 + \delta^2 = 0$ entraine $\gamma = \delta = 0$ puis en reportant dans L_1 : $\alpha x + \beta u(x) = 0$ donc $\alpha = \beta = 0$ puisque $\langle x, u(x) \rangle$ est libre.

On en conclut que la famille $\langle x, u(x), y, u(y) \rangle$ est libre.

- (d) Une famille de 4 vecteurs de \mathbb{R}^3 est nécessairement liée puisque \mathbb{R}^3 est de dimension 3, donc l'hypothèse de départ est absurde; ainsi $u^2 + id \neq \overline{0}$.
- 2. $u \circ (u^2 + id) = u^3 + u = \overline{0}$ par hypothèse.

Supposons u bijectif, alors en composant à gauche par u^{-1} on aurait $u^{-1} \circ u \circ (u^2 + id) = u^2 + id = \overline{0}$ De même si u^2 + id est bijectif, alors en composant à droite par sa bijection réciproque, on a $u \circ (u^2 + \mathrm{id}) \circ (u^2 + \mathrm{id})^{-1} = u = \overline{0}.$

Or ni u ni u^2 + id n'est l'endomorphime nul ce n'est donc pas possible.

3. $Ker(u^2 + id) = \{0\} \iff u^2 + id \text{ injectif, et comme on est en dimension finie, } u^2 + id \text{ bijectif; ce qui n'est}$ pas d'après la question précédente.

De même $Ker(u) = \{0\}$ entraine u injectif, donc bijectif.

4. Soient $a \in \text{Ker}(u)$ et $b \in \text{Ker}(u^2 + \text{id})$ tous deux non nuls (a et b existent bien d'après la question précedente), et soient $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tels que $\alpha a + \beta b + \gamma u(b) = 0$.

On compose par u deux fois successivement et on obtient

$$\begin{cases} \alpha a + \beta b + \gamma u(b) &= 0\\ \alpha \underline{u(a)} + \beta u(b) + \gamma \underline{u^2(b)} &= 0\\ 0 \text{ car } a \in \ker u & -b \text{ car } a \in \ker(u^2 + \mathrm{id})\\ \beta u^2(b) + \gamma u^3(b) &= 0 \end{cases}$$
 soit
$$\begin{cases} \alpha a + \beta b + \gamma u(b) &= 0\\ -\gamma b + \beta u(b) &= 0\\ -\beta b - \gamma u(b) &= 0 \end{cases}$$

L'unique solution de ce système est $\alpha = \beta = \gamma = 0$ donc la famille $\langle a, b, u(b) \rangle$ est libre. Comme elle est de cardinal 3, c'est une base de \mathbb{R}^3 .

La matrice de u dans cette base est $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.

Problème

Partie I : Étude de l'application D

1. (a) L'image par D d'une suite (u) est une suite (v) définie par $\forall n \in \mathbb{N}, v_n = u_{n+1}$ donc D est bien à valeurs

Soit $\alpha \in \mathbb{R}$ et soient (u) et (v) deux suites de E, alors :

 $D(\alpha u + v)$ est la suite (w) définie par $\forall n \in \mathbb{N}, w_n = \alpha u_{n+1} + v_{n+1}$

Or les suites D(u) et D(v) sont définies par $\forall n \in \mathbb{N}, D(u)_n = u_{n+1}$ et $D(v)_n = v_{n+1}$

; donc $\forall n \in \mathbb{N}, D(w)_n = \alpha D(u)_n + D(v)_n$

Ainsi D est linéaire, de E vers E. $D \in \mathcal{L}(E)$.

(b) Soit $(u) \in \text{Ker } D, \forall n \in \mathbb{N}, u_{n+1} = 0 \text{ donc seul } u_0 \text{ est éventuellement non nul.}$ Réciproquement, toute suite telle que $\forall n \in \mathbb{N}, u_{n+1} = 0$ appartient à Ker D.

Ker D est la droite vectorielle engendrée par la suite (u) telle que $u_0 = 1$ et $\forall n \geq 1, u_n = 0$.

Montrons à présent que | D est surjective | : soit (u) une suite, la suite (v) définie par $v_0 = 0$ par exemple et $\forall n \in \mathbb{N}^*, v_n = u_{n-1}$ est telle que D(v) = (u).

Remarque : on peut en fait choisir n'importe quelle valeur pour v_0 .

2. $\forall n \in \mathbb{N}, a 3^n + b 2^n + c n 2^n = 0.$

En particulier pour n = 0: a + b = 0

En particulier pour
$$n = 0$$
: $a + b = 0$

$$pour n = 1: 3a + 2b + 2c = 0 \iff \begin{cases} a + b = 0 \\ a + 2c = 0 & L_2 \leftarrow L_2 - 2L_1 \\ 5a + 8c = 0 & L_3 \leftarrow L_3 - 4L_1 \end{cases}$$
Enfin pour $n = 2: 9a + 4b + 8c = 0$

L'unique solution de ce système est a = b = c = 0, or :

Lumque solution de ce système est
$$a=b=c=0$$
, or :
$$\left(\forall n\in\mathbb{N},\ a\,3^n+b\,2^n+c\,n\,2^n=0\right)\Longrightarrow \left(\forall n\in\{0,1,2\},\ a\,3^n+b\,2^n+c\,n\,2^n=0\right) \text{ et}$$

$$\left(\forall n\in\{0,1,2\},\ a\,3^n+b\,2^n+c\,n\,2^n=0\right)\Longleftrightarrow \left(a=b=c=0\right); \text{ d'autre part si }a=b=c=0 \text{ on a bien }$$

$$\forall n\in\mathbb{N},\ a\,3^n+b\,2^n+c\,n\,2^n=0. \text{ Donc la famille } \langle A,B,C\rangle \text{ est libre.}$$

3. Par définition de G, la famille $\langle A, B, C \rangle$ l'engendre, on vient de montrer qu'elle est libre, c'est donc une base de G.

$$\langle A, B, C \rangle$$
 est une base de G et $\dim(G) = 3$.

4. D(A) est la suite définie par : $\forall n \in \mathbb{N}, D(A)_n = 3^{n+1} = 3 \times 3^n, \text{ donc } D(A) = 3A$; de même D(B) = 2B. $\forall n \in \mathbb{N}, \ D(C)_n = (n+1) \, 2^{n+1} = 2 \times n \, 2^n + 2 \times 2^n = 2 \, B_n + 2 \, C_n, \ \text{par conséquent } D(C) = 2 \, B + 2 \, C.$ On a $D(A) \in G$, $D(B) \in G$ et $D(C) \in G$, donc par linéarité de D, $\forall u \in G$, $D(u) \in G$.

Remarque : le fait que G soit stable par D permet de définir un endomorphisme induit par D sur l'ensemble

- 5. D'après les calculs de la question précédente, $M = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$.
- 6. $M^2 = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 8 \\ 0 & 0 & 4 \end{pmatrix}$ et $M^3 = \begin{pmatrix} 27 & 0 & 0 \\ 0 & 8 & 24 \\ 0 & 0 & 8 \end{pmatrix}$.
- 7. Par identification, on obtient le système suivant

$$\begin{cases} 9a + 3b + c &= 27 \\ 4a + 2b + c &= 8 \\ 4a + 2b + c &= 8 \\ 8a + 2b &= 24 \end{cases} \iff \begin{cases} 4a + 2b + c &= 8 & L_1 \leftarrow L_2 \\ 5a + b &= 19 & L_2 \leftarrow L_1 - L_2 \text{ et on trouve} \\ 4a + b &= 12 & L_3 \leftarrow L_4/2 \end{cases} \Leftrightarrow \begin{cases} a = 7 \\ b = -16 \\ c = 12 \end{cases}$$

$$M^3 = 7M^2 - 16M + 12I_3$$

8. $M^3 - 7M^2 + 16M = 12I_3$, donc $M \times (M^2 - 7M + 16I_3) = (M^2 - 7M + 16I_3) \times M = 12I_3$, donc M est inversible d'inverse

$$M^{-1} = \frac{1}{12} \left(M^2 - 7M + 16I_3 \right)$$

2

- 9. M est une matrice associée à \widehat{D} , M est inversible, donc \widehat{D} est bijectif, c'est un automorphisme de G.
- 10. M^{-1} est associée à $(\widehat{D})^{-1}$, or $M^{-1} = \frac{1}{12} (M^2 7M + 16I_3) \operatorname{donc} (\widehat{D})^{-1} = \frac{1}{12} (\widehat{D} \circ \widehat{D} 7\widehat{D} + 16\operatorname{id}_G)$.

Partie II : Suites définies par une relation de récurrence linéaire d'ordre 3

1. D'après les résultats de la première partie, on a $\forall u \in G$, $\widehat{D}^3(u) - 7\widehat{D}^2(u) + 16\widehat{D}(u) - 12A = 0$ (suite nulle) En particulier $\widehat{D}^3(A) - 7\widehat{D}^2(A) + 16\widehat{D}(A) - 12A = 0$ et $\widehat{D}^3(B) - 7\widehat{D}^2(B) + 16\widehat{D}(B) - 12B = 0$; donc A et B sont deux suites géométriques appartenant à \mathcal{H} .

Soit u une suite géométrique élément de \mathcal{H} , on a :

$$\begin{cases} \exists q \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_{n+1} &= q \ u_n \ \text{donc} \ \forall n \in \mathbb{N}, \ u_n = q^n \ u_0 \\ \forall n \in \mathbb{N}, u_{n+3} &= 7 \ u_{n+2} - 16 \ u_{n+1} + 12 \ u_n \end{cases}$$
d'où en substituant
$$\forall n \in \mathbb{N}, q^{n+3} u_0 = 7 \ q^{n+2} u_0 - 16 \ q^{n+1} u_0 + 12 \ q^n u_0$$

Si u_0 et q ne sont pas nuls, alors $q^3 - 7q^2 + 16q - 12 = 0$.

On sait déjà que q=2 et q=3 sont solution de cette équation puisque A et B sont dans \mathcal{H} . On factorise alors et on obtient : q^3-7 q^2+16 q-12=(q-3) $(q-2)^2$, donc les suites géométriques de \mathcal{H} sont les suites géométriques de raison 2 ou 3 plus la suite nulle évidemment.

2. D^2 est l'endomorphisme de E qui à u associe $D^2(u)$ définie par $n \mapsto u_{n+2}$; de même $D^3(u)$ est définie $n \mapsto u_{n+3}$.

Ainsi T est l'endomorphisme de E qui à u associe T(u) définie par $n \mapsto u_{n+3} - 7u_{n+2} + 16u_{n+1} - 12u_n$. Donc les éléments de \mathcal{H} sont exactement les éléments de $\operatorname{Ker}(T)$.

- 3. On a prouvé à la partie précédente que $\widehat{D}^3 = 7 \widehat{D}^2 16 \widehat{D} + 12 \operatorname{id}_G$, donc $\forall u \in G$, $\widehat{D}^3(u) = D^3(u) = 7 D^2(u) 16 D(u) + 12 u$. Ainsi $u \in \operatorname{Ker}(T)$ donc $G \subset \operatorname{Ker}(T)$.
- 4. (a) La suite $v = D^2(u) 4D(u) + 4u$ a pour terme général $v_n = u_{n+2} 4u_{n+1} + 4u_n$ donc $\forall n \in \mathbb{N}$, $v_{n+1} = u_{n+3} 4u_{n+2} + 4u_{n+1} = (7u_{n+2} 16u_{n+1} + 12u_n) 4u_{n+2} + 4u_{n+1} = 3(u_{n+2} 4u_{n+1} + 4u_n)$

v est une suite géométrique de raison q=3

- (b) Il existe donc $\lambda \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, v_n = \lambda 3^n$ ($\lambda = v_0$) donc $\forall n \in \mathbb{N}, u_{n+2} 4u_{n+1} + 4u_n = \lambda 3^n$. On en déduit $\forall n \in \mathbb{N}, w_{n+2} 4w_{n+1} + 4w_n = (u_{n+2} v_{n+2}) 4(u_{n+1} v_{n+1}) + 4(u_n v_n)$ $= \underbrace{(u_{n+2} 4u_{n+1} + 4u_n)}_{\lambda \times 3^n} v_{n+2} + 4v_{n+1} 4v_n$ $= \lambda 3^n \lambda 3^{n+2} + 4 \times \lambda 3^{n+1} 4 \times \lambda 3^n$ $= \lambda \times 3^n \left(1 3^2 + 4 \times 3 4\right) = 0$
 - w est une suite récurrente linéaire d'ordre 2, l'équation caractéristique associée est $X^2 4X + 4 = 0$ qui admet une racine double égale à 2. Les suites de E vérifiant cette relation de récurrence sont donc les suites pour lesquelles il existe 2
- constantes réelles α et β telles que l'on ait : $\forall n \in \mathbb{N}, w_n = \alpha 2^n + \beta n 2^n$ (c) Soit $u \in \text{Ker}(T)$; $\exists \lambda \in \mathbb{R}, \forall n \in \mathbb{N}, u_{n+2} - 4u_{n+1} + 4u_n = \lambda 3^n$ puis

$$\exists (\alpha, \beta) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}, \ u_n - \lambda \ 3^n = \alpha \ 2^n + \beta \ n \ 2^n. \text{ Finalement}$$

$$u \in \operatorname{Ker}(T) \iff \exists (\lambda, \alpha, \beta) \in \mathbb{R}^3, \ \forall n \in \mathbb{N}, \ u_n = \lambda \ 3^n + \alpha \ 2^n + \beta \ n \ 2^n \iff u \in \operatorname{Vect}\langle A, B, C \rangle \text{ donc}$$

$$\boxed{G = \operatorname{Ker}(T)}$$

5. $Z \in G$ donc il existe des constantes $(\lambda, \alpha, \beta) \in \mathbb{R}^3$ telles que $\forall n \in \mathbb{N}, Z_n = \lambda 3^n + \alpha 2^n + \beta n 2^n$; or

$$\begin{cases} Z_0 = \lambda + \alpha = 0 \\ Z_1 = 3\lambda + 2\alpha + 2\beta = 1 \\ Z_2 = 9\lambda + 4\alpha + 8\beta = 1 \end{cases} \text{ d'où } \begin{cases} \lambda + \alpha = 0 \\ \lambda + 2\beta = 1 \\ 5\lambda + 8\beta = 1 \end{cases} L_2 \leftarrow L_2 - 2L_1 \\ 5\lambda + 8\beta = 1 L_3 \leftarrow L_3 - 4L_1 \end{cases}$$
On obtient $\lambda = -3, \alpha = 3, \beta = 2$

$$\forall n \in \mathbb{N}, Z_n = -3^{n+1} + 3 \times 2^n + n \, 2^{n+1}$$