
AES Whitebox Unboxing: No
Such Problem

Written by:
Axel ”0vercl0k” Souchet.

Twitter:
@0vercl0k

May 26, 2013

https://twitter.com/0vercl0k

AES Whitebox Unboxing: No Such Problem

1 Introduction

As every year, the organizers of the ”No Such Con” event give the opportunity to the
motivated people to solve some challenges just before the conference. The purpose
of the challenge is really simple, you have a light GUI asking you for a login and a
password and when they are submitted you either get a bad or a good boy message
box. The winner of the challenge wins a trip to Hack In The Box Amsterdam 2014,
quite cool: congratulation to Florent Marceau who solved it the first one! The
challenge has been solved by approximately eight guys at the moment.

I haven’t seen yet a public writeup, so here is mine: I will try to exactly explain
the process I have been through from the beginning of the challenge until the very
end, even when my ideas sucks. Last thing, I am really new in breaking those kind
of binaries, so if you have figured a part in a different and more elegant/clever way
I would really like to have a little chat with you, shoot me an email!

2 Recon

The binary is compressed with UPX, and is quite big: 2.4 mo. When you open it with
IDA, you got a really clean disassembly (surprising, I thought it will be obfuscated)
and you quickly understand the validation scheme works like that:

1. You enter your login and your password

2. A 16 bytes blob is returned by MysteriousFunction based on your password

3. Computes the MD5 of your login

4. Checks if the password is an hexadecimal string of 32 characters

5. Converts the hexadecimal string into the 16 bytes equivalent in memory

6. Finally, if the hash is different from the 16 bytes blob you lose, otherwise you
win!

Our main task is to reverse the MysteriousFunction and to somehow invert that
routine, but we will see that function is, let’s say, quite tough.

3 Baby steps

Now we have understood the global validation scheme, we need to dig hard into that
routine. If you open it in IDA you can see it seems obfuscated, you have to manually
undefine/redefine code everywhere because IDA analysis thinks it is data and not
executable code. That is a perfect timing to fire up your favorite debugger in order
to step into the routine. The first thing I did was to generate a complete execution
trace of that function, just to have an idea of its size and complexity: with OllyDbg
you can do that really easily, you put a software breakpoint before, after the call

Axel ”0vercl0k” Souchet. 1

http://www.nosuchcon.org/
http://conference.hitb.org/
http://www.ollydbg.de/version2.html

AES Whitebox Unboxing: No Such Problem

and then you use the Trace into entry of the Trace menu. Basically it means the
debugger will go through every instruction and will step into every calls. Once the
software breakpoint after the call is reached, you can open the trace window to see all
the instructions executed by your CPU. That awkward moment when I scroll down
the whole trace and I see 17 000 assembly instructions executed, without calling any
win32 API. By the way, if you are interested in generating that kind of execution trace
with your own tool, consider using the dynamic binary instrumentation framework
called Pin developed by Intel.

Figure 1: It is a lot of assembly instructions.

Then, I saved that execution trace because it may be useful for the next parts.
After passing some time going through a lot those instructions, you begin to see really
clear assembly obfuscation patterns to prevent the reverse-engineer from extracting
the logic of that routine.

4 Memory reference tracking

The first idea I had to avoid reading the 17000 instructions was to track the memory
operations: memory reads and writes. I developed my own tiny memory tracer based
on Pin in order to generate another trace, but this time a shorter one. The tracer
was really simple, here is how it works:

• I instrument every instruction via INS AddInstrumentFunction

• In my instrumentation callback, if the address of the instruction is the begin-
ning of the mysterious function I set a boolean called trace generation started,
if it is the address of the end of that same routine I unset the boolean variable

• Then, I use INS IsMemoryRead and INS IsMemoryWrite to know if a the
instruction will make a memory operation: in that case I use INS InsertCall
to add a call to my analysis callbacks

• When one of my analysis callbacks is called, it means a memory operation is
going to occur, so I generate a trace entry with the address of the memory
read/written, the size and the disassembly of the instruction

• Finally I close the memory trace file

Axel ”0vercl0k” Souchet. 2

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

AES Whitebox Unboxing: No Such Problem

In less than 200 lines of C++ code, you can implement a similar tool and if you are
lazy you can even find an official example that does pretty much the same thing,
see Memory Reference Trace (Instruction Instrumentation). The memory tracking
serves only one purpose: removing the assembly obfuscation, let’s say like a filter.
Now, if you open your memory trace you can see something like this:

0x0040fc56 mov cl, byte ptr [edi] : R 0x00566369 (1 bytes - cd)

0x0040fc60 mov ebx, dword ptr [esi] : R 0x005a9c89 (4 bytes - 0xae3ec6cc)

0x0040fc67 mov byte ptr [ebp], bl : W 0x00450306 (1 bytes - 65)

The first column is the address of the instruction, the second its disassembly, and
the third the type, address, size of the memory operation. After going through both
the memory trace and the complete execution trace, we can see memory patterns:

1. Read a byte somewhere (sometimes from the buffer where our password is kept
in memory)

2. Read four bytes from an array where the previous byte is used as an index

3. Write the resulting byte (the LSB of the double-word previously read) some-
where

4.1 Table type 1

The vigilant reader could say in the previous dump we don’t see how the fetched
byte is used as an index in the next memory read: but keep in mind this trace is a
memory trace so we don’t see the instructions that don’t play with memory. That’s
why the complete execution trace is handy, for example you can check what happens
to the data stored in the 8 bits register CL at 0x0040fc56:

0040FC51 MOV EDI,Oppida_NSC_Challenge_2013.00566369

0040FC56 MOV CL,BYTE PTR [EDI] // EDI=00566369

0040FC58 MOV ESI,ECX // ECX=0000009A

0040FC5A ADD ESI,005A9BBC

0040FC60 MOV EBX,DWORD PTR [ESI] // ESI=005A9C56

0040FC62 MOV EBP,00450306

0040FC67 MOV BYTE PTR [EBP],BL // EBX=4FCD45EB, EBP=00450306

We clearly see the register will be moved into ESI and the upper parts of that same
register has been previously zeroed. The other important thing we can infer from
those instructions is the size of that table: the index is coded only on one byte (CL),
so the array can contain exactly 256 entries (one byte for each entry). To clarify we
can translate that memory pattern easily in C:

unsigned char table [256] = {.., .., .., [...] };

unsigned char idx;

unsigned char *addr1 , *addr2;

Axel ”0vercl0k” Souchet. 3

http://www.cs.virginia.edu/kim/publicity/pin/docs/37300/Pin/html/

AES Whitebox Unboxing: No Such Problem

idx = *addr1;

*addr2 = table[idx];

Listing 1: Table type 1 in C

4.2 Table type 2

After spending some more hours in both the memory and execution traces, I actually
spotted another different type of table. But you can also see in the memory trace
things like:

0x005a83a3 mov ch, byte ptr [ebx] : R 0x0061700e (1 bytes - 67)

0x005a8380 jmp dword ptr [ebx] : R 0x0054f320 (4 bytes - 0x005a484e)

0x005a485e mov byte ptr [ebx], dh : W 0x00591280 (1 bytes - 93)

correlation with the full execution trace:

005A839E MOV EBX,OFFSET 0061700E

005A83A3 MOV CH,BYTE PTR [EBX] // EDX=00000000, EBX=0061700E

005A83A5 MOV DL,CH // ECX=0000EE00, EDX=00000000

005A83A7 DEC EBP

005A83A8 LEA ESI,[EDX*4+54F184] // EDX=000000EE, ESI=F61CA012

005A83AF MOV EBX,ESI // EBX=0061700E, ESI=0054F53C

005A83B1 JMP 005A8380

005A8380 JMP DWORD PTR [EBX] // EBX=0054F53C

What we can see in the previous dump seems to be a typical handlers/jumps
table: the table stored at 0x54F184 seems to contain function pointers. It is quite
easy to verify, you can just open your debugger, dump that memory area and check
if the double-words are addresses pointing to executable parts of the binary: Yes
they are.

Figure 2: Beginning of the handlers table, and the code of two example handlers.

Axel ”0vercl0k” Souchet. 4

AES Whitebox Unboxing: No Such Problem

As previously, this type of table has 256 entries, but this time each entry is a
double-word. But this is not finished, another interesting thing to see is that each
handler referenced in that table is going to do two main operations:

1. Write a constant value somewhere (sometime the constant cannot be seen easily
because of the assembly obfuscation though). But that somewhere is the same
address for each handler.

2. Jump back somewhere, and that somewhere is the same address for all the
handlers referenced the table. In the previous picture for example, the two
handlers are jumping to 0x55B94D.

Finally we can write that behavior in C as we did previously:

void handler1 ()

{

*addr2 = 0x4A;

}

void handler2 ()

{

*addr2 = 0x80;

}

unsigned int table [256] = {handler1 , handler2 , [...]};

unsigned char *addr1;

table[*addr1]();

// ...

Listing 2: Table type 2

This is a clever way to bother the reverse-engineer, because you can simplify this
process by a simple table of type 1. In the previous example, the first entry of this
table should be 0x4A, the second 0x80 and so on.

4.3 Table type 3

The last type of table I have encountered in this challenge is big tables that takes a
16 bits index. In fact, it’s just a 256 table where each entry is also a 256 table of one
bytes. It makes total sense because with a 16 bits index you can store 65536 bytes,
but you can also store 256*256 bytes.

4.4 All your tables are belong to us

Once we have spotted all those different tables, we don’t find any different memory
access pattern from the trace. Basically it means the algorithm is made only of

Axel ”0vercl0k” Souchet. 5

AES Whitebox Unboxing: No Such Problem

accessing table, storing bytes that will serve as index and so on. Nevertheless, the
assembly obfuscation is really annoying so I came up with another idea: extract the
logic of the algorithm without dealing with the obfuscation.

5 Logic extraction

My idea was really simple: I have been in this code so much time hitting F7 that I
could extract only three different operations based on the previous table. Here there
are:

1. When you have a table type 1: You read a byte at an address, you use that
byte as an index, you read another byte and you write that byte somewhere.

2. When you have a table type 2: You read a byte at an address, you use that
byte in a double-word table, then you redirect the execution flow somewhere,
you write a byte somewhere and you jump somewhere.

3. When you have a table 3: You read a byte at an address, you read another
byte at an address, you make a 16 bits number with those two bytes, you read
a byte and you write it somewhere.

It was clearer, and clearer in my head: maybe I could use a Finite State Machine to
match those different patterns in my complete execution trace: I will just have to
read the register values to not deal with the assembly obfuscation (remember that
the CPU context is saved before each instruction in the execution trace we made with
OllyDbg at the beginning). At first glance, it was a bit crazy to only parse a text
file, match some patterns and to convert them directly in C but if it worked I would
be able to focus only on breaking the algorithm without having to deal with boring
obfuscations. Here is the really simple FSM I used to bypass assembly obfuscations:

Axel ”0vercl0k” Souchet. 6

AES Whitebox Unboxing: No Such Problem

Read

type3 table

type1 or type2type2

type1

type2 fetch

type2 write

Note that it is easier to understand it with the implementation script and the
execution trace, so check the codes on my github account! After launching my magic
script, I get a C file with one 1024 lines (yay, it’s aligned) where it does only the
three things we described previously. The easiest way to verify our algorithm is good
is just to create a DLL project and to inject it in the challenge (this way we don’t
need to dump the majority of the tables. Even if in fact, if you want to do that you
will need to dump the tables of type 2 ; but it’s really a detail: email me if you want
to talk about how I managed to dump them all). Then you just have to verify your
algorithm gives the same output than the crackme, and it was the case, amazing :).

So far, we have done almost the first half of the challenge: the cool thing is we
can now entirely focus on the cryptographic algorithm.

6 Breaking the algorithm

Even if we have broken the assembly obfuscations, @elvanderb was evil enough to
obfuscate the logic itself of the algorithm: long story short, it is a real mess. By the
way, I found that type of obfuscation really harder than the previous one. My new
idea was now, to simplify the algorithm in order to have more chances to understand
how it works.

Axel ”0vercl0k” Souchet. 7

https://twitter.com/elvanderb

AES Whitebox Unboxing: No Such Problem

6.1 Static single assignment form

When you are looking at the generated code, you can see things like that:

memory2 = T16_004EF23E [(memory1 << 8) + *memory2];

Listing 3: Not really cool.

In this expression the byte stored at memory2 is used as both the LSB of the
index and where the read byte will be stored. Really confusing when you are going
through the algorithm, moreover the addresses used in the algorithm are reused a
bit everywhere so it is not really convenient to track the different value of a variable.
The solution to this problem is simple, we will convert our algorithm into the SSA
form. The idea of that form when you have a variable, you will see only a single
assignment to that variable. It is really easily done with yet another python script,
and it will transform the previous example like this:

memory3 = T16_004EF23E [(memory2 << 8) + *memory1];

Listing 4: SSA version.

6.2 Algorithm visualization

Now we need to really understand how the cryptography works. Usually the idea
when you are not seeing something is to try to see it but in another way. Let’s
draw graph the flow of the different variables from the input password until the
final sixteen bytes blob generated. The idea behind this tracking is simple, see the
example:

If I have those C lines:

*a = T[*b];

*c = T2[*a];

output[0x1] = *c;

I will have a graph like that:

a -> T -> T2 -> output[0x1]

This way we won’t show the variables used as a temporary location. Here is the final
graph of the whole algorithm:

Axel ”0vercl0k” Souchet. 8

AES Whitebox Unboxing: No Such Problem

Figure 3: w0000t, seems cool.

The green nodes are the input bytes of the function (our password) and the red
nodes are the output bytes (the blob). The yellow boxes are tables of type 1 and
type 2, the orange boxes are the tables type 3. This picture was really a big help for
me, because I could finally see important things:

• A kind of unrolled loop that is executed nine times: it is a round

• At the end of each round we can see always sixteen bytes: it is like a state, and
the state of the last round is the output blob

• Each round seems to have three steps:

1. It takes the current sixteen bytes state, use the yellow boxes to extend
that state to sixty-four bytes

2. Then it takes those sixty-four bytes and use the first ”orange line” to
reduce them to thirty-two bytes

3. Finally, it takes those thirty-two bytes and reduce them to the size of what
we called the state

• Only the last round has a special behavior

From those observations we can infer that the original algorithm looks like that:

void algo(unsigned char key[16], unsigned char out

[16])

{

unsigned char state [16], sixtyfour [64], thirtytwo

[32];

memcpy(state , key , 16);

for(unsigned int i = 0; i < 9; ++i)

{

first_step(state , sixtyfour); // ShiftRows ?

Axel ”0vercl0k” Souchet. 9

AES Whitebox Unboxing: No Such Problem

second_step(sixtyfour , thirtytwo); //

TBoxesTyiTables ?

third_step(thirtytwo , state); // XORTables ?

}

special(state);

//the final blob is in state

}

Listing 5: Weird whiteboxed encryption algorithm

While I was reverse-engineering this challenge, I was pretty sure it was a whiteboxed
implementation of a known encryption algorithm because of all that tables lookup.
At this time, I have read a lot of documentations and more precisely this one: A
Tutorial on White-box AES. It seemed really familiar, but it wasn’t exactly the same
implementation anyway. So I was pretty convinced it was an implementation of AES
(128?) but I didn’t really know how to prove it. I’m really a newbie in cryptographic
stuff, so I just kept in a corner of my mind that it could be an AES 128 encryption
whiteboxed. The funny thing is the fact that you really don’t need to know the
algorithm in order to break it. Also we can see that the algorithm is not completely
reversible without brute-force attack, because of the tables of type 3.

But now we saw a main loop, let’s focus only on a round and try to break a
round: if we manage to do that we will just have to break each round starting from
the last, until the first.

6.3 Round analysis

Focusing on a round is a good idea because you don’t have to think to a lot of things,
you know that the other rounds will somehow have the same behavior. Here is the
last round of the challenge:

Figure 4: Last round.

Like earlier, from that graph we can extract important detail:

• The round seems to be split into four parts, the input of the round is the
previous state, and the ouput is the new state

• Each quarter of the round generate four bytes of the state

• And more importantly, each quarter of the round is independent. For example
on the first one, we clearly see its four output bytes come only from its four
input bytes.

Let’s reduce the perimeter and focus only on a quarter of round now.

Axel ”0vercl0k” Souchet. 10

http://eprint.iacr.org/2013/104.pdf
http://eprint.iacr.org/2013/104.pdf

AES Whitebox Unboxing: No Such Problem

6.4 A quarter of round

One more time here is what looks like the first quarter of the last round:

Figure 5: First quarter, last round.

Basically it seems we can brute-force the four inputs bytes in order to have
whatever we want in the output bytes. There is one last problem, if you already
looked at the C algorithm, the rounds and their quarters are not in ”order”. It
is a part of @elvanderb’s evil logic obfuscation plan. Before going further, I really
wanted at that moment to see if that what really feasible, I mean to break a quarter
of round. To convince myself, I have extracted the last round, and its first quarter
from the C algorithm and I tried to brute-force it:

void b r u t e f o r c e q u a r t e r t e s t ()
{

unsigned char memory [8 7 6] = {0} , out [1 4 8] = {0} ;
unsigned char memory769 wanted , memory744 wanted , memory837 wanted , memory773 wanted ;
unsigned char out145 wanted , out143 wanted , out142 wanted , out141 wanted ;

out145 wanted = 0x00 ;
out143 wanted = 0x11 ;
out142 wanted = 0x22 ;
out141 wanted = 0x33 ;

f o r (unsigned in t i = 0 ; i < 0x100 ; ++i)
{

memory [7 6 9] = i ;
f o r (unsigned in t j = 0 ; j < 0x100 ; ++j)
{

memory [7 4 4] = j ;
f o r (unsigned in t k = 0 ; k < 0x100 ; ++k)
{

memory [8 3 7] = k ;
f o r (unsigned in t l = 0 ; l < 0x100 ; ++l)
{

memory [7 7 3] = l ;

memory [7 7 5] = T 0058D445 [memory [7 6 9]] ;
memory [7 8 2] = T 004C900C [memory [7 6 9]] ;
memory [7 8 9] = T 00493003 [memory [7 6 9]] ;
memory [8 0 2] = T 00524C3B [memory [7 6 9]] ;
//
memory [7 4 6] = T 0042CC6B [memory [7 4 4]] ;
memory [7 4 7] = T 005A6860 [memory [7 4 4]] ;
memory [7 4 8] = T 005FD18F [memory [7 4 4]] ;
memory [7 5 5] = TH 00537B8B [memory [7 4 4]] ;
//
memory [8 3 9] = T 005C588B [memory [8 3 7]] ;
memory [8 4 2] = T 0049AB28 [memory [8 3 7]] ;
memory [8 4 6] = T 00481426 [memory [8 3 7]] ;
memory [8 6 2] = T 0048D491 [memory [8 3 7]] ;
//
memory [7 7 6] = T 004915B9 [memory [7 7 3]] ;
out [1 1 9] = T 005CE505 [memory [7 7 3]] ;
memory [7 8 3] = TH 004AF055 [memory [7 7 3]] ;
memory [8 0 3] = T 004A51B1 [memory [7 7 3]] ;
//
memory [8 1 2] = T16 0050C7B8 [memory [7 7 5]] [memory [7 4 8]] ;
memory [7 8 8] = T16 0050C7B8 [memory [7 8 2]] [memory [7 4 6]] ;
memory [8 3 5] = T16 0050C7B8 [memory [7 8 9]] [memory [7 5 5]] ;
memory [8 0 7] = T16 0050C7B8 [memory [8 0 2]] [memory [7 4 7]] ;
//
memory [8 4 0] = T16 00415EFE [memory [8 3 9]] [memory [7 8 3]] ;
memory [8 6 3] = T16 00415EFE [memory [8 4 2]] [memory [7 7 6]] ;

Axel ”0vercl0k” Souchet. 11

https://twitter.com/elvanderb

AES Whitebox Unboxing: No Such Problem

memory [8 5 3] = T16 00415EFE [memory [8 4 6]] [out [1 1 9]] ;
memory [8 6 8] = T16 00415EFE [memory [8 6 2]] [memory [8 0 3]] ;
//
memory [8 7 4] = T16 004EF23E [memory [8 1 2]] [memory [8 5 3]] ;
memory [8 7 2] = T16 004EF23E [memory [7 8 8]] [memory [8 6 8]] ;
memory [8 6 9] = T16 004EF23E [memory [8 3 5]] [memory [8 6 3]] ;
memory [8 4 5] = T16 004EF23E [memory [8 0 7]] [memory [8 4 0]] ;
//
out [1 4 5] = TH 004866A5 [memory [8 7 4]] ;
out [1 4 3] = T 004977CB [memory [8 7 2]] ;
out [1 4 2] = T 0049635D [memory [8 6 9]] ;
out [1 4 1] = T 005C2F74 [memory [8 4 5]] ;

i f (out [1 4 5] == out145 wanted && out [1 4 3] == out143 wanted && out [1 4 2] ==
out142 wanted && out [1 4 1] == out141 wanted)

{
memory769 wanted = memory [7 6 9] ;
memory744 wanted = memory [7 4 4] ;
memory837 wanted = memory [8 3 7] ;
memory773 wanted = memory [7 7 3] ;
p r i n t f (”done\n”) ;
re turn 0

}
}

}
}

}
}

Listing 6: Quarter round brute-force attack

If you execute that code, it will compute the input values you need to get the output
values you want in 40 seconds. Feasible then. We have to build a brute-force like the
previous one four times by round, it means we will have nine times four brute-forces.
If one is taking fourty seconds, it will take some dozen of minutes to get a key, fair
enough, let’s do this.

6.5 Writing the brute-force attack

The idea of the brute-force is simple, let’s see a round like a function with a sixteen
bytes input parameter (the previous state) and a sixteen bytes output (the next
state). Here is a little picture of how the brute-force works, I hope it will be clearer:

Axel ”0vercl0k” Souchet. 12

AES Whitebox Unboxing: No Such Problem

Figure 6: We want a state, we brute-force the input values to obtain that state, and
so on.

In order to build that brute-forcer I have coded a simple Python script that
extracted from the algorithm a quarter of a round. I did it thirty-six times and I got
a 2000 lines of C file to brute-force a key!

Axel ”0vercl0k” Souchet. 13

AES Whitebox Unboxing: No Such Problem

Figure 7: O.M.G.

Axel ”0vercl0k” Souchet. 14

AES Whitebox Unboxing: No Such Problem

7 End of story

This is the end folks, I hope you really enjoyed diving into that original challenge.
Hats off for the crazy @elvanderb who developed the challenge. One important thing I
won’t forget for the next challenges I will do is: don’t be lazy, automate your work and
don’t quit. It exists a lot of cool library/framework/plugins to write easily enough
piece of code to really speed-up your progression on understanding something: play
with Pin, ODBGScript, IDAPython, Detours, DLL Injection, pygraphviz, pydbg,
etc. Also, when something is hard to see, don’t hesitate to use another view of your
problem: like the graph we did earlier. I sincerely think without this graph I would
had quit the challenge, because the logic obfuscation was really causing pain to my
brain.

If you are interested in the whitebox cryptography subject, I have read cool
articles (cool articles for newbies, I am sure the crypto guys already know that stuff
anyway):

• Practical cracking of white-box implementations

• A Tutorial on White-box AES

• WBC: protecting cryptographic keys in software applications

For those who want to continue the adventure, there are still some cool undone
tasks to work on:

• Factorize the implementation: loop un-unrolling

• Key extraction

If you manage to do either one, feel free to contact me, I would love to see how you did
it! By the way, almost all of my scripts have been uploaded here: NoSuchCon2013!
I haven’t cleaned them, I thought it would give some authenticity to my solution.

Special thanks for the reviewers and the guys who helped me: @ x86 and @ku-
tioo.

Axel ”0vercl0k” Souchet. 15

https://twitter.com/elvanderb
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://odbgscript.sourceforge.net/
https://code.google.com/p/idapython/
http://research.microsoft.com/en-us/projects/detours/
http://networkx.lanl.gov/pygraphviz/
https://github.com/OpenRCE/pydbg
http://phrack.org/issues.html?issue=68&id=8&mode=txt
http://eprint.iacr.org/2013/104.pdf
http://whiteboxcrypto.com/
https://github.com/0vercl0k/stuffz/tree/master/NoSuchCon2013
https://twitter.com/__x86
https://twitter.com/kutioo
https://twitter.com/kutioo

	Introduction
	Recon
	Baby steps
	Memory reference tracking
	Table type 1
	Table type 2
	Table type 3
	All your tables are belong to us

	Logic extraction
	Breaking the algorithm
	Static single assignment form
	Algorithm visualization
	Round analysis
	A quarter of round
	Writing the brute-force attack

	End of story

