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ADVICE TO THE READER

1. Examples have been frequently inserted in the text, which refer to
facts the reader may already know but which have not yet been discussed
in the series. Such examples are always placed between two asterisks:
* ... ,. Most readers will undoubtedly find that these examples will
help them to understand the text, and will prefer not to leave them
out, even at a first reading. Their omission would of course have no
disadvantage, from a purely logical point of view.

2. This series is divided into volumes (here called © Books ”’). The first
six Books are numbered and, in general, every statement in the text
assumes as known only those results which have already been discussed
in the preceding volumes. This rule holds good within each Book,
but for convenience of exposition these Books are no longer arranged in
a consecutive order. At the beginning of each of these Books (or of
these chapters), the reader will find a precise indication of its logical
relationship to the other Books and he will thus be able to satisfy himself
of the absence of any vicious circle.

3. The logical framework of each chapter consists of the definitions, the
axioms, and the theorems of the chapter. These are the parts that have
mainly to be borne in mind for subsequent use. Less important results
and those which can easily be deduced from the theorems are labelled as
“propositions,” ‘“lemmas™, “corollaries”, ‘“remarks”, etc. Those which
may be omitted at a first reading are printed in small type. A
commentary on a particularly important theorem appears occasionally
under the name of “scholium”.

To avoid tedious repetitions it is sometimes convenient to introduce
notations or abbreviations which are in force only within a certain chapter
or a certain section of a chapter (for example, in a chapter which is con-
cerned only with commutative rings, the word “ring” would always
signify “commutative ring”). Such conventions are always explicitly

mentioned, generally at the beginning of the chapter in which they
occur.
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CHAPTER V

One-parameter groups

1. SUBGROUPS
AND QUOTIENT GROUPS OF R

1, CLOSED SUBGROUPS OF R

ProposiTION 1. Every closed subgroup of the additive group R, other than R
and go} , 15 a discrete group of the form a.Z, where a > 0 (in other words,
it consists of the integer multiples of a).

We begin by showing that every non-discrete subgroup of R is dense in
R. Ifasubgroup G of R is not discrete, then for every ¢ > 0 thereisa
point x# o0 in G which belongs to the interval [—¢, -+ ¢]; since all
integer multiples of x belong to G, every interval oflength > ¢ contains
an element of G, and therefore G isdensein R.

Every closed subgroup of R other than R itself is therefore discrete.
It remains to show that every discrete subgroup G of R other than
go} is of the form ¢.Z, where «¢>o. Now the relation —G =G
shows that the set H of elements >0 in G is not empty; if beH,
the intersection of the interval [o, b] and G is compact and discrete, and is
therefore finite. Let a be the smallest element of H contained in o, 5],
and for every xe G put m = [x/a], the integer part of x/a; then we
have *x—maeG and o< x—ma<a By the definition of a it
follows that x -~ ma = o and therefore G = a.Z.

2. QUOTIENT GROUPS OF R

Every Hausdorff quotient group of R is of the form R/H, where H is
a closed subgroup of R (Chapter III, § 2, no. 6, Proposition 18); hence,
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LOCAL DEFINITION OF A CONTINUOUS HOMOMORPHISM § 1.4

Remark. Note that the canonical mapping ¢ of R onto T =R/Z,
restricted to the half-open interval [a, a+ 1[, is a continuous bijective mapping
of this interval onto T; the inverse mapping is continuous at every point
of T other than <(a), but discontinuous at o(a). We shall sometimes
identify the space T with the interval [a, ¢ 4 1], endowed with the
topology which is the inverse image under ¢ of the topology of T (Chap-
ter I, § 1, no. g); this topology is of course not the same as that induced
on [a, a 4 1[ by the topology of R.

3. CONTINUOUS HOMOMORPHISMS OF R INTO ITSELF

ProPOSITION 5. Euvery continuous homomorphism f of the topological group R
into itself is of the form x —> ax, where a<R; it is an automorphism of R if

a 7% 0.

For every xeR and every integer peZ, we have f(px) = pf(x);
replacing x by (1/p)=x, it follows that

f(%) ~ S g

hence, for all integers p and ¢s%o0, we have
f<£x> = r).
q q

In other words, f(rx) =rf(x) for all rational numbers r. If now ¢
is any real number, by reason of the continuity of f we have
Slx)= lim f(rx) = lim 1f(x) =( lim r).f(x) = if (x).
r>f,reQ ret,reQ r>4req

In particular, if a = f(1) we have f(t) = at, and the proposition is
proved.

The group of automorphisms of the topological group R is therefore iso-
morphic to the multiplicative group R* of non-zero real numbers.

Cororrary. Let G be a topological group isomorphic to R. For each ae G
there is exactly one continuous homomorphism f, of R into G such that f,(1) = a,
and this homomorphism is an isomorphism of R onto G if a is not the zero
element of G.

4. LOCAL DEFINITION OF A CONTINUOUS HOMOMORPHISM

OF R INTO A TOPOLOGICAL GROUP
If we are given a group G and a subset A of G which generates G, it
is clear that two homomorphisms f; g of G into a group G’ coincide

9



LOCAL DEFINITION OF A CONTINUOUS HOMOMORPHISM § 1.4

of J andlet n be a sufficiently large integer > o such that
—x—eI,;y—sI and i—-}Q)EI; then
n

AR ) )

which shows that f *Y and f(Z) commute; by the definition of
n n

f1, we have therefore fy(x + ) =f,(*) f1(»). If J=R, the proof
is complete; if not, say J = [0, + oo, and for each x < o define f 1.(;:)
tobe (fi(—x))~% Then the relation fy(x + ) =f1(x).f ,(») remains

valid for all xeR and all yeR. Thisis clear if x*< o and y < 0;

if x>0, y<o and x +y> o itfollowsfrom fi(x) =fi(*+ ) f (—2);
similarly if ¥ > 0, y<o0 and x4+ y <o, for then we have

[y =fil—x—I) [ilx);

analogous proofs for x < 0 and » > 0. We see therefore that f; isa
homomorphism of R into G, so that f;(0) =¢, the identity element
of G; andsince f; is continuous with respect to J, it has a limit on the
right at 0, equal to ¢; since fi (—#x) = (f1(#))~, f; also has a limit
at o on theleft, equal to ¢; thus f; is continuous at o, and the proof
is complete.

Cororrary. Let f be a local isomorphism of R with a topological group G.
Then there is a unique strict morphism of R onfo an open subgroup of G which
coincides with f at all points of some neighbourhood of o.

Let f be the continuous homomorphism of R into G which coincides
with f at all points of an open interval I, which contains o and is
contained in the set on which f is defined; f(R) by hypothesis contains
a neighbourhood of the identity element of G, hence (Chapter 111, § 2,
no. 1, Corollary to Proposition 4) is an open subgroup of G; and f

is a strict morphism of R onto f(R), by Chapter III, § 2, no. 8, Proposi-
tion 24.

ProrostrioN 7. Every connected group G which is locally isomorphic to R
is isomorphic to either R or T.

For a local isomorphism of R with G extends to a strict morphism of
R onto an open subgroup of G (Corollary to Proposition 6), hence onto
G itself since G is connected. Hence G is isomorphic to a quotient
group of R; since G is Hausdorff and does not consist of the identity
element alone (because it is locally isomorphic to R), it is isomorphic
to either R or T by Proposition 3 of no. 2.
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MEASUREMENT OF MAGNITUDES § 2

p~1 b—1

to (H x,-)xp, provided that the product 1 #; is defined and belongs
i=1 P i=1 9

to I: thusif H x; is defined, each of the products ]___[ x; is defined and

i=1

i=1

belongs to I, for 2 < g<p—1. By taking all the #; equal to the
same element x eI, we see in particular that if #P is defined, then 9
is defined and belongs to I for 2<g<p—1. Conventionally we
define x° to be equal to w, for all xel. By (GRy), if x>aw, we
have w<a9<a? for 1< qg<p—1 if 2 is defined; if x<y and
if y» is defined, then we see (by induction on p) that xP is defined and
xP < yP. On the other hand, the associativity condition (GRj) implies
by induction on 7 that, if x™" is defined, then so is 2™s", and that
amin — gmgn Conversely, by virtue of (GR;p) and (GRyp), if »™s"
is defined and belongs to I, then #™+ is defined and we have ™+t = x™x";
again this is proved by induction on 7, for we have x"-! < ", therefore
#7x"-1 is defined and belongs to I; by hypothesis, #™x"1 = xm1-1e],
hence (x™"~1)x = x™+" is defined and equal to #™x" by the previous
result, One shows likewise by induction on n that, if #™* is defined, then
(¥ is defined and that 2™ = (x™)*; and that conversely if (x™)" is
defined and belongs to I, then x™ is defined and equal to (x™)".

Finally, the axiom (GRy;) implies that, for all xeI such that
x> w, there exists y > w such that 2 <« For if x> o there exists
z>w such that z<x, and then ¢>w such that zt<x; take
to be the smaller of the two elements z,¢. By induction on n, we deduce
that there exists # > » such that u2" < x.

Let us now introduce the following assumption :

(GRpy) ( Archimedes’ axiom **). For all vl and yel such that
% > w, there exists an integer n > 0 such that x™ is defined and x™ > y.

If we take E to be a set of real numbers > o which contains 0 and
arbitrarily small numbers > o, I to be the intersection of E with an
interval of R which has o as its left-hand end-point and contains at
least one other number, the law of composition to be addition of elements
of I, and if we suppose that x +yeE whenever xel and yel
then it is clear that the axioms (GRy), (GRp), (GRyy) and (GRyy)
are satisfied (*).

i (*) In the sets of “ magnitudes ** which arise in the experimental sciences, the
axioms (GR,) and (GRy) are in general capable of experimental verification,
at any rate approximately. On the other hand, axiom (GRy), which postulates
the existence of magnitudes “ as small as we please *, clearly cannot be established
in the same way; it is a purely a priori assumption. As to axiom (GR.), it
can be considered as an ¢ extrapolation * of a fact which can be verified by c:‘:peri-
ment for magnitudes which are not ¢ too small *.

13



v ONE-PARAMETER OROUFPS

Conversely:

Provostmion 1. Let E ¢ o hnearly ordered sef wnth @ smallest element w;
Lt 1 beasubsetof B such that wel and such that the relations 51,y < x
umply yel let (x,) %y be a law of composstion on E, defined for xe1
and y< 1. Then, if the axtoms {GRy), (GRyy), (GRy) and {GRyy) are
sategfied, there exsts @ strclly wmoreasing mapping £ of 1 wnto the set Ry of
seal numbers > o, such that

fw) =f&+5(9)

whenever xe 1, yel and sy e 1; moreover, the interscction of f{1) with every
interval [0, f(8)] of R ts dense n this nterval, where & denotes any element
o

Given any two elements x,  of I such that ys£ «, let us denote by
(x:7) the largest mteger n >0 such that y* 15 defined and < (*);
this integer exists by (GRpy); if (¥:3) =, then »#1 1 defined and
>x Ifselyel and ayel, wehave

[ )+ SRS+ {19 +1.

Forlet {x:2) =4, (¥:2) =g; then we have 2P<x, 29 <y; smce
xpel, 2228 15 defined and belongs to I, therefore zP# 1s defined and
M = 2727 < xp; moreover, f 2PH+3 15 defined, we have 22492 >y
because 2+ > x and 27+ >

Next we establish the inequahities

() g(*'y) (72 < (x:2),
(e +0{y d+z(.a9+1.

Let (x:y)=p and {y:2) =g; then »»<x and 2¢<yp, so that
(20)F 1s defined and < ; it belongs therefore to I; consequently <7
is defined and we have 2/ = (z9)? < %, from which the first inequality
follows. On the other hand, if 2P+ @+ 15 defined, we have PP+ >z,
because yp*1 > x and z%*1>y; hence the second inequality.

Let § denote the filter of sections of the ordered set of elements > w
m I, with respect to the relation »; the intervals Jw, z], where 2z
runs through the set of all elements > o, form a base of § Given two
zleme;ﬁs a and x of I such that ¢> w, we shall show that the ratio

% 2)
(a:2)

which 15 defined for z< ¢ and is a rational number >o,

(*) When E = I 1s the set of natural integers, the law of composition being
addition, (s 5) 15 the integral part of ¥/ 7.

4



MEASUREMENT OF MAGNITUDES § 2

is a function of z which has a limit with respect to § This is obvious
if x=u, forthen (¥:2) =o forall z. If x> w, weshall show that
(x:2)

the image @& of § under the mapping z — (restricted to the set

of those z> v which are <x and < a) isa Cauchy filter base for the
uniform structure of the multiplicative group R¥}, and therefore converges
to a real number > o. Note first that, « > w being given, (z: 2)
has limit +~co with respect to §: for there exists z>w such that
Z¥ <, so that (u:2) > 2" > n. Now take a number ¢ > o arbitrarily;
there exists > w such that (x:¢) > 1/e and (2:¢) > 1/e. Consider
the double inequality

(:t) _ (:2) <(x:z)<(x:t)+1(t:z)+1,
(a:t) 41 (t:z)—[—l\(a:z) (a:t) (t:2)

which follows immediately from the inequalities (2). There exists z, > v
such that z < z, implies (¢:2) > ife, so that

1 (x:t) _ (x:2) Ez(ii).
(1+s)2(a:t)<(a:z)<(1 +) (a:t)

which shows that @ is a Cauchy filter base for the multiplicative uniform-
ity.

Fix once and for all the element ¢ > w (the ¢ unit of measure ™)
and for each xel put

x) =1i ____(x:z).
S (%) lms(a:z)

From what has already been proved, we have f(w)=o0, f(x)>o0
for x> w, and f(a) = 1. If we divide the inequality (1) throughout
by (a:2) and pass to the limit with respect to §, we see that

S ) =5 +()
whenever xe1, yel and xyel. Likewise, the relation x <y implies
(x:2) < (»:2), whence by dividing by (a:z) and passing to the limit
we have f(x) <f(3), so that f is increasing on 1. We deduce that S

is strictly increasing on I; for if x <y, there exists z>w such that
%2 <y, whence f(xz) <f(3); andsince xzel,

S &) +f (&) =f(x2) <f();
but f(z) >0, so thatindeed f(x) < f( 7).

5



v ONE-PARAMETER GROUPS

Funally, if bel, the intersection of f(I) and the interval [o, £(5)]
of R 1s dense in this interval. Forif n 1s any integer > o, there exists
x> w such that f(x) <2~ (take x such that x*"<a); if p is the
smallest mteger such that x!> 4, we have (p+1)/(*) >/ () and
af () <F(8) for 1<gsp; therefore every interval contained in
[0, /(8] and of length > 2~ conimns at least one pomnt of the form
2f(x) =f (%) e f(I). The proof of Proposition 1 is therefore complete.

Remasks. 1) The relavons xel, yel, syel, yrel mply

) =S+ =F 0,
and hence yx = 1y smce f 1 strictly increasing; m other words, the
Iaw induced by the law of compnsition of E on an nterval [o, 8] suitably
chosen (e g, such that &* < a) 13 commutatioe.
2) Bvery mapping g of I into R, which satsfies the same conditions
as f 1 of theform x—Xf(x) where A>0 For if A =g(a) >0,
the relations 2P < x < 271, 29 < a < 29+! nuply, by hypotheus,

22 <2l0) < (2 +12ld), 9(d) < gl@) <€ (g + gl

whence .
(212) izl 41
x(«z- )_Hgg(x)sx {r:2)

and therefore, passing to the bt with respect to §, wehave g(s) = £ (3).

Let us seek condions under which f(I) 15 an wmerval of Ry, Clearly
the following two conditions are necessary :

{GRyy,) Thesetofelements > i 1 15 not empty and has no smallest element,
and geven any two cements %, 3, of 1 such that %<y, there ewsts ze L suh
that xz =y (*subtraction” of magnitudes).

(GRyy,) Every snoreaseng sequence of clements of 1, whick 15 bounded abooe by
an element of 1 has a least upper boundn 1.

We shall show that these conditions are also sufficient, and moreover
that they allow us to dispense with axiom (GRyy) (Archimedes’ axiom).
To be precise, we shall prove the following proposition :

PROPOSITION 2. If & linearly ordered set E and a subset 1 of B sutsefy the
axoms (GRy), (GRu), (GRexa) end (GRyyy), there extsts a strictly mereasing
maptung f of 1 onlo on snterval of R, wnth © ar ats left-hand end-point, such
ihat‘ f@) =0 and f(x) =F(x) +f(5) whenever z, 3 and xy belong
o 1,

Let us first show that axiom (GRpy) is satisfied. We argue by contradics
tion : suppose that there exist x, y& 1 such that x > @, #* 15 defined and
s*<y for all integers n>o0.” The ncreasing sequence (s") has 2

16
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TOPOLOGICAL CHARACTERIZATION OF THE GROUPS & sy y - .
least upper bound bel by (GRyy,). Since x<b, there s 2yt
such that xc = b by (GRy,), and we have ¢<b since 5 . s
for every m, we have x"1 < b=xc, whence xg¢ Yy Gr.
the upper bound & of the #" is therefore <, whichis a egpyr i

We are therefore in a position to apply Proposition 1, 1y rpeer.
show that, if v =f(c) (¢> ) is any element of f(T), angif s -
real number such that o <f <v, there exists bel such that f{”.:
(Chapter IV, § 2, no. 4, Proposition 1). Since the intersectiop o« g
and [o, y] is dense in [o, v], there exists an increasing
of elements of I such that f((x,),) ha; B a.; limit, Let
upper bound of the sequence (x;) in I; we have f(b)>f(x »..,4:»'
hgr}?cc F(&) = B; but f(b) >p is impossible, otherwiéfe(‘ﬂtrf:r:}}“;'i
exist eI such that g < f () <f(b), and since § is the east ‘-XJ:::
bound of the sequence (f(x,)), we should have f(x)< 105) <Ppc{

for all n, whence %, <y<b for all n, which is abgypd, S

f(b) = B, and Proposition 2 is therefore proved.

.
JORAT's

o

Ity v,

«

SeQuenes fy
b bt the 1;:

H':nf,a

Remark. When I =E, the image f(I) =f(E) is the whole of

for if b > w, then b* isdefined forall n, and therefore n, T b
to f(E) for all n; this implies that f(E) is not boundeq n\?;a
because f(4) > o. e,

3. TOPOLOGICAL CHARACTERIZATION
OF THE GROUPS R AND T

THEOREM 1. A lopological group G in which there exists a neighbourhgoq of
the identity element homeomorphic to an open interval of R is locally isomorphig
o R.

The ssignificance of this theorem is that it allows us to deduce, from a purely
topological property of a group G, a property of the group structure of G,

We are concerned here with a phenomenon which is peculiar to the
group R and has no analogue for the groups R* when n > 1 (cf.

Chapter VIII, § 1, no. 4). Groups locally isomorphicto R are sometimes
called one-parameter groups.

To prove Theorem 1 we shall reduce it to Proposition 2 of § 2. By hypo-
thesis, there is a homeomorphism ¢ of an open neighbourhood U of
the identity element ¢ of G onto an open interval in R. By means
of the inverse of the mapping ¢ we can transport to U the linear order
structure of the interval ¢(U); the topology of U (induced by that
of G) then has a base consisting of all the open intervals of U (Chapter

17
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v ONE-PARAMETER GROUPS

1V, § 1, no. 4, Propostion 5). We can find a spmmetric neighbourhood
V of ¢ such that V.VcU and such that V is an open mterval; for
there exists an open interval V' contamung ¢ such that V! V'eUaU-,
V' V1cU and V- V' eU; taking V = V' UV'-1, V 1s open and
symmetric, satisfies V VeU and 1s connected, hence is an interval
(Chapter IV, § 2, no_s, Theorem 4). ;

We show that, if x, 3, z belang to V, the relation x <y implies
sz<yz and gr<Zy Indeed, the functions fi(c) = ¢(2) —e(x2)
and fy{z) = 9{zy) —9(ex) are conunuous on V, they are >0

— ¢ and do'not vamish in V feg, 1l we had 9(y2) = ¢(xc), we should
have jz=xz and thercfore y=4] Smce fi(V) and f(V) are
connected (Chapter I, § 11, no. 2, Proposition 4) and are therefore intervals
m R (Chapter IV, § 2, no. 5, Theorem 4), and since these intervals each
contam a number >o and do not contan o, they are contained
R that1s, we have £,(2) >0 and f4(2) >0 forall zeV.

If x and yp are two elements of V such that x>¢ and y32 ¢
then 1n particular we have a2 ¢ Let E denote the (lnearly ordered)
set of elements of U wiuchare 2 ¢, and let I denote the set of elements
of V whichare e, then the axioms (GRp), (GRg), (GRyg,) and
(GRyy) of§ 2 are satusfied (taking w to be the element ¢, and the law
of composition to be that of the group G) This is clear for (GRy),
(CRy) and (GRp.), from what precedes As to (GRyp,), it i
enough to remark that, if e<x<y (x=V, yeV), we have x2eV,
hence x'<e<zly and x1y<y, consequently z=x1y belongs
to I and we have xz =y By Proposition 2 of § 2 there exists therefore
a stnctly mereasing mapping f of 1 onto an mterval of R, wih left-
hand end-pont o, such that f() =o and f(m)=f()+f(5)
whenever %, 3 and xp belong to 1 (which will be the case whenever
# and y belong to Wn1, W bemg a neighbourhood of ¢ such that
WWweV).

For every element x eV which does not belong to T we have x<¢,
hence x~!>e¢, consequently we can extend f to a_stretly ncreasing
mapping 7 of V_onts an mterval of R by putting J(x) = — f (x1)
for all x<e¢ in V  The wnverse image under 7 of an open intervat
contained 1n (V) 1s an open interval of V, so that f is contnuous
on V, conversely, the image under 7 of an open interval of V 1s an
open nterval of f(V), and therefore f 15 a homeomorphism of V. onto
a neighbourhood of 0 1n the group R. On the other hand, it is easily
checked (as i Proposition 6 of § 1, no. 4, by considering the various possible
cases) that we have F(0) =f(x) + f(5) whenever x, 3 and x all
belong to V; and we therefore concude that f, restricted to a suitable
neighbouthood of ¢ m G, isalocalisomorphismof G with R (Chapter
IIL'§ 1,10 3, Proposition 3).

QED.
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BEHAVIOUR OF THE FUNCTIONS a® AND LOG, X § 4.2

By reason of formula (4), which reduces every multiplication to an addition
(the only operation to which the customary system of numeration is well
adapted), logarithms have long been an indispensable instrument in
numerical calculations (see the Historical Note to this Chapter).

When used for this purpose, the base chosen is @ = 10; and there are
tables giving the values of the function logy, & (to a certain approximation).
In analysis, one is led to choose a different base (denoted by €) which is

such that  lim togex (cf. Exercise 1).
z>1l,z#1 (x— 1)

2. BEHAVIOUR OF THE FUNCTIONS 4= AND log, X

By Theorem 5 of Chapter IV, § 2, no. 6,if a 1, x—>a® is a sirictly monotone
mapping of R onto the interval RY =Jo, + . If a>1, we have
al=a>1 =a° hence g® is sirictly increasing; InOrcover, since R¥
is not bounded above, a* is not bounded above in R, so that

(13) xllin =+ (a> 1)

and, by (2),

(14) lim a®=o0 (a>1).
Tr—

On the other hand, if a< 1, the function @® is strictly decreasing,
'z%r}ds tl; 0 as x tendsto 4+ oo, and tends to 4 o as x tends to— o
ig. 1).

y
Y
y=a*{a>1)
Yy=loggxc(a>1)
y=aT(a<l)
0 = 5 X p=
=loggac(a<l)

Figure 1.
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by log.x. Thus, with this notation, we have

(1) a*t = a%a” (xeR,peR,a>0);
(2) = (xeR,a>0};

(3) logs1 =0, logsa=1 (a>0,a71);

(4) log, (27} = loga  + logay (x>0,9>0);

® log.(%) =—log.» (x>0

) a6 = x (x> 0);

4] logs a® =x (xeR).

By Proposition 5 of § 1, no. 3, every continuous homomorphism of R
mto RE s of the form y—»a¥, where xeR; since its valuc when
y=1 15 g% we have dentically
8) (e®)* =a*  (xeR, yeR, a>0),
or, changing the notation,

9 F=a'F (x>0,yeR,a>0,a%1).
The formula (8) shows that, for every integer n>> 0, wehave (a¥n)* =g,
which justfies the notation 4% introduced for the nth root ¥'a, defined
1n Chapter IV, § 3, no. 3.

Formulas (7) and (g) show that

(10) log (x%) =y log,x  (x>0,yeR),

or, changing the notation,

(11) logax=logb.logsx (x>0,8>0,6>0,a71,b%1),

which 15 the formula for ¢ change of base *.
Funally, let us obtain all the continuous homomorphisms of the topological
group R* intoitself;af ¢ 13 such a continuous homomorphism,

Toga (g(a%))
is a continuous homomorphusm of R into R, therefore (§ 1, no. 3, Proposi-
tion 5) there exists aeR such that log, (g(s%)) = ax for all xeR;
hence, by (8), g(x) =»* forall x> 0. Hence we have identically
(12) (D) =2*5* forall x50, y>0and aeR.
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BEHAVIOUR OF THE FUNCTIONS a” AND LOGg % § 4.2

By reason of formula (4), which reduces every multiplication to an addition
(the only operation to which the customary system of numeration is well
adapted), logarithms have long been an indispensable instrument in
numerical calculations (see the Historical Note to this Chapter).

When used for this purpose, the base chosen is a = 10; and there are
tables giving the values of the function logy, # (to a certain approximation).
In analysis, one is led to choose a different base (denoted by €) which is

such that  lim dog.x (cf. Exercise 1).
o1, oL (X — 1

2. BEHAVIOUR OF THE FUNCTIONS ¢ AND log, x

By Theorem 5 of Chapter IV, § 2, no. 6, if ast 1, x—>a® is a strictly monotone
mapping of R onto the interval R¥ =Jo, + o[. If a>1, we have
dl=a>1=a hence a® is sirictly increasing; moreover, since R¥
is not bounded above, a® is not bounded abovein R, so that

(13) mgin =+ o (a>1)
and, by (2),
{14) lim a®=o0 (a > 1).

On the other hand, if a< 1, the function @® is strictly decreasing,
t((}&;}ds t(; 0 as x tendsto -+ oo, and tends to -+ o as x tends to— oo
ig. 1).

y
v
y=a%(a>1)
y=Joggc(a>1)
y=aTla<l) 1
0 £ [ T
Y=logaoc(a<l)

Figure 1. Figure 2.
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From these properties and from (12), we deduce that if o<a<§,
we have aF < b% for x>0, and & > for x<o; for (%) >1
if x>0, and FANPE I PES

z

The behaviour of log, # in R% is deduced from that of a4 1 R;
if @3> 1, the function log, x is strictly increasing, tends to ~— o as
tends to o, and tends to - oo as x tends to + oo; if 2< 1, the
function log, x 1s strictly decreasing, tends to 4 @ as x tends to o,
andto — o as x tendsto + oo (Fig. 2).

The funcuon a* (resp log,#), considered as defined on a subset
of the extended lme R and taking its values in R, can be extended by
continuity to R (resp. to the interval [o, 4+ ®] of R) by assigning to
1t its imiting values at the pomts + o and ~— o (resp 0 and + oo}

More generally, formula (g) shows that the function x* 15 contmnuous
on the subspace RY X R of R? and fends to & hmt when (x,5) tends
to any point (g, ) of R* which lies in the closure of Ry X R, with
the exception of the pomts (0, 0), (+ @, 0}, (1, + ), (1, — ). We
can therefore extend 27 by contunmty to those points of R? at which
the it exists, by the prinaiple of extension of identities (Chapter 1, § 8,
n0. 3, Proposition 2, Corallary 1), formulas (3), (4) and (8) remam valid
whenever both sides have a meaning.

Note that the extension by continuity of # does nat allow us to obtan
the formula 00 = 1

Note also that the defimition of the exponential allows us to extend to
R the function r—a* defined on Z, for all a > 0, but we do not obtain
n this way any extension of thus funchion when & < o0, a © natural *
extension of this function can be defined only i terms of the theory of
analytic fanctions

3, MULTIPLIABLE FAMILIES OF NUMBERS > O

The 1somorphism of the topological groups R and R} shows immediately

that for a famly (x) of finite real numbers >0 to be multiphable (Chap-

ter IV, § 7, no 4) 1t 15 necessary and suffictent that the family (log, %)

should be summable (¢ being any number >0 and 1), and we have
Steren,

(15) a=a¥""

Likewise, an infinite product defined by a sequence {1 +u,) of
fimite numbers > o is convergent (Chapter IV, § 7, no. 6) if and only 1f
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MULTIPLIABLE FAMILIES OF NUMBERS > O § 4.3

the series whose general term is log, (1 4 u,) Iis convergent, and then we
have

o0
Sologﬂ Q+uy)

(16) nEo(’ + 1) = a®

The study of infinite products of real numbers > o0 is thus reduced to
that of infinite series of real numbers whose terms appear in the form of
logarithms; we shall see later how sums of this nature can be easily studied
by means of the differential properties of the logarithm.
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EXERCISES

§1

1) * &) Let £ be a homomorphism of the additive group R into itself.
Show that, if the graph of f is not dense 1 R?, £ 15 of the form x — ax
[consider the closure m R? of the graph of #, and use the structure theo-
rem for dosed subgroups of R (Chapter V11, § 1, no. 2, Theorem 2)]. 4
[Compare with Chapter VI, § 1, Excraisc 12 5) and Chapter IV, § 6,
Exercise 2.]

8) IF ehe graph of f 1s dense in RY,  the mverse image of the topology
of R? under the mapping = — (x, f(x)) is compatible with the group
structure of R and 1s strictly finer than the usual topology of R. If
moreover f 15 injective, the tverse tmage under f of the usual topology
of R 15 compatible with the group structure of R and is not comparable
with the usual topology of R.

G 2) Let G be a Hausdorff topology on R, compatible with the group
structure of R and strctly coarser than the usual topology ;.

a) Show that every open neighbourhood of © with respect to & is
unbounded m R (note that a Hausdorff topology which is coarser
than the topology of a compact space must comcide with the latter).

5) Let Vo£R be a symmetric open neighbourhood of o with respect
t B, andlet W bea symmetnc open neighbourhood of o with respect
to © suchthat W+ WaV. Show thatif a 1s the length of the compo-
nentof V (with respectto ©,) which contains 0, then every component
(with respect to ©,) of W haslength <a Morcover, the set of lengths
of components of the mterior of R— W (with respect to §,) 15 bounded
fuse @) and the fact that there cxsts a symmetric open neighbourhood
W, of 0 withrespectto G such that Wy + W, e W)

¢) Deduce from b) that R is precompact 2nd not locally compact in the
topology ©

d) Show hkewise that Z is precompact and not locally compact in any
topology © compatible with its group structure and disunct from the
discrete topology.

o Let f bea h hism of 2 subgroup ' of R, mot
consisting of o alone and endowed with the topology induced by G, into
a complete Hausdorff group G. Show that if f is not an isomorphism
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EXERCISES

of T onto the subgroup f(I) of G, then f(I') is relatively compact
in G [usec¢) and d)].

* f) For every integer n > 2, give examples of continuous injective
homomorphisms f of R into T* such that f(R) is dense in T" (cf.
Chapter VII, § 1, no. 4, Corollary 1 of Proposition 7).

3) Show that the group T is algebraically isomorphic to the product
R x (Q/Z) (take a suitable Hamel base in R). Deduce that there
exists a HausdorfT topology on R, compatible with its group structure, not
comparable with the usual topology, and with respect to which R is
precompact.

§ 2

1) Let E be a linearly ordered set with a smallest element w, and let
I be an interval of E, containing w, with w as its left-hand end-point.
Suppose that E and I satisfy axioms (GR;), (GRy), (GRyy) and the
following axiom :

(GRym) The set of elements x> in I is not empty, and if x is any
element > w in I, there exists y > o in 1 such that »* < x.

Show that there exists an increasing mapping f of I into R, such

that f(w) =0 and f(xy) =f(x¥) +(») whenever x, y and xy are
in I; alsothat £(I)n[o,f(b)] isdensein [o,f ()] forall bel.

2) Let G be a non-commutative linearly ordered group (for example
the multiplicative group of a non-commutative ordered division ring).
In the set Ry X G consider the set E consisting of (o, ¢) (¢ being the
identity element of G) and all pairs (%, ) where x is any real
number > o0 and y is any element of G. Define a law of composition
on E by the rule (x, »)(*', ) = (x 3+ &', »'), and order E lexico-
graphically [i.e. (x,9) < (¥,5) if x<x orif x=«" and y<y']. If
we take I = E, show that axioms (GRy), (GRy), (GRyy) (Exercise 1)
and (GRyy) are satisfied; but that if f is an increasing mapping of E
into Ry such that f(22') =f(2) + f(z) for all a and 2z’ in E,
then f is not strictly increasing.

§ 3

1) Alinearly ordered group G (not necessarily commutative) issaid to be
Archimedean if the set I of elements > e (the identity element of G)
satisfies axiom (GRyy) of §2. Show that a linearly ordered group G
1s 1somorphic to a subgroup of the additive group R if and only G is
Archimedean (distinguish two cases according as the set of elements > ¢
in G has or has not a smallest element, and use Proposition 1 of §2).
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2) Let G be a Imearly ordered group (not necessarily commutative),
with more than one element Then the topology Go(G) (Chapter 1,
§ 2, Excrcise 5) 13 compatible with the group structure of G. If G is
connected in this topology, show that G is isomorphic to the additive group
R {use Exercise 7 of Chapter IV, § 2, and Proposition 2 of § 2).
3) Let G be a (not necessarly commutative) lnearly ordered group.
If G, endowed wath the topology ©y(G), 1 locally compast and not duscrete,
then G is locally 1somorphic to R, and the identity component of G
1s an open subgroup 1somorphic to R {use Exercise 6 of Chapter IV,
§ 2, and Proposttion 2 of § 2).
€ 4) Let G bea topological group which satisfies the following conditions:
(R;) G 1s connected.
(Ry) The complement G* of the identity element ¢ of G is mot
connected.
Then there exsts a continuous byective homomorphism of G onto R (in other
words, G 15 algebraically 1somorphic to R and 1ts topology 1s finer than
that of R). The proofs in several steps .
a) Let (U)ygign be a partition of G* 1nto open sets in_G* (n 2 2).
Show that each U, 1s open n G, that ¢ lies m each U, and that
G 1s Hausdorfl. Deduce that the closures U, = U,u ¢} m G are
connected {Chapter I, § 11, Exercise 4).
5) Let A be a connected component of U, Show that for each index
J#5 we have A-1U; = A=l (observe that A~1U, 15 connected and
contams A-Y, and that A='U;c G* of j 1),
¢) Show that n must be equal to 2 [for each index 1 =1,2, ,n take
a component A, of U, if js: we have, by 8), A-'A,cA7,
AIA,c A'c U, whence AricU;] Deduce that G* has exactly
two components A and B, that B = A~! and A = [{A-).
d) The relation yx-1eA 15 an order relation, which makes G into a
linearly ordered group (show that A*=A and that xAr-1 = A for all
£ Q).
¢) The topology Go(G) 15 coarser than the given topology G on G (ob-
scrve that A 13 open with respect to G).

Complete the proof by using Exercise 2 above and Chapter 1, § 11,
no 2, Proposition 4. [Cf Chapter VI, § 1, Exercise 12 b).)
) Show that if m addition we suppose G to be either locally compact
or locally conneted, then G 13 isomorphic to R.
* 5) Give an example of a topology on R, compatible wath the group
structure, for which R 13 connected, locally compact and locally connected,
and for which the complement of {o} in R s connected (use the fact
that R and R" are algebracally somorphic).
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EXERCISES

q 6) Let G be a topological group which satisfies the following conditions:
(LR,) G is Hausdorff and locally connected.

(LRy;) There exists a connected neighbourhood U of the identity element
¢ of G such that the complement of ¢ in U is not connected.
Show that, under these conditions, G is locally isomorphic to R.

[Prove first that if V is any connected neighbourhood of ¢ in G

contained in U, then Vn [}{e } is not connected, that ¢ lies in the

closure of every component of Vnﬁge}, and that Vnﬂ{e} has
exactly two components, by reasoning as in Exercise 4. Then take
the connected neighbourhood V sufficiently small and define a linear
ordering on V such that ©y(V) is coarser than the topology induced
on V by the topology of G, and such that Proposition 2 of § 2 applies
totheset E ofelements = e of V.]

7) Let G be a non-discrete locally compact group with a countable
base of open sets, and let 'V, be a compact neighbourhood of the identity
element ¢ of G which contains no subgroup of G other than ge}.

a) Let (x,) be a sequence of points of V which converges to e. For

each n, there exists an integer p(n) > o such that x%¥eV, whenever
k< pn) and ™+ eV, and we have lim p(n) = + co. Show

n>x
that there exists a subsequence (x, ) of (x,) such that, for every rational
number 7 with |r] <1, the sequence («fP*)) has a limit f(r) in
n

V, (use the diagonal technique); and that if 7, ' are rational numbers
such that [r| <1, |#'| <1 and |r + 7| < 1 we have

S+ =rr).

&) Show that f is continuous in a neighbourhood of o in Q. [Argue
by contradiction: if there were a sequence (r,) of rational numbers
tending to o and such that f(r;) tended toan element y # ¢ in V,,
show that we should have " eV, for all integers m.]

¢) Deduce from &) that there exists a non-trivial continuous homomor-
phism of R into G (use Proposition 6 of § 1).

d) Let H be a closed normal subgroup of G other than G itself,
and suppose that there is a neighbourhood of the identity element in
G/H which contains no non-trivial subgroup. Show that there exists a
continuous homomorphism f: R - G such that the composition

RG> GH

is non-trivial.

8) Let G be a topological group and let H be a closed subgroup of
G, contained in the centre of G, and such that there is a continuous
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sufjectve homomorphism ¢: R—>G/H. Show that G is abelian [if
ay is an element of G which 1s not in H, observe that there exists a
sequence {a,) of elements of G and a sequence (¢y) of elements of H
such that @, = ¢,0,y and that the subgroup of G generated by H
and the g, is densein GJ.

§4

1) @) Let (xm Jo)aez be a family of points of R? such that for all neZ
we have , < Fypy an

Yriy=Jn o Fwtr—Jwt1,

Fmby 7 Xy L
Show that, for all integers neZ, m >0, p >0, we have

Intm s . Intnsp—Ja,

Frbm —Fa Fbmip = Xn

B a>0 and z-£0, put
@1
Sole) ===

Show that, 1if x<y %70, 30 and a1, we have ful*) <fils)
[prove the rlation first for x,y wtegral, by means of a), then for x5
rational, and finally in gencral].

) Deduce that, for all a> o, the function fi(x), defined for x50,
has a limit on the right and a hmit on the left as x ~> 0; show that these
two limuts have a common value ¢(a), and that g{a)s£0 if a+ 1.
Show that if a1, the function log, x/x — 1, defined for x # I,
tends to the imit 1/g{a) as x—>1.

d) Show that, for all a>0 and &3>0, we have () = ¢(a) log.b
(f s 1). Deduce that there exists 2 number ¢ between 2 and 4 such
that g(¢) = 1, and that g(a) = log, & forall @ >o.

2) Show, by induction on #, that for all integers n > 0 we have
2" > —x—n(n + 1),
2
Deduce that,if ¢>1 and ¢ >0,

. a* N
m &=t ow,  fim G,
5 ~
Pl iy

(begin by proving the first of these relations for 2 =z and a = 1).
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HISTORICAL NOTE

(Numbers in brackets refer to the bibliography at the end of this note.)

The history of the theory of the multiplicative group R* of real numbers
> 6 is closely related to that of the development of the notion of powers
of a number > o0 and the notations employed to denote them. The
idea of the * geometric progression ” formed by successive powers of the
same number goes back to the Egyptians and the Babylonians; the Greek
mathematicians were familiar with it, and as early as Euclid [1] we
find a general statement equivalent to the rule o™ = o™+ for
integral exponents m, n > o. In the Middle Ages, the French mathe-
matician N, Oresme (14 th century) rediscovered this rule. He was
the first to have the idea of a fractional exponent > o, with a notation
similar to our own and to our relevant rules of calculation, stated in
ger.]eral terms; for example, he used the two rules which we should
write as
(ab)¥n = glinplin, (am)plq = (a™P)Ve [2].

But the ideas of Oresme were too far ahead of the mathematics of his time
to exercise an influence on his contemporaries, and his treatise soon sank
into oblivion. A century later, N. Chuquet stated Euclid’s rule anew;
furthermore, he introduced an exponential notation for the powers of
unknowns in his equations, and did not hesitate to use the exponent o
and integral exponents < o (*). This time, even though Chuquet’s
work remained in manuscript and seems not to have been widely circula-
ted, the idea of the isomorphism between the  arithmetic progression *’
of the exponents and the * geometric progression’’ of the powers was not
lost sight of again; it was extended to negative and fractional exponents
b.y Stifel [4], and led finally to the definition of logarithms and the construc-
tion of the first tables, independently undertaken by the Scotsman J.
Na;_uer in 1614-1620 [5] and the Swiss J. Biirgi (whose work did not appear
until 1620, although his ideas went back to the first years of the 17th

—_—

% .
(*) Chuquet writes for example 121, 122, 12° etc., for 12, 12 4%, 12 &3, etc.,
12° for the number r2, and 122" for 12 x~2 [31.

29



HISTORICAL NOTE

century). Burgi imphatly assumes the continuity of the isomorphism
established between R and R* by means of mnterpolation in the use
of hus tables; Napier on the other hand formulates it in his definition
expliaatly (or at any rate as explicitly as the hazy notion of continuity
current at that time allowed) (*).
Tt is not our purpose here to dwelt on the scrvices rendercd by loga-
nthms to 1 cal ; from the th pont of view, ther
dates from the of the calculus, with the
discovery of the expansions 1n series of log (1 + %) and %, and the
differential properties of these functions  As far as the definition of loga-
rithms and exponenttals was concerned, 1t was assumed mtuttively, up to the
middle of the 1gth century, that the function 2* defined for all rational
x could be extended by continusty to the set of all real numbers; and 1t
was not until the notion of real number had been defimtively clanfied and
deduced from that of ratonal number that 2 nigorous justification was
sought for this extension by continuity. An analogous principle of exten-
sion, swtably applied, 1s again at the basc of the proofs of Propositions ¢
and 2 of § 2, from 1t there follows not only the definition of exponentials
and logarithms, but also, as we shall sce i Chapter VIII, angular measure.

BIBLIOGRAPHY
(1] Eucls Elementa, 5 vofs, ed.J. L. Hsberg, Lespaig (Teubner), 1853-80
IX, I

[2] M Curizs, Zatschr Math Plys, 13, supplement (1868), p. 65

[3] N Cuvuquer, Bull. bibl stora math., 13 (1880}, pp 737-738.

4] M. Sirer, An.hume 1cain.egra, Nuremberg (1544), fol 35 and 249-250.
(5] J. Naewes, Ainfizs loganthmorum canonts constructia, Lyon, 1620

(*) Napier considers two points M, N mowvng smultancously on two
lines, ‘the movement of M being umform, and that of N being such that ats
veloaity 15 proportional to 1ts abscisa, the abscissa of M 1s then by defintion the
loganthm of the abscissa of N (2], p 20-21)
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CHAPTER VI

Real number spaces
and projective spaces

1. REAL NUMBER SPACE R’

1. THE TOPOLOGY OF R"

DeriniTioN 1. The topological product of n  spaces identical with the real line
is called real number space of n dimensions, and is denoted by R".

Remark. The space R° consists of a single point.

From Set Theory, Chapter III, § 6, no. 3, Theorem 2, Corollary 1, we
know that, if E is an infinite set, E* is equipotent with E for all integers
n > 0; hence, if n > o, R* is equipotent with R, that is, R" has the
power of the continuum (cf. Exercises 1 and 2).

DerinrrioN 2. Any subset of R* which is the product of n open (resp. closed)
infervals of R is called an open (resp. closed) box in R*. ([For n=12 itis
called an open (resp. closed) rectangle.]

The open boxes in R* form a base of the topology of R* (Chapter 1,
§ 4, no. 1); the open boxes which contain a point x = (x;);¢;<n of R
form a fundamental system of neighbourhoods of x, and so do the closed
boxes of R* for which x is an interior point.

Every non-empty open box in R" is homeomorphic to R* (Chapter IV,
§ 4, no. 1, Proposition 1).

It follows that, when =z > 1, every non-empty open set in R® has the
power of the continuum.

An open (resp. closed) cube of R* is an open (resp. closed) box which is the
product of 7 bounded intervals of equal length [for n = 2, it is called an
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open (sesp. closed) square]; the common length of these intervals is called
the side (or side-limgth) of the cube. The open cubes

I 1
Ko= 11 ]x";f’x‘_}';[

15¢n

form a bl 1 system of hbourhoods of the point
x=(x), as m runs through the sct of all integers >o or through
any sequence of integers increasing to infinity.

Every apen (ot closed) box i R" 15 connected (Chapter 1, § 11, no. 4,
Proposition 8); in particular, R 15 connected and Jocally connected.

If A 15 a non-empty open se¢1n R® 1ts corponents are thercfore open
sets (Chapter T, § 11, no. 6, Proposttion 1), and the set of these components
15 countable, for R* has a countable dense subset (for example Q9.

Consider under what conditions a subset A of R* wall be relatively compact.
By Tychonofi’s theorctn (Chapter I, § 9, no. 5, Theorem 8) it is necessary
and sufficient that the projections of A on the factors of R” should he
relatively compact, by the Borel-Lehesgue theorem (Chapter IV, § 2, no. 2,
Theorem 2) this 15 equivalent to saymng that these projections are Sounded
subsetsof R Wesay thatasubset A of R® 13 bounded if all sts projections
are bounded subsets of R, thus we have proved :

PROPOSITION 1 A subset A of R™ 15 relatively compact tf and only of 1t 15
bounded,

CoroLrary  The space R* s locally compact, but xs not compact yf n > 1.

2. THE ADDITIVE GROUP R*

The set R", endowed with the group structure which 1s the product of the
additive group structures of the n factors of R”, 15 an abelian group,
we use the additive notation, the sum of x = (%) and y = () being
therefore -+ y = (x, 4 7). The topology of the number space is

patible with this group endowed with these two structures,
R" 15 a topological group called the addiiive group of n-dimensional real
nwnber space. X 7 =0, we make the convention that R° denates a
group consisting only of the 1dentity element.

The uruform structure of this group, called the additice uniformty of
R, 15 the product of the uniformties of the factors of R* (Chapter 111,
§3,n0.2) " If, for cach integer p > 0, V,, denotes the set of pairs (, 5}
of R* such that xl<na<x” % — 2| <1jp, the sets V, form a Sfundamental
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THE VEGTOR SPACE R” § 1.3

system of entourages of this uniformity. Whenever we consider R® as a
uniform space we shall always have in mind the additive uniformity just
defined, unless the contrary is expressly stated. Endowed with this uni-
form structure, R"® is a complete uniform space (Chapter II, § 3, no. 5,
Proposition 10).

3, THE VECTOR SPACE R~

Since R is a field, we can define on R® a wvector space structure over
the field R, the product fx of a scalar feR and a point (or
vector) x = (x;) of R" being the point (#x;). Note that the homothety
(t, x) — tx is continuous on R X R? If e; denotes the vector of R”
all of whose coordinates are zero, except for that of index ¢, which is
equal to 1, then the e¢; form a basis of the vector space R® called the
canonical basis of this space. Every vector x =(x)eR® can be
n n

written as x = 3, xe;, and the relation ), f;¢; =0 implies that ¢; = 0
i=1 =1
for 1€ig<n

The vector space Rr is therefore of dimension n over the field R, in the
sense of algebra (Algebra, Chapter 11, § 7, no. 2); hence its name of n-dimen-
sional real number space.

Let f be an affine mapping of the vector space R* into the vector space
R™ (m and n being integers >o). If we put g(x) = f(x) — f(0),
g is a linear mapping of R" into R™ Let g (1 < j < m) be the
coordinates of g(e;) in R™ and let b; (1 <j<m) be those of f(o0); if
% (1 <7<n) is the ith coordinate of xeR" and if y; is the jth
coordinate of y = f(x), we have

n
Y= 2 a;%; + b; (1 <j<m).
i=1
Since every linear polynomial in xy, %y, . .., %, is uniformly continuous
on R" it follows that every affine mapping of R” into R™ is uniformly
continuous on. R* (Chapter II, § 2, no. 6, Proposition 7).

_ In particular, we know that every affine mapping of R® onto itself is
bijective and that its inverse is again an affine mapping; hence every affine
mapping of R" onto itself is a homeomorphism (and an automorphism
of the uniform structure of R”).

Let (@)i<i<n be a free system of n vectors of R™ [in other words
a basis of the vector space R7]; if b is any point of R", the set P
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»
of points x==5+ 3 ua, such that —1<u <1 for 1<ign isa
i

=1

compast neghbourhood of b, for there exsts a bijective affine mapping f

of R* onto tiself such that f(8) =o, f(d+a)=e for 1<t<ny

and f(P) 15 the cube whichisthe product of the  intervals [—1, +1]

n the n factor spaces P 1s called the closed paralclotope with centre b
»

andbansvectors @, Theinterior of P consists of the points  + 3 ug,

=1
such that — 1 < #, <1 for 1 <1< stis called the open parallelatope
with centre b and basis vectors a,

4. AFFINE LINEAR VARIETIES IN R*

Guven a g-dimensional affine linear vanety V in R, there exists an affin
mappig f of R* onto itself which transforms V' into a p-dimensional
coordinate variety, that 1s to say a vector subspace V' generated by p of
the vectors of the canomeal basis () of R%. There exists 2 mapping
of V' onto R® which 15 an isomorphism of the vector space structureand
the topology of V' onto the corresponding structures of R? (it is moreover
often convement 1o wdentify R with such a coordmate variety V', eg,
with the vector subspace generated by e, e, ,e,). In adduion,
V' 15 a closed subset of R* (Chapter I, § 4, no 3, Corollary to Proposi-
tson 7), hence .

ProPoSITION 2. Erery p-dumensional hinear affne sarely in R* i a dlosed
subset of R®, homeomorphic to RP

1t 15 this result which 15 the orgin of the names fins and plane given to affine
Linear vaneties of one and #wo dumensions 1n a vector space over an arbi-
trary division rmg  We recall also that, for n3> 1, the affine lincar
vaneties of n—1 dimensions of R* are called Aperplanes (foc. aaf ).

The # one-hmensional coordinate vaneties, that 13 to say the n hoes
passing through o and the n ponts e, respectively, are called the
coordinate axes. For n =2 the aus through e, is sometimes called the
@ of abscussas and the axis through e, 13 called the axts of ordinates; the
first ;oord.malc ofa pomnt xeR? 1 called its abscissa, the second coordinate
sts ordinate,

Every ine D passing through a point a has a parametric representation
t—a+ b, where ¢ runs through R and b o, this mappmng s a
homeomorphism of R onto D. The vector 6 15 ealled a diecton
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AFFINE LINEAR VARIETIES IN R" § 1.4

vector of D, and its components &; (1 < i< n) are called direction ratios
of D. If & is another direction vector of D, there exists k520 in R
such that &' = /b,

The set of points @ 4 th, where ¢ runs through the set of real numbers
> o, is called the closed ray (or simply ray, or half-line) with origin a and
direction vector b (or with direction ratios b;). It is a closed subset of R7,
homeomorphic to the interval [o, 4 o[ of R, and therefore connected.
The line D is the union of the two rays with origin ¢ and direction
vectors b and — b respectively; these rays are said to be opposite.

By abuse of language, the set of points a + th, where ¢ runs through
the set of real numbers > 0, is called the gpen ray with origin a and
direction vector §; it is homeomorphic to the interval Jo, 4- [ (and
therefore homeomorphicto R), but is not open in R» if n > 1, although
it is open in the line which contains it.

A line passing through two distinct points x and y also has a parametric
representation (u, v) —> ux + vy, where (u, v) runs through the set of
pairs of real numbers such that # + » = 1. Given any two points x, y
(distinct or not) the set of points ux -+ up, where (@, ») runs through
the set of pairs of real numbers such that > 0,2>0 and v+ v=1,
is called the closed segment (or simply segment) with end-points x, y. A
closed segment is compact and connected, for if its end-points are distinct
it is homeomorphic to the interval [o, 1] of R.

If x % p, thesetof points ux 4+ vy suchthat > o0,v >0 and u+v=1
is called (by abuse of language) the open segment with end-points x, y; it is
homeomorphic to the open interval Jo, 1[ (and hence also homeomor-
phic to R). Finally the union of {y} and the open segment with end-
points x, y is sometimes called the segment open at x and closed at y;
it is homeomorphic to the interval [o, 1[. All the segments with x
and y as end-points are connected, and the closure of each of them is
the closed segment with the same end-points.

ProposiTioN 3. Let f(x) =f (%), %3 ..., X,) be a polynomial with real
coefficients, not identically zero, defined on R Then the complement of the set
-1

S (0} is densein R=.

Let x be any point of R” and let yeR" be such that f(y)o0;
9(t) =f(x + ¢(y—x)) is a polynomial in the real variable f, not
identically zero; hence there exist arbitrarily small values of ¢ such that
9(¢) %2 0. This shows that x lies in the closure of the complement of

7 (0).

(.JOROLIiARY. The complement of an affine linear variety of dimension p<n
is dense in R™.
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Since every affine linear varicty of dimemsion g <n is contained in a
hyperplaac, it is enough to prove the corollary for a hyperplane; but a
hyperplane is defined by an cquation g{x) =0, where g is a linear
polynomial not identically zero.

PropostTion 4. It R (n 2 1) the complement of eotry Ipperplone has tin
connected components.

Let g(x) = o be an cquation of a hyperplane H in RY, g being a linear
polynomial, The set QH is the union of the set E; of all points x
such that g(x) >0 and the ses E, of all points x such thar g{x) <o.
E, and E arc connccted, for if g(x) >0 and g(y) >o we have
glux + o) = ug(x) + og(y) > 0 whenever w20, v >0 and
%+ 2= 1; in other words, the segment with end-points x and y is
contaned 1n Ey. Sinularly for E, On the other hand, (H is not
connected, because it image in R under g is the union of the intervals
Yo, + [ and ]— =, of.

e components L, E; of the complement of a hyperplane H are
called the open holf-spaces determined by H.

The closures of B, and E,, which are respectively E,uH and L,uH,
arc called the closed half-spaces determined by H.

Observe that an affine mapping of R* onto itself which transforms
H mtoa ¢ " plane, e.g, P hose eq;
s x, = 0, also transforms the open halfspaces determuned by H into
the open halfspaces defined respectively by the relations %, >0 and
o+ 0, the latter are open boxes and therefore Aomeomarphic ta R*.

§. TOPOLOGY OF VECTOR SPACES AND ALGEBRAS OVER THE FIELD R

Let E be a vector space of dumension » over the field R; if {8)rccqn
s a basis of “E, then every point xeE can be written uniquely in the

form x = 3 x4, wherc the &, are real numbers; the mapping
FRy=

(=) > B 5a, is therefore & bijective linear mapping of R* onto E.
=t

1€ we transport to E the topology of R* by this mapping, T is endowed

with a topology compatible with its additive group structure, and the

mapping (4, x) ~tx of Rx E into E is continuous with respect to
this topology. This topology is sndependent of the basts chosen in E; for
X "

if (&) 18 another basis of E, and il x = 3, ¥la’ = 3, x4, the mappisg

. " 2
(x) > () of R* ontotself 1s linear and therefors a horeomorphism.
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TOPOLOGY OF MATRIX SPACES OVER R § 1.6

This fact leads one to suspect that the topology so defined on E should
be capable of characterization without the help ofa basisof E. Infact,
swe shall see later that this is the only Hausdorff topology on E for which
the functions x-—y (on E X E) and #& (on R X E) are conti-
nuous.

If now A is an algebra of finite rank n over the field R, the above
topology on A (considered as an n-dimensional vector space over R)
is compatible not only with the additive group structure of A, but also
with its ring structure. Thisis a consequence of the following more general
result :

ProrosrrioN 5. Let B, F, G be three finite-dimensional vector spaces over the
field R.  Then every bilinear mapping (*) f of B X F into G is continuous.

We may suppose that E = R™®, F =R", G = RP; it is enough to show
that the coordinates in R? of f(x, y) are continuous functions of
(x, y) €eE X F (Chapter I, § 4, no. 1, Proposition 1). In other words,
it is enough to show that every bilinear form g 1is continuous on E X F;
and this is immediate, since g(x, y) is a polynomial in the coordinates
of x and y.

6. TOPOLOGY OF MATRIX SPACES OVER R

An important example of a vector space over R is the space M, ,(R)
of matrices with m rows and n columns whose elements belong to R; this
is a space of dimension mn over R, hence is homeomorphic to R™",
By Proposition 5 of § 5, the product X.¥ of two matrices X e M, ,(R),
YeM, ,(R) is a continuous function of (X, ¥). In particular, the topol-
ogy of the space M,(R) of|square matrices of order n is compatible with
the ring structure on M, (R). Furthermore:

Prorosrrion 6. In the ring M,(R), the group GL.(R) of non-singular matrices

is a dense open subset, and the topology induced on this set is compatible with its group
structure.

™) If E, F, G are three vector spaces over a field K, a mapping f of
EXF into G is said to be bilinear if we have identically

NECE Y =f{x3) + &5 Sy ) =f{xy +f(x:)"):
f(7‘x3)’) =f(x: )»)’) = )‘f(x’.y)
forall x,2'eE, all 5,5’ eF and all reK.
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If X 15 a nonsingular square matrix, the elements of X-* are rational
functions of the elements of X; these functions are therefore defined
and contiuous in a neighbourhood of X, so that every matiix 7 in
this nexghbourhood 1s non-singular, and the mapping ¥~ 11 is continuous
at the pomnt X; hence GL,(R) 1s open iz M,(R) and the topology of
GL,(R) is compatible with 1ts group structure.

Finally, GL,{R) 1s the complement of the set of square matrices X
whose determinant 15 zero, since the determnant of X is a polynomial
in the elements of X, Propositicn 3 of no. 4 shows that GL,(R) is dense
in M,(R}

2. EUCLIDEAN DISTANCE; BALLS AND SPHERES
1, EUCLIDEAN DISTANCE IN R*

In conformity with the general defimtions the Euclidean distance between
two pomts x = {x) and y = () is the number

dlx, y) =\/E =)tz o

We recall 1ts principal properties  The relation d(x, y) = 0 Is equi-
valent to x =y We have d(x, y) = d(y, x), for all scalars teR,
d(tx, ty) =|t|d(x, y), for all zeR", d(x + 3z, p +2) = d(x, y); in
other words, the distance between two points is tnvariant under iranslation.
The distance d(o, x} from the ongin o to a point x is denoted also
by ||x}} and 15 called the Euchdean norm of x (or simply the norm of %,
when there 1s no hkelthood of confusion, cf Chapter 1X, § 3, no. g}
Then d(x, y) = {ly —xll.
For n = 1, the Euchdean distance between the pounts x,y of R reduces
to thelength | y— x| of theintervals with x and y asend pomts For
any n, wesay that d(x, y) =||y—uxI| 15 the length of the segments vath
x and p asend pomts,

The Euchdean distance satisfies the tnangle tnequahty
o 4(x, 5} < d(x,2) + d(z, 5}
forall x,5,z m R"

We recall that the proof of (1) reduces ta that of the inequality

(Foe) <(34) +(3)"
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this in turn is equivalent to the Cauchy-Schwarz inequality

(2 =(22)(2)

which is an immediate consequence of Lagrange’s identity

<§": "?>< S] )’?>—‘< 2 xd’e) = % 2 oy — w2
i=1 i=1 i=1 L

This proof shows at the same time that the two sides of (1) can be equal
onlyif z isa point of the segment with x and y as end-points.

From (1) we deduce the inequality
(2) d(x, y) = |d(x, 2) — d(y, 7))
Finally, if x = (%;), » = (»;), we have

3 sup | — ] < d(x,y) < V. sup | —.
< 1 £n

1gign i
Hence a subset A of R® is bounded (§ 1, no. 1) if and only if

sup {jx{] < 4 oo.
xed

2. DISPLACEMENTS

We recall again that the affine transformations f of R" onto itself
which leave invariant the distance between any two points [that is to
say, sach that d( f(x), f(y)) = d{x, y) for all x, y] are called
Euclidean displacements (or simply displacements) (*); they form a group,
called the group of displacements of R*. This group operates transitively
on R"; more generally, if V and V' are any two affine linear
varieties of the same dimension in R", there exists a displacement
which transforms V into V’. The displacements which leave the
origin fixed, called orthogonal transformations, form a subgroup of the
group of all displacements. This subgroup is called the orthogonal
group on n real variables; the linear mappings which belong to this
group are characterized by the fact that they leave invariant the
norm ||x|] of every point xeR" or, equivalently, the quadratic

(*) If f is subjected only to the condition d(f (x), f(y)) = d(x, y) for all
X, y, then in fact f must be affine and linear, and therefore a displacement.
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»
3, 5% The scalar product of two vectors x = (x) and
4

Sorm || x| =

»=(2) of R* is the value 3 % of the bilinear form associated
=
3

with the quadrauc form %E 2 it 1s denoted by (x|y), or simply
b=

by xy if there is no lil of Every orth 1 transfor-
maton leaves invariant the scalar product of any two vectors. Two
vectors x, y are said to be orthogonal if (x|y) = 0; two vector
subspaces V, V' of R arc said to be orthogonal if each xeV is
orthogonal to each yeV’; and two affine linear varieties P, P’ are
sud to be orthogonal if the vector subspaces parallel respectively to P
and P’ are orthogonal.

3. EUCLIDEAN BALLS AND SPHERES

For each integer p > 0, let U, denote the set of all pairs (x, y) of
pomnts of R" such that d(x, y) < 1/p; the nequaliies (3) show that
the sets U, form a findamental system of entourages of the umformity of
R" (cf. Chapter 1%, § 2)

From thus fact and from the mequality
1d(x, y) —d(x’, ¥)1 < d{x, x) + d(y, ¥),
which 1 a consequence of (1), we infer that d(x, ») 18 unsformly continzous

on R*x R*, conscquently the norm {lxil=d(0, x) 1s uniformiy contutons
on R

DermvrrioN 1 Guzen a pont xoeR* and o real number 1 >0, the open
(resp. closed) Euchidean ball of n dimensions unth centre xo and radws 1
wsYthe set of all ponts x € R such that d(xy, x) <71 [resp. d(xe, X)<1];
the Euclidean sphere of n— 1 dymensions with centre Xy and rodus 1 15 the
set of all xR such that d{xy, ) =1

‘When there 1s no risk of confumon we say simply « ball * (resp. « sphere ")
for “ Euchidean ball ¥ (resp, * Eucldean sphere™). When n=12, 2
ball of two dimensions is called a dise, and a sphere of anc dumension is
called a arcle  When n=1, the open (resp. closed) ball with centre
%, and radws 7 15 the interval Yeq—1, %, + 7[ (resp [xo—7, %o + 7))}
the sphere with centre x, and radius r is the set consisting of the two
end points %g—1, xp + 1 of these intervals,

From what has been sad, the balls (open or closed) with centre Xo (o
just those with radnn 1/, where p runs through the set of integers >0)
form a fundamental system of nerghbourhoods of the pont x,.
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PrOPOSITION 1. Every open (vesp. closed) ball of R™ is an open (resp. compact)
set. The closure of an open ball is the closed ball with the same centre and the
same radius; the interior of a closed ball is the open ball with the same centre and
the same radius.

The open (resp. closed) ball with centre x, and radius r is the inverse
image of the interval ]— oo, r[ (resp. ]— 0, r]) under the continuous
function d(x,, x); it is therefore open (resp. closed and bounded, hence
compact). If d(xy x) =1, and if p = x, + {(x—x) (0 <t<1)
is a point of the open segment with end-points x, and x, we have
d(xg, y) = tr <7, and d(x, y) = (1 —t)r is as small as we please;
hence x lies in the closure of the open ball with centre x, and radius 7.
Again, if z = x 4 t(x — x,) (¢ > 0) is a point of the open ray with
origin x and direction vector x — x; we have

d(xgy ) = (1 + )7 > 1,

and d(x, z) = &r is as small as we please; hence x is not an interior
point of the closed ball with centre x; and radius r.

Cororrary. FEvery Euclidean sphere is a compact set and is the frontier of the
open and closed balls with the same centre and the same radius.

The mapping x->I—(x — x,) transforms the sphere (resp. open
r

ball, closed ball) with centre x, and radius r into ‘the sphere (resp.
open ball, closed ball) with centre o and radius 1; this sphere is denoted
by S, and is called the unit sphere in R™. Likewise, the closed ball with
centre o and radius 1 is denoted by B, and is called the unit ball in
R". The topological study of a sphere of (n— 1) dimensions (resp.
a closed ball of n dimensions) is thus reduced to that of S,_; (resp. B,).
For the open balls, we have the following proposition :

ProrosiioN 2. Every n-dimensional open ball is homeomorphic to R™.

For the mapping x—->~_l—_leW is continuous on R" and maps R»
I X
onto the open ball with centre o and radius 1; moreover, from
X Y
y=——— we deduce x =-—>"—", so that the mapping is
B r— 1l e

bijective and bicontinuous.

Let R¥ denote the complement of o in R™.

ProrposiTioN 3. The space R¥ is homeomorphic to the product of S,_, and th
space. R¥ of real numbers > o. i ’
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Tor every point X # © can be wnitten uniquely in the form 1z, where
t>o0 and [fgf] =1, since x =tz implies ¢ = |lxl| and z = xjli|
Since #z 1s continuous on the product R x R" and hence a fortion on
RY X S, and since Jjx|} and —— are continuous on R#, the propo-

fiadl
sition 15 proved. .
The mapping x> x/llx]} 1s called the central progection of R? onto
S, One defines ;n the same way the central projection of the complement
of a point g onto a sphere with centre a

CorotLary 1. The sphere S,y 15 homeomorphic to the quotient of R}
by the equwalence relation whose classes are the open rays with origin o,

These classes can also be definied as the classes of sntransitiusty, other than
{01, of the group of homotheties of ratio > o.

CoroLLARY 2, The space RY 15 homeomorphic to R X 8,

For R = Jo, + o[ 15 homeomorphic to R (Chapter IV, § 4, 1o 1,
Proposition 1).

Remark  These propositions are not peculiar to Euclidean balls, but can
be extended to a whole category of compact neighbourhcods of o m
R* (see Exercise 12).

The sets §,; and B, are evidently invamant under all orthogonal
transformations If V 1s a p-dimensional vector subspace in R”, there
exists an orth 1 whicl V into a p-dimen-
sional coordinate variety, hence VnS,, (resp VnB,) is homeomor-
phicto S,y (resp B,).

4. STEREOGRAPHIC PROJECTION

Consider the pomnt ¢, = {0, ,0,1) of S, ,, and the hyperplanc H
with equation x, =0, orthogonal to the vector ¢, To every pomt
x=(x) of S, other than e, let us make correspond the pomt
» where the ine through e, and x meets the hyperplane H (Fig. 3)-
It 15 easily vertfied that we have

y= (x — x.e,)

T—z,

12—« 2
R e A
I+ 2 e
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€n

H e
N

Figure 3.

If we denote by A the complement of f e,{ in S,,, these formulas
show that we have thus defined a homeomorphism of A onto the hyper-
plane H. This homeomorphism is called the stereographic projection of
A onto H, or (by abuse of language) the stereographic projection of
S,, onto H; e, is the verfex of the projection, H the #yperplane of
projection. More generally, if H' is any hyperplane passing through o
(a diametral hyperplane of B,) and if a is one of the points of intersection
of S, and the line orthogonal to H' passing through o, we can
define in the same way the stereographic projection with vertex a onto
the hyperplane of projection H’'; in any case this projection can be
brought back to the preceding one by an orthogonal transformation
which transforms H’ into H and a into e,

ProrostrioNn 4. If n > 1, the Euclidean sphere S,y is homeomorphic
to the space R*1 made compact by adjoining a < point at infinity”’ (Chapter I,
§ 9, no. 8, Theorem 4).

For the stereographic projection defines a homeomorphism of the comple-

ment of a point in S,; onto a hyperplane of R", which is homeomor-
phic to R,

CoroLrary 1. The sphere S, is homeomorphic to the quotient space of the
ball B, obtained by identifying all the points of the sphere S, _;.

The ball B, is a regular space (Chapter I, § 8, no. 4); hence the quotient
space ¥ of B, obtained by identifying all the points of S, is Hausdorff
(Chapter 1, § 8, no. 6, Proposition 15). Since B, is compact, so is F,
and F is therefore homeomorphic to an open ball of » dimensions
made compact by adjoining a point at infinity, by Alexandroff’s theorem

(Chapter I, § 9, no. 8, Theorem 4). The result therefore follows from
Propositions 2 and 4.

CoroLrarY 2. The circle S, is homeomorphic to the torus T.

In Chapter VIII, § 2, no. 1, we shall obtain this result again as a conse-
quence of a more precise theorem.
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PropostTION 5. i 1 > ¥, the Euclidean sphere S,y i connected and bcally
connested, and zoery povnt of it has an open neighbourhood homeomorphic to R,

The complement of a pomntin 8§, is a connected dense set, and therefore
(Chapter 1, § 11, no. 1, Proposition 1) S, 15 connected  To see that
every pomt has a neighbourhood homeomorphic ta R*Y, we have
only to project stereographically from a vertex other than the gwen
pomnt

From ths proposiuon and from Proposition 3 of fo. 3 1t follows that
RY, bemng the product of two connecled spaces, is connected (Chapter I,
§11,n0 4 Proposition 8; cf § 1, Exercuse 10).

The mtersection of S,_, and a closed (resp. open) halfispace determined
by a diametral hyperplane of B, 1s called a closed (resp. open) hemsphere
of S, By projection onto the di 1 hyperpl

the closed (resp. open) hemisphere which does not contain the vertex of
Pprojection 15 mapped onto a dosed (resp. open) ball of 7 — 1 dimensions,
to which 1t 1s therefore homeomorphc.

If 5= 2, wesay * semicurcle ® mstead of “ hemusphere ™.

3. REAL PROJECTIVE SPACES

In this section we shall need to invoke constantly the notions and results
on quotunt spaces (Chapter 1, § 3), and 1n particular the following two
properties, which for convemence we state as lemmas.

Let be a topological space, R an equvalence relation on E,
A asubset of E, R, the equivalence relation induced on A by R
andlet f be the canomcat mapping of E onto B/R  Then:

Lewma 1 If every open (vesp closed) setin A which 1+ saturated with respect
to R, 15 the trace on A of an open (resp closed) set1n E whach 15 saturaied
with respect o R, then the quotient space AR, 15 homeomorpiuc to the subspace
SA) of EMR. This o5 50 tn parteclar of A 15 open or closed m E and satu~
rated with respect o R.

This follows from Proposition 10 of Chapter I, § 3, no. 6.
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LemMma 2. If there is a continuous mapping g of E onto A such that, for
al xek, g(x) belongs to the equivalence class of x, then the quotient space
A[R, is homeomorphic to E[R.

This is Corollary 2 of Proposition 10 of Chapter I, § 3, no. 6.

1. TOPOLOGY OF REAL PROJECTIVE SPACES

We recall the following definitions from algebra : given a division ring
or a field K, the set of lines passing through o (i.e. vector subspaces
of dimension 1) in the left vector space K1 over K is called left
projective space of n  dimensions over K, and is denoted by P, (K).

If we make correspond to every line passing through o in K+l the
same line with the origin omitted, we have a bijection of P,(K} onto the quo-
tient of K¥., (the complement of {o} in K1) by the following
equivalence relation A,(K) between vectors x and y of Kf,,:
¢ there exists e K such that {0 and y = ix”. In what follows
we shall identify P,(K) with this quotient set. In the theory of projective
spaces, we take the interval [o, nr] of N as index set for the coordinates
of a point of K¥,,. The coordinates x; (0 <{<n) of any one of the
points of KX, whose canonical image is x e P,(K) constitute what is
called a system of homogeneous coordinates of the point x.

For each integer p such that — 1< p<n the canonical image
in P,(K) of a vector subspace of p + 1 dimensions (without the origin)
of K is called a projective linear variety of p dimensions. A system of
¢ points of P,(K) is said to be free if it consists of the canonical images of
¢ points of K¥,; which form a free system in the vector space K&+1,
The projective linear variety of P,(K) generated by a free system o
b - 1 points (i.e. the smallest projective linear variety which contains
these p -4 1 points) has dimension p.

When K is the field R, the corresponding projective spaces can be
topologized, and it is these we shall study.

DeriNtTioN 1. The projective space P,(R) endowed with the quotient topology

of the topology of R¥.y by the equivalence relation A (R) is called real projective
space of n  dimensions.

The projective space P;(R) is called the real projective line, and P,(R)
is called the real projective plane.

Whenever there is no risk of confusion, we shall write P, and A,
instead of P,(R) and A.(R).
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PropostTioN 1, The projective space P, 15 Hausdorff.

We start by showng that the relation A, is gpen (Chapter I, § 5, no. 2).
Let A bean opensetin R,;; to saturate A with respect to A, we
have to take the union of the sets A homotheticto A, as £ runs through
the set of real numbers £ 0; since each of these sets is open, so is ther
union.

By Proposition 8 of Chapter T, § 8, no. 3, the proposition will be proved
if we show that the subset M of R%,; X R%,, defined by the relation
A, 1s closed.  Let then (r, 3} be a pomnt of R¥yy X RYy; lymg m the
closure of M. If x = (%), there is an index : such that zx +o0;
hence there 1s a neighbourhood V of (x, y) such that for every pomt
(x', ¥)eMnV the wth coordinate 3/ of x' ismoto. As (¥, )
tends to (x, y) while remaming in M, yxi-! tends to t=jyx;

since  y' = (yx"N)x’, we see by passing to the hmit that y = x:
which shows that (x, y) e M.

PropostrioN 2 The projectioe space P, is compact and connected, and is
homeomorphic o the quoteent of the sphere S, by the equivalence relateon tnduced
on the sphere by g

Let Al be the equvalence relation nduced on S, by A, (the equiva-
lence classes of A, are pars of diametncally opposite points of S,). The
mappimg x — xf{lx]] of R¥,, onto S, 1s continuous, hence (Lemma 2}

15 homeomorphic to S/} Since S, is compact and connected,
every Hausdorff quotient space of S, is alo compact and connected
(Chapter I, § 9, no 4, Theorem 2, Corollary 1; § 11, no. 3, Proposttion 7).

Prorosmion 3. If m 20, the projectioe space P, 15 homzomorphic b
the quotient space of the ball B, obtained by identifying each pont of Spq with
us diamelncally opposite pont

Let H be the closed hemusphere of S, defined by 5 € 0. P,, which
15 homeomorphic to the quotient space of S, by the relation Aj, 1
also homeomorphic to the quotient of the subset H of S, by the relation
A% mduced on H by A For every equwalence class of A} meets H
1n at least one point, and therefore (Lemma 1) 1t 1s enough to venfy that
if we saturate with respect to A} an open subset U of H which s
saturated with respect to V;, we get an open subset 'V of S,. Now if
a=(a)eU and if go< o0, there 1s a neighbourhood W of a =
S, contamedin U, and the umion of W and — W 1s a neighbourhood
of a saturated with respect to A} and contamed 1n V. If on the other
hand gy =0, we have — a@eU, and there exists r >0 such that
the set of points xeH which sausfy one or the other of the relations
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lk—al|< 7 |lx + 4] <7 is contained in U; the set of points x&§,
which satisfy one or the other of these relations is the neighbourhood
of a which is saturated with respect to Aj; and is contained in V.

Observe that the quotient space HfA; is obtained by identifying,
in H, each point of the intersection S,, of H and the hyperplane
%, = O withits opposite point. To complete the proof it suffices to rerr}ark
that the stereographic projection with vertex e, (§ 2, no. 4) is a
homeomorphism of H onto B, which leaves invariant the points
of S,;.

2. PROJECTIVE LINEAR VARIETIES

Every injective linear mapping f of R**! into R™1 (m>n) defines, by
restriction to R¥,, and then by passage to the quotient with respectto the
relations A, and A, (Set Theory, R, §5, no 8), an injective mapping g
of P, into P,, called a projective linear mapping. If o (resp. &) is
the canonical mapping of R¥,; onto P, (resp. R¥,, onto P,), we
have g o ¢ = ¢ o f, which shows that g is continwous on P, (Chapter I,
§ 3, no. 4, Corollary to Proposition 6). In particular, every projective lincar
irangformation of P, (i.e. projective linear mapping of P, onfo itself) is
a homeomorphism of P, onto itself.

We recall also that, if V and V' are two projective linear varieties
of p dimensions in P,, there exists a projective linear transformation
of P, which transforms V into V'. In particular, if p > o, there
exists a projective linear transformation which transforms V into a
coordinate projective linear variety, that is to say the canonical image
of a coordinate variety W' of g 4 1 dimensions (without the point 0)
of R*™1, If we identify W' with R, the relation induced by A,
on W' is precisely Ap; since W’ is closed and saturated with respect
to A,, Lemma 1 shows that V' is homeomorphic to P, and is closed
in P,; moreover, if p < n, its complement is dense in P, (§ 1, no. 4,
Corollary to Proposition 3). Hence:

ProrosiTioN 4. Every projective linear variety of p dimensions in a projective

space P, is closed in P, and homeomorphic to Py if p < n its complement
is dense in P,

This result is the origin of the names projective line and projective plane given
to projective linear varieties of one and two dimensions in a projective
space over an arbitrary division ring. We recall also that the projective
linear varieties of n—1 dimensions in P, are called projective hyperplanes;
every projective hyperplane is identical with the set of points whose
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Figure 4.
homogeneous coordinates satisfy a relation of the form Y ax, = o,

=
where the 4, are not all zero (the * cquation ™ of the hyperplane}.

ProrosTion § In a projective space P, (n 2 0), the complement of a
projective hyperplane M 15 homeomorphic to R™

By making a projective Linear transformation we may assume that H is
the hyperplane whose equation 18 %, =o. Theset A of points x={x)
of R¥, such that x,3£ 0 15 open and saturated with respect to A,;
its canonical mmage G m P,, which 1s the complement of H in P,
1s therefore homeomorphic to the quotient of A by the equivalence
relation ® induced on A by A, (Lemma 1). Let B be the hyper-
plane whose cquation 15 x5 =1 1 R*., To cach point xeA let
correspond the pownt x71x where the line through o and x cuts B
(Fig 4), in this way we define a continuous mapping g of A onto B
such that g{x) 1s the only point of B congruent to x modulo 8. It
follows that B is homeomorphic to A/6 (Lemma 2), hence to G;
since B 1s homeomorphic to R*, the proofis complete.

CoroLrary  Every powntof P, hasan open nesghbourkood homeomarphuc to R*

1t follows m particular that the real projective spaces are locally connected
(ttus follows also from Chapter 1, § 11, no. 6, Proposition 12).

3. EMBEDDING REAL NUMBER SPACE IN PROJECTIVE SPACE

Proposttion 5 of no 2 shows that if we are given a projective hyperplane

m P, (73> o), therc 15 2 homecomorphism of R* onto the comple-
ment (H of this hyperplanc. Once H has been chosen it is often
convenent to wlentyfy R* and (H by means of the homeomorphism
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defined in Proposition 5; the projective hyperplane H is then said to be
« at infinity ”, and so are its points and subsets. Usually one takes H
to be the * coordinate  hyperplane whose equation is x, = o, and
then the point z = (z;) of R" is identified with the point of P, whose
homogeneous coordinates are 1,2y, Zas - - -5 In-

Once this identification has been made, the closure in P, of any affine
linear varicty V of p dimensions in R® is a projective linear variety of
4 dimensions, not contained in the hyperplane at infinity, and identical
with the projective linear variety generated by V. Conversely, every
projective linear variety P of p dimensions which is not contained in
the hyperplane at infinity has as its trace on R® an affine linear variety
of p dimensions, whose closurein P, is P.

In the particular case n = 1, the hyperplane at infinity is a point;
since P, is compact, it follows from Alexandroff’s theorem (Chapter I,
§ g, no. 8, Theorem 4) that P, is homeomorphic to the space R obtained
by compactifying the locally compact space R by the adjunction of
a point (the ¢ point at infinity ). By Proposition 4 of § 2, no. 4, we sce
also that the real projective line Py(R) is homeomorphic to the circle S, and
to the torus T.

On the other hand, if » > 1, P,(R) is not homeomorphic to §,, as
we shall see later (cf. Exercise 4).

The “ point at infinity * of the space R is denoted by oo, with no sign
attached. 1t is important not to confuse R with the extended real line R
defined in Chapter IV, § 4, which has fwo ¢ points at infinity ”’; indeed

R is homeomorphic to the quotient space of R obtained by identifying
the two points 4 o and — .

4. APPLICATION TO THE EXTENSION OF REAL-VALUED FUNCTIONS

Since R can be considered as a subset of R, every mapping of a set E
into R (i.e. every real-valued function on E) can be considered as a
mapping of E into R; in particular, if E is a subset of a topological
space F and f is a mapping of E into R, it may happen that at some
points of the closure E of E, f(x) tends to the limit o as x tends to
one of these points while remaining in E; we may then extend the func-

tion f by continuity by assigning it the value oo at these points (Chapter I,
§ 8, no. 5, Theorem 1).

Consider in particular the case where E is a subset of R, the space
R" itself being considered as embedded in projective space P,; if we
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suppose that the hyperplane at infinity is x, = o0, areal-valued function f
defined on E may be identified with the mapping

s n %
O S (T .
Gosm o5 s (252

of E into R; from what has been said in the previous paragraph it may
be possible to extend this function, not only to some pomts of R* in the
closure of E, but also to some of the * points at infinity ** of P, in
the closure of E.

Let us show that we ohtan in this way, for example, the extension
by continuity to the whole of R of a ratronal function of a real variable,
already defined in algebra, Let us identify R and P, every real
number reR being identificd with the point whose homogencous
coordinates are (1, x), and the point «c with the point whose homo-
geneous coordinates are (0,1). Let u(x)fo(x) be a ranonal function,
u and » bemng two coprime polynomials of degrees m and n respecti-
vely, 1f we suppose for example that m<n, andaf we put (x,3) = u{3/s),
0,5, ) = **2( yl), the rational function /e may be considered as the
restriction, to the set of real numbers x such that o{x} =20, of the
mapping (%,5) = {ey(59) w(x, 7)) In other words, we exv. ~d ufo by
contitnuity, by giving 1t the value oo at those pomnts x € R where
v(x) = 0, and by giving 1t at the point o the value o if m<n, the
value o if m>n, and the value of the ratio of the Icading coeffi-
cents if m = n.

1In particular, the function 1fx can be extended to the point o by
taking the value = there, to = by taking the value o there, this extended
function 1s evidently a homeomorghum of R onto itsell. The same is true
of the homographuc function (ax + b)j(ex + d) when ad — bc # 0.

Likewsse, if n 1s an integer > o, the function x* extends to the pomt
= by taking the valuc « there.

On the other hand, it 1s in general impossible to extend by contimaty
a rational function of two real variables either to the space Py x Py
or to the space Py {cf, Exercise 5).

5. SPACES OF PROJECTIVE LINEAR VARIETIES

Given a division ring K, the set P, ,(K) of propective Iinear vaneties of
# > 0 dimensions of the left projective space P,(K) s clearly in one-to-one
correspondence with the set of vector subspaces of # 4 1 dimensions of
the left vector space XKML Let Ly ,.((K) denote the set of fiee
oystems (Xdigugptn Of p+ 1 vectors of Kj+1; then the set P, (K)
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is again in one-to-one correspondence with the quotient of Ly, pa(K)
by the equivalence relation A, ,(K): “ (x*) and (y*) generate the
same vector subspace of p -+ 1 dimensions of Ki*+1», In what follows
we shall identify P, ,(K) with this quotient set. On the other hand, if
to each free system (x;) of p -+ 1 vectors of K1 we make correspond
the matrix X of p-+1 rows and n + 1 columns for which x; is
the #th row (1 <& <p -+ 1), we have a one-to-one correspondence
between Ly, p1a(K) and the set of all matrices of p -4 1 rows and
n -+ 1 columns which are of rank p + 1; we shall identify Ly, pia(K)
with this set of matrices, and the relation A, ,(K) between two matrices
X, ¥ is then the following :  there exists a non-singular square matrix 7
oforder p 4 1 suchthat ¥'=T.X7",

In what follows we shall take K to be the field R, and we shall
omit the letter K in the notation above. We can define a topology
on P,, by a process which generalizes the definition of the topology
of real projective spaces. Namely, L,4; p4 is contained in the space
My, nig Of all matrices of p 4+ 1 rows and » -+ 1 columns with real
elements; we endow Ly, pi; with the topology induced by the topology
of this matrix space (§ 1, no. 6).

Dermvition 2. The space P, , which is the quotient of the topological space
Loy, pra by the equivalence relation A, , is called the space of projective linear
varieties of p > o dimensions in real projective space Py

We shall use the following notation: given a matrix X of § 4+ 1 rows
and 2 4- 1 columns, and any strictly increasing sequence

G == (i3« ipsa)

of p 4 1 indices belonging to the interval fo, n] of N, we denote by
X, the square submatrix of X formed by the columns whose indices
are iy, iy, ..., ip13. We denote by A, the subset of L, ,.; consisting
of these matrices X such that X, is non-singular. By Proposition 6

of§ 1,n0. 6, A; isa dense opensetin Mpy; piy, and the function X —» X7t
is continuous on  Ag.

A geometrical interpretation of the set A, is as follows: let E, be the
vector subspace of R"! generated by the vectors e, of the canonical
basis such that i, andlet E/ be the complementary subspace generated
by the e; such that ieo; then to say that a matrix x belongs to A,
means that the projections on E, of its p 4 1 rows of x, form a free
system, or again that the vector subspace generated by the x, is a
complement of E¢ (or that its intersection with E} consists only of o).

Prorosrrion 6. The space P, , is Hausdorff.
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We show first that the relation A, , 15 open. If U is an open sct in
Lusy pas tosaturate U withrespect to A, , we have to take the union
of the tmages of U under the mapping X — T.X, where T runs
through the set of non-singular square matncees of order p + 1; since
each of these mappings 1s bicontinuous, all these images are open sets
and thercfore so 1s their umon.

By Proposition 8 of Chapter I, § 8, no. 3, the proof will be complete
1f we show that the subset N of Lyay pas X Laps,pirs defined by 4, ,,
1s closed  Let (X, ¥) be a pomt of the product space which lies in the
closure of N, and let ¢ be a sequence of indices such that X, is non-
singular. since A, 13 open, therc 15 a neighbourhood V of (X, 7) such
that, for cach pair (X', ¥')eNnV, the matix X} isnon-singular;
as (X", ') tends to (X, 7) while remaning in N, the matrix 75441
therefore tends to T = 2,X5% since we have 17 = (P45 )F, we
see by passing to the limit that ¥ = T X, and the proof is complete.

ProrostTioN 7. The space P, , t5 compact.

It 15 enough to show that there 1s a compact subspace of Lyyy, pyy which
meets every equivalence class mod A, , n at least one pownt; for P,,
1s then the image of this subspace under the canonical mapping of Ly; pu
onto P, ,, and 1s therefore compact (Chapter 1, § o, no. 4, Theorem 2).

t Vi pn be the subspace of Lyyy i whose clements arc the
systems (x,) of p -1 vectors forming an erthonormal Euchdean dasns
of the vector subspace they gencrate that 1s to say such that (xjr) =0
whenever k% £, (nfx) =1 for 1t € A<p + 1. Every vector
subspace of p + 1 dimensions of R*+! has such a basis and therefore
every class mod 3, , meets Vi pope On the other hand, the matrices
X = ix) of Veu pm are defined by the relations

Iz

J“'x.,z., =0 (%K)

g.x:, =1 (1g1sp+0),

=

therefore they form a elosed set in M,y ,41; and smnce these relations
imply that |x,| <t for each pair of indices (3, 5), this set is bounded
and hence compact.

Prorostrion 8. Py, is connected and locally connected, and every point has
an open neigh d b R 3

For every (strictly increasing) sequence of indices ¢, the set A, is open
in Ly piy and saturated with respect to A, 3 its canonical jmage
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C, in P, , is therefore an open set homeomorphic to the quotient of
A, by the equivalence relation @, induced on A, by A, , (Lemma 1).

Let B, be the subset of A, consisting of matrices X such that X,
is the unit matrix of order p - 1; the elements of X other than those
of X, are then arbitrary, and therefore B, is homeomorphic to the
space R®#¥D@"-P. To each matrix X eA; let us make correspond
the matrix ¥ = X;1X, which belongs to B,; then we have defined
a continuous mapping g of A, onto Bg, such that g(X) is the only
matrix of B; congruent to X mod @, It follows that B, is homeo-
morphic to A4/, (Lemma 2), hence to G,.

The set C; is therefore connected. Since A; is dense in Ly puy,
C, is dense in P, , and therefore P, , is also connected (Chapter I,
§ 11, no. 1, Proposition 1). On the other hand, every point of P,
belongs to Cg for at least one sequence of indices ¢, and therefore has
an open neighbourhood homeomorphic to RP+V-p),

The matrix 1= g(X) can be interpreted as follows ; let ussuppose for the
sake of simplicity that the sequence o consists of the p + 1 indices n — p,
n—p+1, ..., and let ¢, 1<i<p+1, o<jSsn—p—1)
denote the elements of the first n—p columns of y; then the vector
subspace of R*+1 generated by the rows of x is that defined by the equa-
tions

p+1

x = igl Gfppri-1 (O SjSn—p—1).

6. GRASSMANNIANS

If XK isa fildand X is any matrix of L,y pu(K), let ¢(X) denote
the determinant of X,; in this way, to each matrix X of Ly p4(K)

correspond
=G
P+

determinants, not all zero (the components of the exterior product of
the p 4 1 rowsof X). Ifwe make correspond to X the point of the
projective space P,_;(K) whose homogeneous coordinates are the co(X,)
we have defined a mapping of L,y pyy(K) into P, ,(K), compatible
with t.he relation A, ,(K); passing to the quotient, we have therefore a
mapping f of P, ,(K) into P, (K). The image G, oK) of P, (K
under this mapping is called the Grassmannian of indices n, 2. We
recall also that the mapping f is injective, for if X is a matrix such
that X, is non-singular, the matrix ¥ = X71X of B, which corres-
ponds to the class of X mod. A, ,(X) is the matrix (dijfes( X))
(1<ig<p+1, 0o<j<n), where d;; denotes the determinant of the
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matrix obtained from X, by replacing the ith column of X, by the
jth column of X [which mmplies that d,; 15, up to sign, equal to one
of the ¢ (X)].

When K is the ficdd R, this mapping f 15 evidently confinuous,
‘The inverse mapping g 1s also continuous; for the elements of a matrix
belonging to B, are rational functions of the homogeneous coordimates
of the point of the G jan to which 1t sponds; since f (B,) = B}
12 the set of pomts of G, , whose homogeneous coordinate with index 5
13 not o, 1t1s an open setin G, ,; hence g is continuous at every point
of Bj, and since every point of G, , belongs to at Icast onc set B, ¢
1s continuous at every point Thus:

Pr 9 Tk G Gy, ts rphic to the space P, ).
We recall finally that the Grassmannians G, ,(K) and G, ypy(K) are
subsets of the same projective space P, ,(K) and can be transformed
1o the other by a progective linear transformation ; it follows that G, ,
and G, ,py are homeomorphic,



EXERCISES

§1

1) Give a proof of the fact that R* is equipotent with R by using Cantor’s
theorem (Chapter IV, § 8, no. 6, Theorem 1) and the relation 2%.2% = 2f,
valid for all infinite cardinals a.

€ 2) There exists a continuous mapping of the interval I = [o, 1] of R
onfo the square I X I of R2 (the *“ Peano curve”, cf. Exercise 8). (Show
first, with the help of Exercise 11 of Chapter IV, § 8, that there exists
a continuous mapping f of Cantor’s triadicset K onto I X I, and then
extend f to I).

§ 3) Let A and B be two countable dense subsets of R% Show that
there exists 2 homeomorphism of R? onto itself which maps A onto B.
(Show first that, by means of a rotation, we can reduce to the case where
the projections pr; and pr, are injective mappings of A and B into R.
Then define, by a suitable inductive process, a bijection of A onto B
which determines a monotone mapping of pr;A onto pr;B and a
monotone mapping of pr,A onto pr,B. Finally, using Exercise 11,
Chapter IV, § 2, show that this mapping is a homeomorphism which
can be extended to a homeomorphism of R? onto itself.) Deduce
that, if C is a subset of R2 whose complement is dense, C is homeo-
morphic to a subset of the complement of Q2 in R2 Generalize these
results to R*, 2 > 2.

4) Every countable subspace of R" with no isolated points is homeo-
morphic to the rational line Q (apply Exercise 13 of Chapter IV, § 8).

5) _Every totally discontinuous compact subspace of R" with no isolated
points is homeomorphic to Cantor’s triadic set (use Chapter IV, § 8,
Exercises 11 and 12, and Chapter II, § 4, no. 4, Proposition 6).
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6) A subset L of R" 13 a broken hne if there exusts a finite sequence
(x)ogugp ©of pomts of R* such that, if S, denotes the segment with
end-ponts x,; and x, (t <12 <p), L 1s the union of the S, which
are called the sides of L (In general there 1s an infinite number of finite
sequences of pomts of R* which define the same broken line.) A broken
line 1s also the image of a mapping # of [0, 1] into R such that there
easts a strictly mcreasing sequence (fogsgp in [0, 1] with 4 =0
and t, =1, with the property that u’is an affine hnear mapping

toa b, for <ttt and 1<7<9

(such a mapping u s said to be * prcamse lnear ). Given a
non-empty subset A of R* we say that two ponts @, b of A cn
be joned by a broken hme wm A 1f there exists a broken ine Le A
defined by a sequence (¥)oqugp such that Xo=a and x, =5 If
any two pomts of A can be jomed by a broken line in A, then A
connected  Conversely, if A 1s a connected open subset of R", show that
any two pomts of A can be jomed by a broken hine in A (consider the
relation “ x and y canbe jomed by a broken line in A > between pomts
x,y of A, show that thiss an equivalence refation whose classes are
open sets), we can even assume always that this broken line is a union of
segments each of which 1s parallel to a coordinate axis (same methed).
Deduce that, if A 1s a non-empty open set n R®, the component of
apomnt a=A 1s the set of all points of A which can be joined to @ by
a broken Line m A,

7) Let A be a non-empty connected open set in R* (r > 1) and let
(V,)pex be a countable family of linear varietics m R?, each of which is
of dimension § r—z2 Show thatif B 15 the umon of the V), then
An[B 1sdensein A and connected (To show that An [B is demse
m A, use induction on n, Then show that if x, y are two distinct
points of A, there exusts for cach £ > o a pont y'eA such that
|l¥ — ¥} € = and such that the closed scgment with end-pownts x and
¥ meets B only at x Finally use Exercise 6 to show that An(B
is connected )

8) Deduce from Exercise 7 that, if n> 1, a non-empty open subset
of R* 1s not homeomorphic to a subset of R (*)

9) Abrokenline L in R" (n > 1) (Exercise 6) is said to be sple ifat
15 homeomorphic to the interval I = Jo, 1] of R. It amounts to the
same thing to say that there exists a piecewise Iinear homeomorphism u

(*) It can be shown that an open set :n R™ 15 not homeomorphic to 2ny
subset of R%, 1f < m.
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of T onto L (Exercise 6). Show that if A is a connected open set
in R? and if LcA is a simple broken line, then A — L is connected
(argue by induction on the number of segments which make up L,
and use Exercise 6 of Chapter I, § 11).

§ 10) a) Let M be a finite set and let Rix, p{ be a symmetric relation
between elements x, y of $. Suppose that there exist two distinct
elements a, b in M with the following properties: there exist x % a
and y=£b such that x (resp. ») is the only element zeIt such
that Ria, z} (resp. R{b, z{) istrue; and for each ¢e other than 4
and b, the set of all ze M such that Ri¢ 2} is true is a set consisting
of two elements, distinct from ¢ Show that under these conditions
there exists a bijection i — x; of an interval [o,n] of N onto M such
that x, = a, x, = b and such that Rix._,, x;} is true for 1 <i<n
(define x; by induction on ).

4 In R* (n > 2), identified with R™! X R, let L and L' be two
broken lines, defined respectively by twosequences (x;)g<i<p 20d (*})ogj<qr
with the following properties: (i) if we put x; = (¥;, 2), *; = (V%))
we have 2o =2 =0, z,=2¢=1, 0<% <1 for 1<ig<p—1
and o<gj<1 for 1<j<qg—1; (ii) the p+ ¢g—2 numbers
258 (1<igp—1, 1<j<g—1) are all distinet; (iii) two dis-
tinct sides of L (resp. L’) have at most one point in common [which
may or may not be one of the x; (resp. x})]. Show that there exist
two surjective piecewise linear mappings (Exercise 6) a: I — L, ¢': 1 — L/,
where I istheinterval [o, 1] of R, suchthat,ifwe put u(¢) = (v(¢), {(t)),
w(t) = (@), ¢'(t)) (tel), we have {(t) =t'(t) for all te],

(o) =t() =0 and () =C() =1

[Let (2)1<k<prg-2 be the strictly increasing sequence formed by the z;
and the z; other than o and 1, and put ¢y =0, gy, = 1; let B;
denote the set of all x = (y, z) €R" such that

g3 <2< (1Kig<p+g—1);

!et M denote the set of all pairs y = (C, C'), where C (resp. C)
is the intersection of the same B; with a side of L (resp. L'), such
that neither C nor C' consists of a single point; and let Ria, B
flenote the following relation between elements q, g of M: “uqu ;é K
f «=(C, C)), B =(Cy Ci), then C;nC, and C/nC/ are not
empty, one of them consists of a single point, and if this point is not
one of th:le x; (resp. xj) then C; and G, (resp. Cj and C}) are both
contained in the same side of L. (resp. L') *. i i
cable to the relation R.] (resp : Show that ) is appli-
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¢) In R*, idennfied with R*! X R, let K be a connected compact
set such that Kn (R™? x §o}) contains at least two distinct ponts
Show that if K' = K—X  (the set of all x—y, where xeK and
yeK), then K'n(R™! x {o}) contains a connected set which does
not consist of a single point  [Use 8), applying Chapter IT, § 4, Propos-
vion 6 and Exercise 15.}

11) Extend Exercises 14 and 15 of Chapter IV, § 8 to the spaces R* (n 3 2).

€ 12) 4) Let f be a mapping of R mnto R, andlet GoR? be the
graph of f. Supposethat G isdensein R? andmeets every perfect set
m R? which 1s not contained in any countable union of Imes {x,} x R.
Show that G is connected, (If this were false, show that there would
exist two non-empty disjoint opensets A, B in R? such that G was the
union of GnA and GnB, and there would exist at least one point of
A and one pomnt of B with the same absaissa, by using the fact that R
18 connected; then use Exercise 11.)

5) Deduce from a) that there is a inear mapping f of R into R whosc
graph G isdensein R* and connected. {Using a) and Excrcise 11, define
by transfimte induction the values of f at the points of 2 Hamel base of
R, using the same method as in Set Theory, Chapter I1I, § 6, Evercise 24.]
Deduce that the subgroup G of R? satsfies conditions {Rq} and (Rp)
of Chapter V, § 3, Exercise 4, but is not locally compact, and therefore
has a topology strictly finer than the usual topology of R; and that G
15 not locally connected

13) Idennfying R* with R*-! X R, let f be a continuous mapping
of an open subsct A of R™1 into R, andlet S be s graph. Show
that the subspace § of R* 1s homeomorphic to A, and that the comple-
ment of S 1n the *“cylinder” A X R 1s a dense open set m A XR,
and has exactly two components 1f A is connected

§2
* 1) Let I be the closed cube of R* which is the product of r mtervals
dentical with [—3 %, £<]. To each point x = (x) of I we
make correspond the point p = ()} of R™! such that
N =sinx
¥: =cosxsinx,
Jp = COSX COSXp...cCOS%,,sinx, (2gpgn—r1)

Jn 05 X) COS Xy €OS X,y Sin 2%,
Fat1 = COS X COS %y . €OS Xpuy €O 24,
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Show that the image of I under this mapping is the sphere S,, and
that the restriction of this mapping to the interior of I is a homeomor-
phism onto a dense open set in S. 4

2) Define a homeomorphism of S, X S, onto a subset of Spiz4 [note
that the equation of Sp4y is

(¥ 4 o0 2Bn) F (Rre o F Xprgre) = 1.

3) a) Show that, if f is a continuous mapping of S, into R" f can
be extended to a continuous mapping of B, into R® [map the point
txeB, ({20, xeb8;)) to tf(x)]

b) Deduce that, if f is a continuous mapping of S, into S, such that
f(S) #8S,, then f can be extended to a continuous mapping of B,
into S, [use a stereographic projection whose vertex does not lie in

F&)1 (%)

4) Show that there is no homeomorphism of S; into R. (Observe that
the complement in S, of any point of S, is connected, and that every
connected subset of R is an interval.)

Deduce that a homeomorphism of S, onto a subspace of §; is
necessarily 2 homeomorphism of S, onto S; (use Proposition 4 of no. 4).

5) Show that, if n > 1, the sphere S, is not homeomorphic to the
circle S; (cf. § 1, Exercise 8).

6) Identifying S, with the torus T, the quotient of R by the relation
x =y (mod 1) (no. 4, Proposition 4, Corollary 2),let ¢ denote the canon-
ical mapping of R onto S,. A continuous mapping f of a topological
space B into S; is inessential if there exists a continuous mapping g
of E into R such that f=g¢ o g (**) A mapping which is not ines-
sential is said to be essential.

) Sh)ow that the identity mapping of S, onto S, is essential (use Exer-
cise 4).

7) Shf)w that there exists an entourage U of the uniformity of S, such
that, if f is an inessential mapping of a topological space E into S,

every continuous mapping f': E —S; such that (f(x), f'(x))eU
for all xeE is also inessential.

8) §how that there exists no continuous mapping f of B, onto S,
which extends the identity mapping of S, (using Exercise 7, show that f,

(*) Weshallseclater that, for n > 1, the result remains true evenif £ (S,) =S,.
(**) We shall give later a general definition of an inessential mapping of a
topologlcgl space into an arbitrary topological space, and we shall show there that
for mappings S into S,, this definition is equivalent to that given here. ’
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restncted to the circle with centre © and radiwus r € 1, would always
be an messential mapping of this circle into S;, and hence obtain a
contradiction when 7 = 1).

g) Let E be a topological space contaming more than one point  Show
that there exists a continuous mapping f of S; mto F =F X 5, such
that f (S,) # F and which does not extend to a continuous mapping
of B, into F (use Exercise 8). Deduce that, f n>1, §,, R* and
B, are not homeomorphic to any space of the form E x §,, where E
15 any topological space (see Exercise g). In particular, of 2>1, S,
15 not homeomorphrc to S}, and for all », B, 15 not homeomorphic
to St
Show Iikewise that R? 1s not homeomorphic to the complement of
2 pomtn RY and that S, 15 not homeomorphic to B, (if false, R?
would be homeomorphic to the product of §, and the internal Jo, 1]).

10) Let H,,,
B+a+ FR—Hu— =1 (pHg<n)

Show that H, ,, s homeomorpluc to §,; X R™7.

11) Let C,, be the « quadnc cone ” in R" defined by the equation

denote the “ quadric ** in R* defined by the equation

d+4+ +x—xu— -—x=o0 (tgp<n—1)

Show that the complement of fo} m C,, 15 homeomorphic to
Sp1 X Sppa X R.

€ 12) A subset E of R* which contains the ongin o is said to be
Starlike (with respect to o) if, for all x<E and all ¢<[o, 1], we have
txeE The intersection of E with a closed ray of ongin o is either
the whole ray or a segment of which o 1s one end-pomnt. The shell
of E 1s theset K consisting of the non-zero end-points of these segments,
together with o if there exists a ray whose intersection with E consists
of o alone. In what follows we shall assume that o¢ K.

@) Show that the shell of E is contamed m the frontier of E. Give an
example in which these two sets are different.

&) Show that, if the shell K of E 1s compact, there is a homeomorphisat
of R* onto itself which maps K onto S, ,, E onto B, and the nterior
of E onto the interor of B, (map each pomnt xeK to 1ts central pro-
Jection on 8., and then extend this mapping to the whole of R?)-
Deduce that the frontier of E comncides wath ats shell, 2nd that the interior
of E 15 the set of points £x, where xeK and feo, 1[.

) If E 1s unbounded and if 1ts frontier coincides with ats shell, then the
intersor of E s homeomosphic to R*, and its shell K 15 homeomor
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phic to an open subset of S,_; [show that the image of E under the
homeomorphism x — x/(1 + [|x|]) satisfies the conditions of 4)].

d) Give an example of an unbounded starlike set E whose shell is closed
but is not identical with the frontier of E. '

13) Show that, in the space S,, the frontier of a non-empty open set
whose exterior is non-empty has the power of the continuum (use Proposi-
tion 4 of no. 4).

§3
1) Let f be the mapping of S, into R?% such that
S (1, 20, %5) = (] — X3, XyXyy XX, XpXs).

This function has the same value at diametrically opposite points of S,.
Show that on passing to the quotient it defines a homeomorphism of P,
onto a subspace of RY.

Show likewise that the mapping g of S, into RS defined by

2 2 2 2 ’
gy, %oy Xay %) = (] — 23, XiXo, Ay¥g - KaXe, X3 — XG, Ng¥g, Xp¥s — Hpd)
defines, on passing to the quotient, 2 homeomorphism of P; into RE.

2) Identify the projective space P, with the quotient space of B, defined
in no. 1, Proposition g, and let ¢ denote the canonical mapping of B,
onto P,. A continuous mapping f of a topological space E into P,
is said to be inessential if there exists a continuous mapping g of E into
B, such that f= ¢ o g, and essential in the converse case (cf. § 2, Exer-
cise 6). Show that there exists an entourage U of the uniformity of P,
such that, if f is an inessential mapping of a topological space E into P,,

every continuous mapping f’ of E into P, such that (f(x),f'(x))eU
for all xeE is also inessential.

3) If a continuous mapping of S, into P, is essential (Exercise 2) it
cannot be extended to a continuous mapping of B, into P, (cf § 2,
Exercise 8).

4) If n> 1, there exists an essential mapping f of S, into P, such
that f(S,) # P, [take f(S,) to be the image under ¢ of a diameter
of B,; this image is a projective line]. Deduce that, if n>1, P,

is homeomorphic to neither S, nor B, (use Exercise 3 of § 3 and Exer-
cise g of § 2).

_5) If we consider R? as embedded in R X R, and R as embedded
in R, show that the mapping (%, ) =%+ of R? into R can be
extended by continuity to the points (o, @) and (g, ) of R x R
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for all firste values of g, but that it cannot be extended by continuity
to (0, ). If we cousider R? as embedded in P, (R sl consid-
ered as embedded in R), x 4+ y can he extended by continuity to all
points of the linc at infinity except the point with homogeneous coor.
dinates {1, — 1, 0).
State and prove the analogues of these results for the product zy
6) If n> 0, let § be theset of all closed subsets of P, endowed with
the umformuty tnduced by that of P, by the procedure of Chapter 11,
§ 2, Exercise 6 6). Show that the set P, , of projective linear varietics
of p>o dimensions is closed in §, and that the topology induced
on P, , by the topology of § is the same as that defined in no. 5, Defim-
tion 2. [To define the entourages of the uniformity of P, we may
consider P, as a quotient space of S, (no. 1, Proposition z) and take
finite coverings of S, by balls whose radii lcnd to o]

4} 4} Show that, in the notation of no. 5, the space L, , is homeomor-
phic to the product of V,, and RFPD/L Note that every matnx
XeL, , can be expressed uniquely in the form  U.7, where yeV,,
and U=(s) is such that m,=0 whencver i<y, and #,>0
for 1€s<p Put ¥=yf(X).
5) Inthe notation of no. 5, Proposition B, show that f 1s a homeomorphim
of B, onto f(B,} [note that X — f (X7* X) 15 a contnuous mapping
of A, onto f(Be) and that f(X;1X) belongs to the same class as X
A, ,; then apply Lemma 2]. Deduce that the mtersection Dy
of A, and V., » 15 homeomorphic to the product of V,, and R¥*-P
[every matrix belonging to D, 15 uniquely expressiblc as the product
of 2 matrix of V,, and a matrix of f(B)].

8) Let g be the mapping such that, for each matnx XeL, ,, X'g(X)

1s the matrix formed by the first ¢ rows of X (g < ). ‘Show that

xh: restnction of g to V, , 15 a continuous open mzppmg of V,, onto
Vag [use Exercise 74), by noting that if X = U 7 then

o) = U ),

where U’ 1s the matrix obtamed from U by removing the rows and
columns wath wndices > ¢, on the other hand, observe that f is open].

9) Show that V, , 15 connected sf p < n {use Exercise 8 and Chapter I,
§ 11, no 3, Proposinon 7).

10) In a projective space P,, let H,, be the « quadsic * defined
by the equaton

B4+44 43, —— =0 (1<p<n)
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Show that H, , and H, , are homeomorphicto S, ,. If2<p<n—1,
H, , is homeomorphic to the space obtained by identifying every point
of the product S, ; X S,_, (considered as a subspace of R? X R"7+1)
with its diametrically opposite point. Every point of H, , has an open
neighbourhood homeomorphic to R™-2,

Show that H,, is homeomorphic to S; X S, [identify S; X S,
with T X T, a pair of diametrically opposite points of S; X S; being
identified with a pair of points (u,2) and (1/2 4w, 1/2 -+ 2) of T X T;
then consider the mapping (4, v) > (x4 v, u—v) of T X T into
itself].

11) In a projective space P, let C,, be the ¢ quadric cone”
defined by the equation

A+ + - Faf—afy— - —2al=0 (1<p<n—r1).

Show that the complement of {og in G, , is homeomorphic to
R X H,, , with the notation of Exercise 10.
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HISTORICAL NOTE

(Numbers in brackets refer to the bibliography at the end of this note.)

We have already had oceasion to remark that the development of analytic
geometry of the plane and in space led mathematicians to the notion of
n-dimensional space, which provided them with an extremely convenient
geometrical language for expressing simply and conaisely algebraic theo-
rems about equations in an arbitrary number of variables, and in parti-
cularall the general results of hnear algebra. Butalthough thuslanguage had
become customary with many geometers by the middle of the 1gth
century, 1t remaned purely a matter of convenience, and the absence of
an “mtwtive ” representation of spaces of more than three dimensions
appeared to forbid, in such spaces, the arguments * by continuaty ™ which,
founded exclusnely on *“intwition ', were permitted 1n the plane and in
{threedimensional) space In his b d on the found:

uons of geometry, Riemann was the first to use considerations of this sort,
by analogy with three-dimensional space (see the Historical Note on
Chapter I (*); following his example, many mathematicians were encour-
aged to use such arguments, with great success, particularly in the theory
of algebraic functions of several comple variables, But in view ofthe very
lumited control over spatial intuition at that period, one mught justfiably
remain skeptical of the demonstrative value of such considerations, and
not allow their use except on a purely heuristic basis, as tending to make
plausible the truth of certain theorems. Thus Poncaré, i his memoir
of 1887 on the residues of double integrals of two complex variables, avoided,
as far as he could, all recourse to intwition 1n four-dimensional space:
“ Comme cette langur hypergéoméingue répugne encore & beaucoup de bons esprits,

(#) Sec also the works of L Schlufly, which date from the same period but
remamed unpublished untit this century (3],

63



HISTORICAL NOTE

je wen ferai qu'un usage peu fréquent ”’; the artifices which he used for this
purpose enabled him to make topological arguments suffice when he was
discussing three-dimensional space, he no longer hesitated to appeal for
which to intuition ([1]).

Moreover, the discoveries of Cantor, and particularly the famous
theorem which asserts that R and R" are equipotent [which seemed
to undermine the whole concept of dimension (*)], showed that, in order
to put geometry and topology on a solid foundation, it was indispensable
to free them entirely from all dependence on intuition. We have already
noted (cf. Historical Note on Chapter I) that this need was the origin
of the modern conception of general topology; but even before the creation
of this latter theory there had already begun a rigorous study of the
topology of real n-dimensional spaces and. their immediate generalizations
(¢ n-dimensional manifolds ) by methods which belong properly to
that branch of topology known as ¢ combinatorial topology >, or better
“ algebraic topology . A volume in this series will be devoted to this
branch of topology, and the reader will find information there on the
historical stages of its development; in this chapter we have limited ourselves
to establishing the most elementary topological properties of real number
spaces and real projective spaces which, historically, have served as the
starting point for the methods of algebraic topology.

(*) It is interesting to note that Dedekind, as soon as he knew of this result,
understood the reason for its paradoxical appearance, and remarked to Cantor that
it ought to be possible to prove the impossibility of a bicontinuous one-to-one corres-
pondence between R* and R™ when m £ n[2].
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IN

CHAPTER VII

The additive groups R’

1. SUBGROUPS AND QUOTIENT GROUPS OF R’

Let us first introduce the following convention: if G is a topological
group, we have defined (Chapter III, § 2) the product group G" of n
factors equal to G, for each integer n > o0. In this section, we
shall extend this definition to the case n = o0 by the convention that
GY denotes a group consisting of only one element. If H is any
group, we shall identify G® x H with H.

On the set R", we shall have to consider on the one hand its (additive)
topological group structure and on the other hand its vector space structure
over the field R (Chapter VI, § 1, no. ). Given a subset A of R?
we may envisage the subgroup of R* generated by A (the set of all linear
combinations of points of A, with integer coefficients) and also the wvector
subspace generated by A (the set of all linear combinations of points of A,
with real coefficients) ; these two notions must be carefully distinguished. In
accordance with the definitions made in algebra, the rank of A is the
dimension of the vector subspace V of R" generated by A; to say that A
is of rank p is therefore equivalent to saying that there are p points
x;e A which form a free system with respect to the field R (in other

words, the relation Y, f;x; = o, where the f; are real, implies ¢ = o
» i . I3 .

for each i) and form a basis of V (which means that every point of V

Is a linear combination of the x; with real coefficients).

In what follows we shall also have to make use of the notion of a system
of points of R"* which are free with respect to the field Q of rational numbers;

such a system is a finite subset (x;}) of R” such that the relation 2 rX; =0,

t
where the r; are rational numbers (or integers — it comes to the same thing),
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imples that r,=o for each + This noton must be carefully ditin-
guished from that of a free system wth respect to R: every system which
15 free with respect to R is free with respect to Q, but the converse is
false (for example, the numbers 1 and vz 1 R form a free system with
respect to Q, but not a free system with respect to R)  Whenever we
speak of a free sysiem without qualification, we shall always mean a free
system wnth respect to R It 13 therefore necessary to distingush on R*
the vector space structure wtih respect to R from the vector space structure
wnth sespect o Q, in particular, the vector subspace with respect 2 Q
generated by a subset A of R* i theset U of all linear combinations
of A with ratunal coefficients, it i contamned i the vector subspace V
(wath respect to R) generated by A, but 1 in gencral distinct from V.
The dumension of U {with respect 12 Q) 1 called the rational rank of A;
1t is at least equal to the rank of A defined above (the dunension of V with
rospect to R); it may be mfimis 1f A 1 an mfinite set, while the rank of
any non-cmpty subsct of R* 18 always < n; 1n particular, the ratonal
rank of any uncountable subset of R* 1 always infinite, because any finte-
cdimensional vector space over Q 15 countable.

In this section we shall first determine the structure of the closed subgroups
of the additive group R*.

1. DISCRETE SUBGROUPS OF R*

We have scen in Chapter V (§ 1, no 1, Proposition 1) that the only closed
subgroups of R, other than R 1tself, ave the drscretz subgroups, generated
by a single clement  We shall begin by considering the duscrete subgroups
of R"

First of all, the subgroup of R* generated by p vectors (p<1)
of the canonucal basis (Chapter VI, § 1, no. 3) of R 15 a discrete group
1somorphic to the product Z? of p groups whlch are equal to Z. More

nerally, consider the sub d by p points g, (x <1€p)
which form a free system. Thcrc 15 a byective lmear mapping of R*
onto itself which maps a4, to e, (1 <1 <p)}; since such a mapping is
an automorphism of the topological group R G 15 1somorphic as a
topological group to the subgroup generated by the ¢ (1 <t <f)
and 15 therefore a duscrefe subgroup of rank p 1somorphic to Z2.

The structure of the group Z?, and henee that of G, has been studied
in algebra. We recall the main results of thus study. The dases of G
with respect to the ring Z are systems of p points

3

5, g g

where the r,; are mtegers such that the determunant det {r,) is equal
© 1 or —1. Every subgroup H of G 15 discrete and of rank
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g < p; furthermore, if H is a given subgroup of rank g, there exists
a free system of p points & (1 <7 < p) which generates G, and a
system of ¢ points ¢ (1 <7< g) which generates H, such that we
have ¢; = ¢b; for 1 <1< g, where the ¢ are integers (the invariant
Jactors of H with respect to G) such that

g7 = 0 (mod ¢) for 1€1<€g—T1.

The quotient group G/H is a discrete group isomorphic to Z#~¢ X F,
where F is a finite abelian group, the direct product of ¢ cyclic subgroups
of respective orders ¢, ..., €.

We shall show now that the discrete subgroups of R which we have
just been considering are the only ones that exist.

ProrosiTioN 1. Let G be a discrete subgroup of R* of rank p, let
(8)1<i<p be a free system of p points of G, and let P be the closed parallelo-
tope with cenire o and basis vectors a; (Chapter VI, § 1, no. 3). Then
the set G nP isfinite and generates G, and every point of G is a linear combi-
nation of the a; with rational co¢fficients.

GnP is compact and discrete, hence finitz. Let x be any point of G;
P

itis equal to a linear combination ), fjg; of the a; with real coefficients.
i=1
For each integer m > o, consider the point

i=1

P P
T = mx — 3, [mt]a; = % (mt; — [mt])a; (*);
i=1
it belongs to G, and since o  mf; — [mt;] < 1, it lies in P. Hence,

P
first, x = g, +‘Z [t]a;, so that G is generated by GnP; and

1=1
secondly, since G nP is finite, there exist two distinct integers &,
k such that g, =z, so that (h— k)t; = [At;] — [kt;] less (1 < < p),
and therefore the #; are rational numbers.

CoroLLaRY. Let (a)y¢icp be @ free system of p points of R and let

P
b= 2 tia;
i=1
be a linear combination of the a;, with real cogfficients.  Then the subgroup G
of R generated by the p + 1 points ay, a,, ..., a, and b is discrete if
and only if the numbers t; are rational.

(*) We recall (Chapter 1V, § 8, no. 2) that, for each real number [+] is

the integral part of x, i.e., the largest rational integer < .
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Proposttion 1 shows that the condition s necessary.  Also 1t 15 sufficient,
for if 1t is satisfied we can wnite f, = m/d, where d and the m arc
mtegers (1 <i<p); b 15 therefore a Linear combination, with integer
cocfcients, of the g pomts (1/d)a; hence G 15 a subgroup of the
discrete group generated by these g points, and so is iself discrete.

The result of Propositon 1 can be expressed as follows: 1f ¢ pomts
¥ (1 <1< ¢q) of a duscrele subgroup G of R* form a system which 15
dependent wth respect to R, then they form a system which 1s dependent mith
sespect to Q. Tt follows immediately that the rational rank of a duscrete
subgroup of R® 1s equal toats rank

The Corollary to Proposition 1, applied to the case where the q, are
the n vectors e, of the canonical basis of R", gives us the following
proposition :

Provosrion 2 (Kronecker). Let 8, 8, ., 8, be n real numbers. In
order that, for each & > ©, there exsst an wnteger g and n ntegers

b (1<isn)
such that

Il —plse (sign),

where the left-kand side of at least one of these wnequalities does not vanisk, 115
necessary and sufficient that at least one of the 6, be rrational.

Trwores 1. Every descrele subgroup G of R®, of rank equal fo $, is generated

by a free system of P pownts

By wirtue of the properties of groups 1somorphic to Z# recalled earler,

3t 13 enough to show that G s a subgroup of a duscrete group generated

by a free system of p pownts. Now since G 1s of rank p there exists

a free system of p points a4, (1 <1< p) of G such thatevery xeG
i

1s equal to a hnear combination ) 4, of the 4, with real cocfficients;

p=
simce G 1s discrete, Proposition 1 shows that the ¢, are rational. Further-
more, Proposition 1 shows that G 1s generated by a fimte number of
pomts, smce these pomts are linear combmanons of the a, with rational
coefficients, there exists an integer d such that they are linear combinations
with wnteger coefficients of the p points (1/d)e, = a!. It follows that G
15 a subgroup of the group gencrated by the  al.

Theorem 1 can also be proved without recourse to the theory of inva-
nant factors (cf Exercise 1),

Dl‘{sum subgroups of R* which are of rank n are also called lathwes
m R
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2. CLOSED SUBGROUPS] OF] R~

We know already of two types of closed subgroups of R*; on the one hand,
the wector subspaces of R®, which are isomorphic to the groups R? (p < n)
(Chapter IV, § 1, no. 4, Proposition 2); on the other hand, the discrete
subgroups (Chapter III, § 2, no. 1, Proposition 5) which are isomorphic
to groups 27 (¢ < n), as we have just seen. We shall now determine
the structure of an arbitrary closed subgroup of R"® by showing that such
a subgroup is isomorphic to a product of the form

RrP X Z¢  where oLp+g<n
The proof rests on the following proposition :

ProrosiTioN 8. Euvery non-discrete closed subgroup of R™ contains a line
passing through o.

Let (x;)pen be an infinite sequence of points of G such that x,%# o

and lim x, = o; by hypothesis such a sequence exists. Let P be an
D>x

open cube with centre o, containing the x, Let £, denote the
largest integer £>o0 such that fx,eP (since P is a bounded box
and x,# o, the existence of £, follows from Archimedes’ axiom).
The points k,x, lie in a compact set P, hence the sequence (k,x,),ex

has a cluster point aeP. If [jk,x, —a| <e, we have
”(kp + Dx,—al|<e+ ”xp”’

and since lim x, = o, it follows that a is also a cluster point of the
pro

sequence ((k, -4 1)x,), whose points belong to the closed set [}P, by

definition of k,; hence aePn (P (the frontier of P, Fig. 5), which

implies @ 5 0. Moreover, since G is closed, we have aeG. Let ¢

be any real number; since |tk, — [#,]| < 1, the relation ||k,x, — a||< ¢

implies that |[|[tky]x, — fe|] < |t] ¢ + ||x,]); since lim x, =0, faisa
p>w

el

a x % 1} 1Y
o . * \\ A\L
]‘,Dfpx (Fps1)xp T Y
x Y Y
 * Y o \\ A
0 '——\'\ X
N i \
P \“/‘
Figure 5. Figure 6.
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cluster point of the sequence ([f£,]x,); but the points of this sequence
belong to G, and consequently {3€G, since G is closed. This com-
pletes the proof,

Treorzm 2 Let G be a closed subgroup of R* of rank 7 (0 Sr <)
Then there 15 a largest vector subspace V' contaned in G for every sector subspace
W complementary to 'V, WG is duscrete and G s the direet sum of 'V and
WnG.

Let us first establish the existence of V by showing that the union of
all the lines through o which e n G js a vector subspace: indeed,
the vector subspace generated by the unson of these hntes 1s the same as
the subgroup they generate. The group G is the duect sum of V and
WnG, for if xeG, we have x =y + z where peV and zeW;
since VG, z=x—yeG and therefore zeWnG. It remains
to show that WnG 1s duscrete; this follows from Proposition 3, since
WnG is a closed subgroup which contains no Lines, by reason of the
defimtion of V.

If G#V, we may say that G 15 the umon of a countable wfinity of
lLinear varieties, parallel to 'V and passing through the potnts of the duscrete
group WaG (Fig 6).

If p 15 the dimension of the vector subspace V, we have p <1, and
WnG 1 a discrete group of rank 7 — p
CoRoLLary 1 There exsts 6 basis (a)ycign of RY such that

asG (1<:1<7), eV (1<:15))

» r

and such that G s the set of pownts 3 ta, + 5 ny where the b, fake
= -

all eal valuss and the n, take all snteger values T

This follows from Theorem 2, and Theorem 1 of no. 1 applied to the
discrete group Wn G

COROLLARY 2. There exmsts an automorphism of R* which maps G onto
the group G, ssomorphic to RP % Zr—P, wluch is the direct sum of the rector
subspace generated by ey, €, .. , ¢, and the (discrete) additie subgroup
gemerated by €4y, €prgs -+ ; €

This 15 an immediate consequence of Corollary 1. Corollary 2 of
Theorem 2 shows that a closed subgroup G of R® is completely
determined up to wsomorphism by two ntegers » 0. its rank, which
we denote by r(G), and the dimension of the largest vector subspace
contained in G, which we call the dimension of G and denote by d(G).
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The only conditions which these integers have to satisfy are the inequa-
lities 0 < d(G) < r(G) < n.

3. ASSOCIATED SUBGROUPS

Let G be an arbitrary subgroup (closed or not) of R" Consider the
set G* of points u = (i;) e R® such that, for all x = () G, the
n

number (ujx) = > wx; is an integer. It is immediately seen that

i=1
G* is a subgroup of R"; it is called the subgroup associated with G (*).
If G and H are two subgroups of R® such that Hc G, it is clear
that G* c H*.

PropositioN 4. The subgroup G*  associated with a subgroup G of R”
is closed, and we have (G)* = G*.

For each xeG, let fy(n) denote (u|x); fy is a linear form, therefore

continuous. Since G* is the intersection of the sets flx(z) as x runs
through G, and since each of these sets is closed, it follows that G*
is closed. On the other hand, if weG*, we have (u|x)eZ for all
xeG, and therefore, as Z is closed in R, (uly)eZ for all yeG;
thus e (G)*. Butwe have (G)* c G* (since G ¢ G), so that (G)*=G*.

Consider the structure of G* when G is closed. By Corollary 1 to
Theorem 2 of no. 2, there exists a base (a;);<icn of R* such that G
coincides with the set of points

P P+q
X = 2 tia; + E n;a;,
i=1 J=p+1

where the 7; take all real values and the n; take all integer values.
Hence (u}x) isan integer for all these points x if and only if (u|a;) = o
for 1<i<pand (ula) is an integer for p4+ 1 <i<p+ ¢ Let
us denote by (g;);<i<n the basis of R* such that (a{la); = o for
{57 and

(@la) =1 for 1<ign

{*) This notion is a particular case, corresponding to the group R», of a
general notion in the theory of duality of locally compact abelian groups (sce, e.g.,
A. WEIL, “ L’integration dans les groupes topologiques et ses applications ”*, Act.
Sci. et Ind. no. 869, Paris, Hermann, 1950, pp. 108-109). The reader will observe
the close analogy which exists between the properties of associated subgroups in
R" and those of orthogonal vector subspaces of a vector space and its dual,
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n
[the basis * dual ™ to (a)]; if we put u = 3 ua, it is clear that the

2
points waG* are characterized by the following conditions: #, = o
for 1<i<p and wel for

F AR E SRS
hence G* is the direct sum of a vector subspace W witha basis consist-
ing of the @] such that p 4 ¢ + 1 €t <, and a discrete subgroup
generated by the a] such that p+ 1 <1 <p+ ¢ In other words:
PrOPOSITION 5. For coery closed subgroup G of R%,

HG* =n—d(G) and  d(GY) =

—1(G).

Let us apply the same reasoning to G*. Observing that the basis dual
to (a)) 1t (4), we see that:

ProvosTion 6. For every subgroup G of R, we have (G*)* =G.

CoroLiaxy, A pont x hes in the closure of a subgroup G of R* of and
only f {ulx) 15 an nteger for all we R* suck that (aly) is an integer for all
yeG.

Let us apply thus charactenization of pornts lymg 1n the closure of a sub-
group G to the case of the subgroup G generated by the n vectors
¢, of the canomcal basis (1 €< n) and by an arbitrary number m
of ponts a, (1 1< m) of R% To say that (ale;) is an mteger
for 1 €7 € n meansthatthe n coordinates of u are integers; therefore:

Proposirion 7 (Kronecker) Let g, = (a,) (1€1€m 1 S5<n)

be m ponts of R* and let b ={b) (x <y < n) bea pont of R In

order that, for each € >0, there exut m antegers g, (1 <1< m) and 0

mitegers py (1 <y < n) such that

19ay + 910y + +« Fgutmy—py—bl < {(1<s<n)

#8 15 necessary and sufficient that, for each finte sequence (r)) (1 <y <n) of #
.

integers such .lhat the m numbers ¥ a7, (1 <1< m) are all integas,
=\

the umber 3 b, 1, should also be an nteger,

=

COROLLARY 1. In order that, for each x = (x;) (1 €3 <n) and each
€ >0, thre exist mounlegrs ¢ (1 <1< m) and n integers
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by (x <j<n) such that
| + Gaoy + v A quomy—py— % < (1<j<n)
it is necessary and sufficient that there exist no finite sequence (rj) of n
n

integers, not all zero, such that each of the m numbers D a;r; is an infeger.
j=

For if G is dense in R?, that is if G = R* then G* = {o}, and
conversely.
In particular (m = 1):

CorROLLARY 2. Let 0y, 85, ..., 0, be n real numbers. In order that, given
any n real numbers %y, X9, ..., X, and a real number ¢ > o, there should
exist an integer g and n integers p; such that

lgoy—p;— )< (1<j<n)
n
it is necessary and sufficient that there exist no relation of the form > 78;=h,
=1

where the r; are n integers not all zero, and h is an integer [Whic_l_l implies,
in particular, that the 6; and the ratios 6;/6, (j % k) must be irrational].

We may interpret this result as follows: for each integer geZ, let x
denote the point with coordinates ¢6; — [¢8,] (1 <j < n); then Corol-
lary 2 gives a necessary and sufficient condition for the set of points x,
to be dense in the cube which is the product of n intervals [o, 1] in the
factors of R™.

Prorosition 8. If Gy, G, are any closed subgroups of R®, we have
(Gy = Gy)* + G¥ n G¥ and (G n Gy)* = Gf 4+ G},

The real number (u|x -+ y) is an integer for all xe G, and all ye G,
if and only if (u|x) is an integer for all xe G, and (u|y) is an integer
for all yeG,, because (ujx + y) = (u|x) + (u]y); hence

(Gy + Gp)* =GI nGf

for any two subgroups Gy, G, of R If now we suppose that G, and
G, are closed, we have (G¥ + G¥)* = G;nG, by Proposition 6;
hence, taking the associated subgroups and applying Proposition 6 again,
(GinGy* = GF + GF.

Remark. Let G;, G, be two lattices in R® (no. 1) such that G, cGy;
then (Proposition 5) G and G¥ are lattices in R® such that G¥ c G,
- We have seen in no. 1 that there is an integer m > o such that mG, c G,;
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consequently for xeG; and weG# we have m(u[x) e Z and there-
fore (ujx)eQ. If xeG, and eGPy, or if reG, and weGy,
we have (u]xr) €eZ by definition. Consequently on passing to the quo-
tients the Z-bilmear mapping (x, 4} - (u]x) of Gy x Gf into
defines a Z-bilinear mapping B of (Gy/G,) X (Gf/G}) into Qjz
Moreover, it is clear that if X, e Gy/Gy (resp. e GFGH) Is such
that, for each e G}GF (resp. for each ¥eG,/G,) we have

B(%p, u) =0 [resp. B(x, &) = 0],

then necessanly ¥, = 0 (resp. #@, =0). It follows that there is a
Z-lmear byection ki of G¥Gf onto the dual of GyfG, such that
&, k@) = B, @) for X€G,/G, and T e G#/G#; 1n particular, the
finite groups Gy/G, and G#/G# are womorphic.

4. HAUSDORFF QUOTIENT GROUPS OF R+

Every Hausdorff quotient group of R® is of the form RYH, where H
is a closed subgroup of R" (Chapter II1, § 2, no. 6, Proposition 18). By
Corollary 2, Theorem 2 of no. 3, there exists an automorphism f of R*
which transforms H 1nto a subgroup H', the direct sum of a vector
subspace generated by p of the vectors e, of the canonical basis and the
discrete group generated by g of the n—p remaining vectors

€, o<pF+ggn

Passing to the quonents, f induces an isomorphism of RYH onto
RH' (Chapter III, §2, no, 8, Remark 3); now, RYH' 1s isornorphic
to R*7¢ x Tt (Chapter III, § 2, no. 9, Corollary ta Proposition 26).
Consequently:

PROPOSITION g, Every Hausdorff quotsent group of R 15 isomorphic to a pro-
duct group RY X T (0 <A+ & < ).

The product space T* (and, by abuse of language, the topological group
T*) 15 called the n-dimensional forus; by Proposition 4 of Chapter V, § 1,
no. 2, T 15 compact, connected and locally connected.

Furthcrmore, 1f € denotes a closed cube of side r m RY, 17 15 bomeo-
morphic to the quotient space of G by the equwvalence relaton
“ x=y (mod 1} {t <s<n) ” between the pomts x= (x) and
¥y=1(») of C. Thus T* 15 formed from the cube C by “ identifica-
tion of opposite faces
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ProrostTiON 10.  The fopological group T is locally tsomorphic o R™.

For T* = (R/Z)* is isomorphic to R?/Z* (Chapter III, § 2, no. g,
Corollary to Proposition 26) and Z* is a discrete subgroup of R* (Chap-
ter IT1, § 2, no. 6, Proposition 19).

It follows that the groups RP X TP are all locally isomorphic to R
(0> p>n); in § 2, no. 2, we shall sec that they are the only connected
groups which have this property.

5. SUBGROUPS AND QUOTIENT GROUPS OF T

Let us identify T® with R®/Z", and let ¢ be the canonical homomor-
phism of R™ onto R"Z" Every subgroup of T" is of the form
G = ¢(H) where H is a subgroup of R" which contains Z* and is
isomorphic to H/Z® (Chapter I1I, § 2, no. 7, Proposition 20); for G
to be closed in T* it is necessary and sufficient for H to be closed in
R* (Chapter I, § 3, no. 4). Thus in order to find the closed subgroups
of T* we have to determine all the closed subgroups H of R" which
contain Z*; to do this we shall use Proposition 6 of no. 3, and we
start by determining the subgroup H* associated with H. Since Z" is
associated with itself, we have H* c Z*; consequently (no. 1) there exists
a basis (4;);<icn of R® which generates Z", and a basis of H* (with
respect to the ring Z) consisting of p points b; (1 € i < p) such that
by =e¢a; (1 <1i<p), where the ¢ are integers satisfying the
congruences ¢4y = 0 (mod ¢g) for 1 < i<p—1. Let (a;) be the
n

basis dual to  (g;); then w = ), wg; belongsto (H*)* = H if and
B i=1

only if weeZ for 1<igp; in other words, H is the direct sum

of the vector subspace V generated by @psy, ..., a,, and the discrete

subgroup K generated by the p points

ta;  (1<igy).

On the other hand, Z® is the direct sum of V n Z* and K n Z", because
the @ (1 <i<n) generate Z" The quotient group H/fZ" is there-
fore isomorphic to (V/(V nZ") x (K/(KnZ") (Chapter III, § 2,
no. g, Corollary to Proposition 26); V/[(V n Z") is isomorphic to Tr-P,
and K/(KnZ") is a finite group, the direct sum of p cyclic groups
of orders ¢; respectively (1 <i<p) (cf. no. 1).

~ Using the same notation, every Hausdorff quotient group of T»
Is of the form T"o(H) and is isomorphic to R*/H (Chapter III, § 2,
no. 7, Corollary to Proposition 22); if W is the vector subspace generated
by X, RYH is isomorphic to W/K (Chapter III, § 2, no. g, Corollary
to Proposition 26), i.e., to TP. To sum up:
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ProrostTION 11, Euery closed subgroup of " is isomorphec to a group of the

form T X F (o€ h<n) where F 15 a finite abehian group, such that the
“smallest mumber of cychc subgroups of whick F 15 a divect sum is <n—h.
Every Hausdorfy quotient growp of T* is isomorphic to a group of the
form T+ (0 <A< n).

In particular (» = 1):

CorovLLary. Euery closed subgroup of T, other than T astself, is a finte
eyehe group.  Every Hausdorff quotient group of ‘T, other than {ol}, is womor-
phic to

6. PERIODIC FUNCIIONS

DeFNTIioN t. A function f, defined on R, wrih values in an arbilrary set
E, 15 sad 1o be pertodic of there exls a point @ # 0 n R* such that

@ flx+a) =5z

forall xeRe. JF £ is persodic, every point @& R for which the relation (1)
15 an wdentity 1 x 1 called a period of f.

The set G of all pertods of a periodic function f 15 clearly a subgrosp
(which by hypothesis does not consist of o alone) of the additive
group R". If £ 1s a confinuous periodic mapping of R nto a Hausdorff
topologucal space E, 1ts group of periods G 1s closed  For 1f Gy denotes
thesetofall geR® such that f (x + a) = f (x) fora gwen pont xeR
then G 1s the intersection of the Gy as x runs through R? and
each Gy 18 closed (Chapter I, § 8, no. 1, Proposition 2). Let V be the
largest vector subspace contamed m G (no. 2, Theorem 2); the function f
15 constant on every coset mod V, if W 1s a vector subspace complement-
ary to V, then f is determuned by its restniction to W. In other
words (W being a topological group 1somorphic to RP for some f),
the study of continuous periodic functions on R" 1s reduced to the study
of such functions whose group of periods G 15 diserete, if this group 15 of
rank g, the function f 15 said to be g-ply penoduc, and every free system
of ¢ pomts which generate G is called a principal system of periods of f.

If (a) and () are two principal systems of periods of f; we have seen
(no. 1) that each can be obtamned from the other by a hnear transformation
with mteger coefficients and determmant = 1.

Let ¢ be the canonical mapping of R* onto R"G; to every mapping
g of RYG imto aset F_commesponds the function g = gog, which
15 2 penodic mapping of R" into E, having a group of periods which
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contains G; and conversely every mapping of R® into E which has
a group of periods containing G is of this form, since it is compatible with
the relation x =y (mod G) (Sef Theorp, R, § 5, no. 7). In this way
we define a bijective mapping g — ¢ of the set of all mappings of R*/G
into E onto the set of all mappings of R* into E whose group of periods
contains G. For g to be continuous (E being a topological space)
it is necessary and sufficient that g should be continuous (Chapter I,
§ 3, no. 4, Proposition 6).

2. CONTINUOUS HOMOMORPHISMS
OF Rr AND ITS QUOTIENT GROUPS

1. CONTINUOUS HOMOMORPHISMS OF THE GROUP R~»
INTO THE GROUP R®

Every linear mapping (cf. Chapter VI, § 1, no. §) of R™ into R" is
evidently a continuous homomorphism of the additive group R™ into the
additive group R". Conversely:

ProrosiTion 1. Every continuous homomorphism f of the additive group R™
into the additive group R* is a linear mapping of R™ into R™,

It is enough to show that f(ix) = tf(x) forall xeR" and all teR.
The argument is the same as that of Proposition 5 of Chapter V, § 1,
no, g if we replace * by x and R by R™

2. LOCAL DEFINITION OF A CONTINUOUS HOMOMORPHISM
OF R# INTO A TOPOLOGICAL GROUP

Proposition 6 of Chapter V, § 1, no. 4 may be generalized to all
the groups R™

ProposiTioN 2. Let A be a parallelotope in R™ which contains o; and
let f be a continuous mapping of A into a topological group G (written multi-

plicatively) such that f (x + y) = f (x) f(¥) Sfor each pair of points x, y
such that xe A, ye A and x-+-yeA. Then there exists a unique continuous
homomorphism of R into G which extends f.

By the same reasoning as in Proposition 6 of Chapter V, § 1, no. 4 we
show that the homomorphism extending £, if it exists, is unique. Next,
the subgroup G, of G, generated by f (A), is commutative; for if x
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and y are any two points of A, then %x, §y and 1(x+3y)
belong to A, therefore

SGGEEM = G 1) =SENSG),

which shows that f(ix} and f(iy) commute; therefore so do
FG) = (£ @x)F and £ (3) = (FG)% which proves the
assertion.

s @ . 5 @ be n non-zero vectors contained m A and
proportional to the basis vectors of the parallelotope, and for each index
1 let D, he the Line through o and 4, thatis, the set of points fa,
as ¢ runsthrough R. Let A, be thesetofall &R such that fg,eA;
then A, is an interval of R containing [0, 1], and the function

FAGERACH]
is defined and continuous on A, and satisfies the relation
S+ 1) =LOAE)

whenever ¢ ¢' and ¢ + ¢/ all belong to A, By Proposition 6 of Chap-
ter V, § 1, no. 4, there exists a conttnuous homomorphism 7, of R mto G
which extends f, Suce R® 1s the direct sum of the subgroups D,
we can define 2 homomorphism f' of R" into the abelian group Gy

by the rule f (x) = H](:.) where x = }_. ta; F 1s an extension

of f simce, if xeA, all the components , of x on the lincs D, also
belong to A, by reason of the choice of the g,; morcover, f is contrmous
on R" because 1t 1s contuous on each of the lmes D, and x, 15alinear
function of x (and therefore continuous).

Cororuary 1. Let V be a neghbourhood of o in R* and let f be o
continuous mapping of 'V anto a tepological group G such that

SflE+0) =110
Jfor eack par of pounts x,y such that xeV, yeV and x +yeV. Tha
there exists @ umque continaous homomarghesms of R® wnts G ay,m agrees with |
at all punts of a nerghbourhood W of o,

Take W to be an open box with centre o, contained in V, and apply
Proposition 2 to W.

We shall sce later that this property of R® cxlends to a larger class of
topologieal groups, the “sumply connected” gr
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CoroLLARY 2. Let f be a local isomorphism of R™ with a topological group G.
Then there exists a unique strict morphism of R™ onlo an open subgroup of G which
agrees with f at all the points of some neighbourhood of o.

Let f be the continuous homomorphism of R" into G which agrees
with f at all points of a neighbourhood of o; f(R") contains, by
hypothesis, 2 neighbourhood of the identity element of G and therefore
(Chapter III, § 2, no. 1, Corollary to Proposition 4) is an open subgroup
of G; moreover f is a strict morphism of R* onto f(R"), by
Chapter 111, § 2, no. 8, Proposition 24.

TrroreM 1. Every connected group G whick is locally isomorphic to R®
is isomorphic to a group RP X TP (o < p < n).

A suitably chosen local isomorphism f of R" with G extends to a
strict morphism of R" onto an open subgroup of G (Proposition 2,
Corollary 2) and therefore onto G itself, since G is connected. It
follows that G is isomorphic to a quotient group R"/H of R*: H is
discrete, otherwise there would exist points x £ 0 of H arbitrarily close
to o and such that f(x) = f(0), contrary to the hypothesis that
f is a local isomorphism. The theorem is therefore a consequence of
Theorem 1 of § 1, no. 1.

3. CONTINUOUS HOMOMORPHISMS OF R~ INTO T=

ProrosiTioN . Every continuous homomorphism of R™ into 'T* is of the
Jorm x — o(u(x)), where ¢ 1is the canonical homomorphism of R® onto T
(identified with R"/Z") and u is a linear mapping of R™ into R".

Let f be a continuous homomorphism of R” into T?. We shall show
that there is a linear mapping u# of R™ into R such that the homomor-
phisms x - f(x) and x — ¢(x(x)) coincide at all points of a neigh-
bourhood of o in R™; the proposition will then follow from Corollary 1
to Proposition 2 of no. 2. Now let V be a neighbourhood of o in R”
such that ¢, restricted to V, is a local isomorphism of R® with T»,
andlet ¢ be the inverse of ¢, defined on ¢(V). Since f is continuous,

V' = ?(q:(V)) is a neighbourhood of o in R™; the mapping
x ~ o(f (%)),

restricted to V', is a continuous mapping of V'’ into R”® such that
Y (x + ) =0(f (®) + §(F () for each pair of points x, y
In R" such that xe V', yeV’ and x + y e V’; hence (no. 2, Corollary
I to Proposition 2) this mapping coincides with a well-determined continuous
homomorphism z of R™ into R® at all points of a neighbourhood W
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of o in Rm. By Propostion t (no, 1) # is a linear mapping of R
nte R for all xeW we have therefore £ (x) = o{u (), which
completes the proof.

Remark  The same argument shows, more generally, that if ¢ is 2 stnct
morphusm of R* into a group G, whose restriction to a suitable neigh-
bourhood of ¢ 1 alocal somorphism of R* with G, then every contin-
uous homomorphism of R* mto G 15 of the form x— g(u(x)), where
u 13 2 bmear mapping of R™ into R

In the case m = n =1, Proposition 3 gives

ProOPOSITION 4. If ¢ is the canotucal homomorphism of R ento T, eery
contrnuous homomorphusm of R snto T 15 of the form x —» g(ax) where aeR;
and 12 15 @ stnct morphsm of R onts T if a v a.

4. AUTOMORPHISMS OF T»

Let H be a closed subgroup of R* and le¢ ¢ be the canonical homo-
morphism of R" onto the quotient group RYH. If £ is a continuous
homomorphism of RYH mto a topological group G, then f =fao
1s a continuous homomorphism of R* into G which is periodic and
has a group of periods H, every peniodic
homomorphism of R* into G, whose group of pertods contams H, is
of this form.

In the case where H = Z°, the quotient group RYZ» =T 1
compact, and therefore every contimuous homomorphism f of T* inte
a topologeal group G is a stnet morphum of T* into G, provided that
G is Hausdorff (Chapter III,§2,n0 8, Remark 1); f = fo ¢ is a strict
morphism of R* into G; moreoves, f(T") = f(R%) 15 a compact sub-
group of G, somorphic to a group TP (0 < p < ).

In particular, we sce that the only continuous homomorphism of T+
mto a group R~ is the zero mapping, since {0} 13 the only compact
subgroup of R™.

Let us apply this to continuous homomorphisms of ‘T* into a group
Tr; of f 15 such a homomorphism,  the canonical homomorphism
of R onto T then fog 13 a continuous homomorphism of R* into
T?; hence (no 3, Proposition 3) if ¢ denotes the canonical homornorphism
of R® onto TP, there exists a lincar mapping # of R* into R® such
that foe=gou If xeZ" f(p(x)) 1s the dentity clement of T7
so that we must have u(x)eZf, ie, u(Z")cZP, Conversely, if
15 any lmear mapping of R" wmto RP which satisfies this condition, then
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you is a periodic continuous homomorphism of R* into T7, whose
group of periods contains Z", and therefore defines a continuous homo-
morphism of T" into TP

Consider under what conditions jf is an isomorphism of T" onto a
subgroup of TP. First of all, # must be an injective mapping of R”
into RP, otherwise the vector subspace (o) would contain points
x # 0 arbitrarily close to the origin, and at such a point we should

hav
) FOE) =fle©) and  ofx) % ¢(0)

contrary to hypothesis. This condition implies that p > n. The image
u(Z") is then a discrete subgroup of rank =z of the group ZF; the inva-
riant factors of u(Z®) with respect to ZP (§ 1, no. 1) must all be equal
to 1, otherwise there would exist a point x € Z"® and an integer &k > 1
such that u(kx)eZ* and k1leZ" hence f (o(k7ix)) = f (¢(0))
and o¢(k~lx) # o(0), contrary to hypothesis. Conversely, if this condi-
tion is satisfied, #(R") n Z" = u(Z"), and f is an isomorphism of T
onto u(R™)[u(Z").

If we apply this argument to the case p = n, we have the following
proposition :

ProposiTioN 5. Euvery isomorphism of the topological group T™ onto one of
its subgroups is an automorphism of T* which is obtained by passing to the quo-

tient from a linear mapping u of R® onto itself which, restricted to Z", is
an automorphism of Z*.

n
Equivalently (§ 1, no. 1), if u(e;) = a;;e;, the a;; must be integers
j=

such that det (g;;) = == 1. In particular, for n = 1:

Prorosirion 6. The only isomorphisms of the topological group T onto one of
its subgroups are the identity mapping and the symmelry x ~> — x.

3. INFINITE SUMS IN THE GROUPS R~

1, SUMMABLE FAMILIES IN Rr

Since every point of R" has a countable fundamental system of neighbour-
hoads, a family (x,) of points of the additive group R" is summable
only if the set of indices « such that X, o4 o is countable (Chapter III, § 5,
no. 2, Corollary to Proposition 1); hence, essentially, the study of summable
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familes in R* is reduced to that of summable sequences. Nevertheless,
for the same reasons as were gwen in Chapter IV, § 7, in connection
with summable families in R, we shall not impose any restriction, in what
follows, on the cardinal of the index set.

ProrostTion 1. A family (x)ier of pons X, = (%,1)1cxqa of R* 15
sommadle 1f and only if sach of the B famtlies (3, gYeey Of ronk mmbess 25 s
mable in R.

Ttus follows from Chapter III, § 5, no. 4, Proposition 4.

The condition of Proposition 1 may be transformed as follows:
Tomorest 1. A famly (xdiex of pownts of R* s summable if and only if
the famsly ([x[) of Buchdean norms of the X, is summable m R.

Thas follows without trouble from Proposition 1, the condition for summa-
biltty of a family of real numbers (Chapter 1V, § 7, no. 2, Theorem g),
the inequalities

»
L laal < liell < S b

and the comparison principle (Chapter 1V, § 7, no. 1, Theorem 2).
One can also proceed b by first i
following proposition :

the

PROPOSITION 2. If (x).ex 15 any fimiz family of points in R?, then
® 3 lixll < zn.sup]fx xﬂ.
€L ictiiie)

»
For if ¥, = (s )1gjem We have |/l < ¥ v, hence
F=

B 5 (3 )

Now X ird =3 a5+ X &, and since for every subset J of T we
ier iy €1
have

=S —Z <y Ny
tel ieJ el &

1t follows that
3 eyl < Q.SupIE z,,|.
iex ictlies

But l%;""[s“,}éf"“’ hence the inequality (1).
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Now, Theorem 1 is equivalent to the following proposition (since R"
is a complete group): the family (x,) satisfies Cauchy’s criterion
(Chapter III, § 5, no. 2, Theorem 1) if and only if the family (||x|])
also satisfies Cauchy’s criterion. Now the triangle inequality shows
that this condition is sufficient, and the inequality (1) shows that it is
necessary.

Furthermore we have the inequality

(2) H@ xtls 2 =l

which comes by passing to the limit from the analogous inequality for
finite partial sums.

CoroLrary. A family (x,) of points of R is summable if and only if the
set of finite partial sums of the family is bounded in R™.

By Theorem 1 and the triangle inequality, this condition is necessary;
it is sufficient by the inequality (1) and Theorem 1.

PropostTION 3. Let (xy)rer be asummable family of points of R™, (¥u)pem
a summable family of points of R*, and let f be a bilinear mapping of R™ X R"
into RP. Then the family (f(xy, Yu))o.merxm @ summable and we have

(3) 2 S (x .Vp.) =f(2 X E yp.)-

GeWELXM rER peM
To show that the family (f (x), y,)) is summable, it is sufficient by
Proposition 1 to establish that each of the p families formed by the coor-
dinates of the points f(x), p,) in R" is summable : in other words,
we can restrict ourselves to the case where f is a bilinear form; but for
such a form f we have

S(xy) = Zj 4% )5

and therefore we are brought back to the case f(x, y)=x ¥ and in
this case the result has already been proved (Chapter IV, § 7, no. 3,
Propasition 1).

By specializing the function f we obtain in particular the following
corollaries :

CoroLLARY 1. If (a@)))ey, is @ summable family of real numbers and if (*p)pen

is a summable family of points of R, then the family (BXp)a, wenxym 5 summable
and we have

@ % am = (o) ( 3 =)

OLIELX M €L LEM
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Corotary 2. I (ther @d (Podyew are fws summable famulics of

pomts of R, then the family (maly,) (k. Chapter V1, §2, no, 2) & summasl

n R, and we have

5 DERCTEM ——( DAY )..)
i

O ELxa YerL

2. SERIES IN R

A series whose general term is Xa = (fnycica CONverges in R® of
and only f each of the n series (xn)nex Converges in

DeFrvITION 1. A series of potnts of R* s smd fo be absolutely convergent 1f
the senies of Euclidean norms of 1ls terms is conoergent.

PROPOSITION 4. A serits of points of R* is commutatively convergent if ond
only if 1t 15 absolutely convergent.
This 13 a consequence of Proposition g of Chapter 111, § 5, no. 7 and Theo-
rem 1 above.

The examples given in Chapter 1V, § 7 show that a series in R* can
be conrergent without beng absolutely convergent,
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EXERCISES

§1

1) Let G be a discrete subgroup of rank p in R and let (a)i<i<p

be a free system of p points of G. The proof of Theorem 1 of no. 1

shows that G is a subgroup of the group generated by the p points

d-1g, where d is some integer. Show, without using Theorem 1, that
p

there exists a free system of g points & = ) ba; of G such that,
J=1

P
if x;= 2 %4 (1 <i<p) is any free system of p points of G, we

=1
have |djet ()] > |det (b;)] > o. Hence give a proof of Theorem 1
which does not rest on the theory of invariant factors, by showing that the
P

b; generate G. (Argue by contradiction: if z= Y, z;b;e G and one of

i=1

the z; is not an integer, there exists a point # = D, u; of the group

=1
generated by z and the b; such that o < < 1 for some index ¢,
and hence obtain a contradiction.)

2) Let G be a discrete subgroup of R* If G is the direct sum of
two subgroups ¥ and K, then the intersection of the vector subspaces
generated by H and K consists only of o, and the rank of G is
therefore equal to the sum of the ranks of H and K (observe that, for
every discrete subgroup G of R", the vector subspace of R® generated
by G is canonically isomorphic to G ® zR).

3) Let G be a discrete subgroup of R™ For a subgroup H of G to be
a direct summand of G it is necessary and sufficient that H = Vn G
where V is a vector subspace of R* (for necessity, use Exercise 2;
for sufficiency, note that H is also the intersection of G and the
vector subspace generated by H).
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4) Let H and K be two discrete subgroups of R® such that H 4 K
1 a closed subgroup. Show that H ++ K is then discrete and that
(H) + r(K) = r(HaK) + r(H + K). (Let V be the vector subspace
of R generated by HnK; splitup H into the direct sum of VaH
and a discrete group Hy, and K into the direct sum of VaK and
a discrete group K, using Exercise 3; then show that the sum H, + K,
is direct and use Exercise 2.)

5) Let G, G' be two closed subgroups of R® such that G'cG, and
let V (resp V') be thelargest vector subspace containedin G (resp. G').
Show that there is 2 vector subspace W complementary to 'V such that
G 15 the direct sum of V and the duscrete group K = Wn G, and such
that G’ 1s the direct sum of VnG' and KnG'=WnG'. (If U
1s a vector subspace complementary to VY, use Exercise 3 to show that
the discrete group U n G’ is the direct sumof UnVn G’ and a discrete
group K/, and take W to be a vector subspace contaimng K'.) Deduce
that:

4) The quotient group G/G’ isisomorphic to a product group of the form
R XTI X ZrxF,

where F 1 a finite abelian group.

8) Every closed subgroup and every Hausdorff quotient group of a group
of the form R? X T¢ x 2" X F (F finite and abelian) are of the same
form.

€ 6) Let. H and K be two closed subgroups of R” such that
H 4+ K s a closed subgroup

) Show that, if V (resp. W) 1s the largest vector subspace contained
m H (resp. K), then V + W 15 the largest vector subspace contamed
m G, and therefore d (H) + d (K) = 4 (HoK) + d(H + K) [note
that the rational rank of G/(V + W) is finite and consequently that
G cannot contan a line which is not contained n V + W].

5) Let U be a subspace complementary to V + W, such that G is
the direct sum of V+ W and M = GnU, and such that HnK
15 the direct sum of (V 4 W)n(HnK) and L=HnoKnoU (Exer-
ase 5). Let H' (resp K’) be the subgroup of M consisting of the
components of the pomnts of H (resp K) in the decomposition of G
mto the direct sum of V 4+ W and M. Show that M =H'+ K’
and that H' oK' =L

I we put H' —Hn(V+W) and K" =Kn(V+ W), show
that 7(H) + 7(K") = (B 6 K% 4 r(H" + K”) (reducc to the case
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where VaW = {0 , and show that then H"nK” is the direct
sum of VaK" and WnH").

d) Show that
H(H) + 7(K) = r(Hn K) + r(H + K)

[use ¢) and Exercise 4, noting that r(H) = #(H') + r(H") and
r(K) = (K') + r(K")].

¢ 7) Let G be a closed subgroup of R” andlet H be a closed subgroup
of G. Then G is the direct sum of H and another closed subgroup
K if and only if H is the intersection of G and a vector subspace.
(Use Exercise 5 for the necessity; to show sufficiency, apply Theorem 2
of no. 2 appropriately to G and H, and use Exercise 3).

8) a) Let H, K be two closed subgroups of R". Show that if
r(H) + r(K) isequal to r(HnK) 4 r(H +K), then H+K is closed
in R% [Using Exercise 7 and the hypothesis given, reduce to the case
where H, K and HnXK all generate the same vector subspace; if V
(resp. W) denotes the largest subspace contained in H (resp. K),
show with the help of Exercise 5 that V is generated by Vn K, and W
is generated by W n H; finally, split up Hn K into the direct sum of
HnXn (V 4+ W) and a discrete group, by using Exercise 7.]

b) Deduce from @) and Exercise 6 that, if H and K are two closed
subgroups of R*® such that H + K is a closed subgroup, then H* + K*
is also a closed subgroup.

¢) Deduce from b) thatif H and K are two closed subgroups of R®

such that d(H) + d(K) = dHnK) 4 d(H 4 K), then the subgroup
H 4 X is closed.

9) Let G be a subgroup of R", not necessarily closed, of rank p, and
let V be the largest vector subspace contained in G. If V has dimen-
sion ¢ <p, show that G is the direct sum of VnG and a discrete
subgroup of rank p— g contained in a vector subspace complementary
to V [note that, for each x€@G, (x + V) nG is dense in the linear
variety x 4+ V].

10) Let ¢ be a real number and n an integer > o0, and consider
the numbers x, =ke—[kalefo, 1[ (1 <k<n-+1). If I, denotes

the interval
[k——ly -ﬁ[ (1ghgn),
n n

show that there exist two distinct indices %, &' such that x, and Xy
belong to the same interval I, (for a suitable value of k). Deduce
that there exist two integers p, ¢ such that 1<p<n and |pa—q| < 1/n.
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11) Let a=(a) {1<i<m 1<j<n) be m points of R* and
let g be an integer >o. For each point k={(t) (1<i<m) of
R* wath mteger coordinates, nol all zero, satisfying the inequalities
o<k € ¢ consider the pomt X, = (x;,) (1<s<n) of Ry all
of whose coordimates belong to [o, 1[ and which is congruent mod Z*

to 3 ka4, ie., the point with coordinates
1=
* ~ »
= B ks [ 0a]
& &

If p is the smallest integer such that g + 1 > p¥", show that there
are two dustinct points k, k" such that x, and x,s both belong to the
same cube of side 1/p (same method as Exercise 10). Deduce that there
exist m integers $,, not all zero, and n integers ry (1 <j<n) such
that 0 < p,<g¢ for 1€igm, and

(1gy<n)

n
3 pey—ry
=

Use this result to give another proof of Proposition 2 of no. 1 (the “pigeon=
hole principle”).

§ 12) For cach pair of real numbers (9, 8) there exists an infinite number
of triples (#, ¢, 7) of integers such that r > o, |¢] € ir and

—Lctgtp—p <t
B v

[1f m, n are two integers such that [n§ —m| < 1/n (Exercise 10), take
r=n and choose f, ¢ 50 that pn + gm differs from nf by less
than 1f2].

13) The Fargy series of order n {n an integer > o) is the set F, of
rational numbers pfg in their lowest terms such that 0 <p <<
arranged  increasing order (i.e., the Farey series 1s a sequence).

) Show that if two rational numbers r = pfg, 7’ = p'[¢’ are such that
#'q—pg’ = =1, then every par of mtegers (p", ¢") can be expressed
n the form p” = pv 4 p'y, ¢" = ge 4 ¢’y where x and y are mtegers.
The fracnon p’/g" belongs to the closed tnterval with end-points 7 and
# ifandonlyif # and y have the same sign.

5) Deduce from a) that 1if r= plg and ' = #'l¢ are two rational num-
bers in fo, 1] such that ¢>0 and ¢'>o0 and g —pg' =71,
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then r and 7 are consecutive elements in the sequence F,, where
n=max (g, ¢'). Furthermore, the smallest integer m such that the
open interval with end-points r and 7’ contains a point of F, is
m = q -+ ¢', and there is only one point of Fg,, in this interval, namely

the fraction (p + #')/(g + ¢)-

¢) Show that conversely, if r and r' are two consecutive clements of
F,, we have p'g—pg' = == 1 (use induction on =).

d) Deduce from ¢) that, for each real number 0 € [0, 1] and each integer
n 2 1, there is at least one fraction p/g in its lowest terms such that
1<g<n and |0 —plg|< 1/(n+ 1)g (cf. Exercise 10).

¢) If pjg is a fraction in its lowest terms such that |0 —pfg| < 1/g%
then § belongs to the open interval whose end-points are the two
terms of the Farey series F, consecutive to p/g.

14) Let ¢ : R—> T be the canonical homomorphism; let § be an element
of infinite order in T and let 9§, be an (irrational) real number such that
9(8p) = 0. For each integer n >0, let S, be the set of elements k0
of T for which 1 <%<n, and for each interval I of R let N(I, n)
be the number of elements of the set I n '(S,).

a) If we take I={Jo, @[, show that N(I, n) = [n8,] [note that
N(I, n) is then the number of pairs of integers (x,9) suchthat 1< y<n
and ¥ <380 < x + 0,

&) More generally, if we take I == [o, mf [, m being an integer, we have
m.[(n—m)8,] < N(I, n) < m.[nh,] (same method).

¢) Deduce that, if I is any interval, the number N(I, n)/n tends to alimit
equal to the length of I, as n-—> - oo. (Prove the result first when
I is of the form [m0, + a, m'0, + a'], where m,m',a and a' are integers,
by using 5); then pass to the general case by approximating to the end-
points of I by numbers of the form my 4 a.) [“Equipartition of the
sequence (kB) mod 17°.]

* 15) Let I be a closed cube in R* with side ox. Map each point
x = (%) of I tothe point y = ( ;) of R™1 such that

I =sin x;
Yz = (2 + cos x;) sin x,

........................................

.............
......................
.............................
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Show that the image of I under this mappmg is homeomorphic
to T* (proof by induction on n- observe that y, hasthesignof sinx, for
<p n). If n=2, thesubsetof RY sodecfinedscalled a forus of revoiution.,,
€ 16) Let G be a subgroup of R* which contans a compact comnected
Subset K such that the affine linear vartety generated by K is of dumen-
sion p. Show that G contamns a vector subspace of dimension . [Proof
by induction on n, using Exercise 10 ¢} of Chapter VI, § 1.}
€ 17) Let E be the product (Q,)* of n factors equal to the field
Q, of p-adic numbers (Chapter III, § 6, Exercise 23), endowed with the
topologtcal group structure which is the product of the additive topological
structures of the factors Q,, and with its n-imensional vector space
stmcmrc over the field Q, If o denotes the addmvc p-adic valuation

1 Q, put s, = p=+ forall x50 m Q,, and Jol, = 0; and puc
[]x“ =sup 1:,1, for all x = (Rhcrenck () cmpm IX, § 3, nos. 2
and ). ¢
4) Asubset A of E 1s relatvely compactifand only if

S"P!lxﬂ< + oo

[Note that 5, 1s a contiruous mapping of Q, mto Z (with the
duscrete topology) ]

8) If G 15 a closed subgroup of E, then G 15 a topological module over
the ring Z, of p-adic ntegers (f xeG, we have nxeG for all neZ,
and Z 1 densein Z,)

) If K 15 a compact subgroup of E, there exists a frec system of m<n
pomnts @, (1 1< m) of E, such that K is the direct sum of the m
groups Z, @, [Use a) toshow :hm, of (e,),s J<a IS the canonical base
of E, thére 35 an mteger keZ such that K 15 contamed in the direct
sum of the n_groups Z,.ptey; then apply the theory of modules over a
principal ideal ring.]

) If G 13 a closed (but not compact) subgroup of E, then G contains
a vector subspace of dimension 1, Q, @ with a7 [Let C be the
compact subset of E consisting of all points xeE such that {lxl|=1;
show that GnC contains a sequence of pomts (x,),ey such that
#7x,€G, andtake a to be a cluster point of this sequence.]

¢) Let G bea closed subgroup of E, let V be the largest vector subspace
contaned m G and let W be a vector subspace camplementary to
V, show that WnG 15 compact and that G 1s the direct sum of V
and WA G (argue as in Theorem 2 of no. 2).

Fal Gwenasubgmup G of E, let G* denote theset of all u = () €E
such that

(u]x) = ‘Z.‘ uk,
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belongs to  Z, for all x = (x;) € G. Show that G* is closed in E,
that (G)* = G* and that (G*)* =G.

g) State and prove the analogues of Exercises 2 to 8 inclusive for
closed subgroups of E. In particular, every closed subgroup and every
Hausdorff quotient group of a group of the form

Q) X (QuZp)* X (Zp) X F

(where F is the product of a finite number of cyclic groups of p-power
order) is a group of the same form.

§ 2

1) Let ¢ be the canonical homomorphism of R® onto T" and let
be a linear mapping of R™ into R" For ¢ o u to be a strict morphism
of R™ into T" it is necessary and sufficient that either:

a) 4 (Z") is of rank m; or
b) u(R™) n Z" is of rank equal to the dimension of #(R™).

2) Show that the only continuous homomorphism of the additive topolo-
gical group Q, of p-adic numbers (Chapter III, § 6, Exercises 23 et seq.)
into the additive group R is the zero mapping.

§ 3) Every p-adic number x (Exercise 2) can be written in the form
)

Y axp* where the «, are rational integers, those of index & < o being

zero for all but a finite number of values of the index k. Moreover, if

+o +o0 —1 -1
D apt= Y By p*, therationalnumbers 3 ayp*and D, ,p* are conlgruent
—c0 —c — —cn -

mod 1. Let o,(x) be the class mod 1 of the rational number D ap*.

a) Show that o, is a continuous homomorphism of the topological group
Q, into T, and that for every continuous homomorphism f of Q,
mto T there exists a unique ae«Q, such that f(x) = op(ax) for all
#eQ,. [Note that the knowledge of the elements f(p*) for k<o
determines f uniquely; show that each of these elements is the class
mod 1 of a fraction whose denominator is a power of p; hence show
that there exists ae Q, such that f(p*) = o,(ap*) for all & < 0.]

b) Show that, if 9: R—>T is the canonical homomorphism, then
o) = op(*) for all xeQ, the sum being over all prime numbers

p (observe that all but a finite number of terms of this sum will be zero).
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G 4) d) Let G be a locally compact abelian group and let H be a
subgroup of G isomorphic to R? X T? where p, ¢ are integers > o;
suppose also that GfH is isomorphic to ecither R or T. Show that
G 1sisomorphic to the product of H_and a closed subgroup L isomorphic
to G/H. [Apply Chapter V, § 3, Exercise 74d), to obtain a continuous
homomorphism f of R into G such that f(R) ¢ H; hence construct
another continuous homomorphism g: R —» G such that f(f)—gl) e H
forall teR and g(R) nH = {¢}. Note that f(H) isa proper closed
subgroup of R and that, for every element zs2e 1 H, there exists
a continuous homomorphism « of R 1ato H such that u(1) = z]

5) Let G be a Hausdorff abehian topological group, let H be a closed
subgroup of G 1semorphic to R? X T9, and suppose that there exists a
surjective contmuous homomorphism ¢+ R —G/H. Show that there
exists a continuous homomorphism f: R — G such that f(R) nH = {]
and G = H.f(R). [Reduce tocase @) by considering the least upper
bound on G of the given topology and the topology for which a funda-

rmental system of neighbourhoods of o 15 formed by the 7 (s(1)), where
.G — GfH 1 the canonical mapping and T runs through a fundamental
system of neighbourhoods of © mn R; show that G is locally compact
in this new topology (cf. Chapter I, § 4, Exercise 10 ¢)).]

) Gve an example where the restriction of p ta f(R) 1s nat bicentinuous
{cf. § 1, Exercise 2 f)].

5) Let G be a connected topological group and let H be a compact
normal subgroup of G with no arbutranly small subgroups {Chapter 111,
§ 2, Excrase 30). Show that H 1s contained n the centre of G. (Ob-
serve that for s close to ¢ in G, the image of H under x-—>sze?
is arbitranly close to ¢.)

6) Let G be a topological group and let H. be a closed normal subgroup
of G, somorphicto R*(n 1) and such that GJH s abelian,

a) Suppose, moreover, that H contains no connected subgroup normal
m G except for H itself and )z!‘, and that H is not contawned mn the
centre of G Given x,€ G which does not commute with every element
of H, show thag, for every v e H, there exists a umque weH such that
Xluxgut = (Observe that in the additive notationin H the equation
becomes #— tglury =-—u and that the continuous endomorphism
u-—>u—xylur, of H 1salinear mapping of R" into itself. Show that
1ts kernel is a normal subgroup of G.) Furthermore, if f{s) is the
unique #eH such that szlurg =1, then f is a bicontinuous auto«
morphism of H.
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EXERCISES

b) Under the hypotheses of a), show that the continuous mapping
g: 3= (f(aglymey~))*y of G intoitself hasas image the subgroup L
of G consisting of all elements which commute with x, and that the
relation g(y) = g(J') is equivalent to yy'~'eH. Deduce that there
exists a continuous bijection % : G/H — L whose inverse is the restriction
to L of the canonical mapping p: G — G/H, and deduce that G
is isomorphic to the topological semi-direct product of H and L.

¥ 7) Let G be a topological group, H a normal subgroup isomorphic
to R? X T? (p >0, ¢ >0), and suppose that there exists a surjective
continuous homomorphism ¢: R — G/H. Show that there exists a
continuous homomorphism f: R—G such that f(R)nH= fe}
and G = H. f(R). [Using Exercise 4 b) and Chapter V, § 3, Exercise 8,
reduce to the case where G is not commutative and then, using Exercise
5, to the case ¢ = 0; now use induction on p, together with Exercise 6.]

§3

€ 1) a) Let (xy)1<r<m be a finite sequence of real numbers such that

m
o<1 for 1 <k<m and D x,=o. Show that there exists a

k=1
permutation ¢ of the interval [1, m] of N such that

P
2 xo‘(k) 1
k=1

forall p=1,2, ..., m, and which preserves the order of the indices A
for which #x, > o and the order of the indices % for which x, < o [i.e.,
if h<k and x,>o0 and #x,>o0, then o(h) <go(k), and similarly
forindices & such that #;, < o].

b) Let (xy)1<i<m De a finite sequence of points x;, = (*k1gicn of R?
m
such that ||} <1 for 1<k<m and ) x,=o0. Show that

. . . k=1
there exists a permutation ¢ of the interval [1, m] of N such that

p
kZ Xopll S 50V2 for all p=1, 2, ..., m.
=1

[Proof b'y induction on n, considering R* as a product R™1! x R,
and putting x; = (xf, %;,) with x,eR"L Take a subset H of the
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vir THE ADDITIVE GROUPS R®

mterval [1, m] of N suchthat "hz“ x,‘n is a maximum; by means of a
<
rotation, reduce to the case where ;‘Zu x;=0 and show that in this case
€
we must have x, >0 for keH and xn,<o for keH; then use a)
and the inductive hypothesis,]
©) Let (x)icxgn be a finite sequence of points of R such that [jr|<1
"
for 1 < k < m and || X xy| =a >0, Show that there exists a permuta-
iz

tion ¢ of theinterval [1,m] of N such that

|

forall p suchthat 1 p<m [reducetocase b))

§ 2) Let (xJnex be an infimte sequence of points of R* such that
lim x,, = 0. For each finitesubset H of N, put sy = 3 x,. Show
mel

2
2 Xow|| € (@ + 1501
F=h

e
that there are two possibilities : either

() limgliSgl} = + o, where § is the directed set of all fmte subsets
of N, orelse:

() there exst permutations ¢ of N such that the seres whose general
erm 15 Yo, 1s convergent in R"; i this case the set A of sums

S Xom of these scres, for all permutations ¢ with this property, 15 an
i

affine hmear varety m R [Show first, with the help of Exercise 1),
that every cluster pomt (with respect to &) of the mappmng H -> Sy
is the sum of a convergent series (Xqen) for a suitable permutation a.
Use Chapter 111, § 5, Exercise § to prove that the set A, if not empty,
is a coset of a closed subgroup of R%. Show finally that A 1s connected
by means of Exercise 1 ¢} and Chapter II, § 4, Exercse 15.]
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HISTORICAL NOTE

(Numbers in brackets refer to the bibliography at the end of this note.)

The main results of the theory of subgroups and quotient groups of the
additive groups R* have been known since the end of the last century.
Many questions of arithmetic and analysis led mathematicians to
investigate the structure of subgroups of R® generated by a finite number
of points. Thus Lagrange, while developing the theory of ‘“continued
fractions”, showed in passing that, for every real number 6, there exist
integers m, n, not both zero, such that m——n§ is arbitrarily small ([1],
vol. 7, p. 27). In 1835 Jacobi, motivated by his researches on periodic
analytic functions of several complex variables, showed that if x, y, z
are three vectors of R?2, there exist integers m, n, p, not all zero, which
make the vector mx 4 ny + pz arbitrarily small ([2], vol. 2, p. 25).
A little later Dirichlet, in the course of his work on the theory of algebraic
numbers, discovered his famous “pigeon-hole principle” (Schubfachprinzip)
(cf. § 1, Exercises 10 and 11), by means of which he showed that p forms
atty -+ gty + -+ & ogm, — q; (1 < i< p), where the ¢« are
arbitrary real numbers and the m; and the ¢; are integers (not all zero),
can simultaneously be made arbitrarily small ([3], vol. 1, p. 635). By
an entirely different method Hermite arrived at the same result in 1850,
for forms of the particular type mf;— ¢; (1 <i<p) ([4], vol. 1, p. 105).
Finally, in 1884, Kronecker proved the general result stated in Proposition
70f§ 1 ([5]; vol. 34, p- 47).

Of course these results were independent of the general theory of
locally compact abelian groups, which is of recent origin (see the Historical
Note to Chapter III); but this latter theory, particularly the theory of
duality (*), has shed a new light on these old results, mainly by

(*) See for example A. WeiL [8].
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bringing out the fundamental concept of associated subgroups. The
exposition 1n the text is based on these 1deas (*).

The point of view we have taken in this chapter is purely qualitative:
that is to say, we have established the exstenze of linear combinations of $
points, with integer coeffi whi pproxim b closely
to a given point (which may possibly have to satisfy certain conditons);
but one may also ash whether there exist relations between the accuracy

of the jon and the de of the T in the linear
combuations which give the approximation, dus is the pont of view
of the theory of “Dioph don”, and the point

of view of all the authors quoted 1 the first paragraph. Over the last
hundred years these questions have been the object of many and diverse
nvestigations, rich i applications to the theory of numbers; to trace
their development in this context would take us far outside our present
scope, and we shall therefore do no more than refer the reader who wishes to
go mto these theones to the fundamental wntings of Minkowsk [6] and
H. Weyl [7], which are the origin of an abundant iterature (**).

(*) An analogous exposstion had already been sketched by Marcel Rezsz [g)
{*%) For a recent bibliography of the subyect, see ¢ g., J. Kogswa [10].
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CHAPTER VIIT

Complex numbers

1. COMPLEX NUMBERS, QUATERNIONS

1, DEFINITION OF COMPLEX NUMBERS

The polynomial X2 + 1 has no root 1n R, because x2 1> 1 for all
xeR, 1t 1s therefore wreducible over R. [This 15 a particular case of
the analogous result which apphes to any ordered field.]

Derovrion 1 The fild REXJJ(X2 + 1) és called the field of complex numbers
and 1s denoted by '€~ The canontcal ymage of X 1n C s deoted by i, so that
C 15 obtained from the field R by algebrarc adpunction of the root i of the polymo-
mial X? + 1. The clements of C are called complex numbers.

From an algebraic pomt of view the importance of the field C is due to
the following fundamental theorem

Tueores 1. (d’Alembert-Gauss). The fisd C of complex mumbers 1
algebraically closed,

For the proof 1t is enough to establish that (1) every element >0 in R
has a square root, and i) cvery polynomial of odd degree with coeff-
cients n R has at least one root n R, The first of these assertions has
already been proved in Chapter IV, § 3, no. 3. As to the second, of
S(X)=aX" + X1 4 ... 4 g, is a polynomial of odd degree
n{ag%0) with real cocfficients, we may write f (x) = ap'g(#) for
% %0, where

o

agx’
tendsto +1 as x tendsto - o or — 0. Hence there is a number
a>0 such that f(s) hasthesign of @, and f(—a) the signof —a;

80 =1L o
BoX
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DEFINITION OF COMPLEX NUMBERS § I.1

and so by Bolzano’s theorem (Chapter IV, § 6, no. 1, Theorem 2), f has
at least one root in [— g, 4].

Remarks. 1) Theorem 1 can be proved without invoking the theory of
ordered fields by using properties of the fopology of the field C, which
will be defined below (no. 2); see § 2, Exercise 2 and also the part of this
series devoted to algebraic topology, where the theorem of d’Alembert-
Gauss will appear as a consequence of results on the degree of a mapping.

2) Since C is of degree 2 over R, it follows that C is, up to isomorphism,
the only algebraic extension of R other than R itself, and that there is
no field contained in C which contains R, other than R and C.

We know that R may be identified with a subfield of C, and that
every z& C can be written uniquely in the form x 4- 79, where x and
y are real; x is called the real part of z and is denoted by R(z); »
the imaginary part of z, denoted by J(z). Complex numbers of the form
iy (» real) are called pure imaginary. The relation x 4+ iy = o (x,»
real) is equivalent to x =0 and y =o.

Since 2= —1, the elements of C (when given by their real and
imaginary parts) satisfy the following rules of calculation :

(1) *+9) + ¢+ D) =E+5) + i+
(2) (x+ ) (" + ) = (' —») +il» + D).

In particular, (x 4 @) (x — %) = 22 4 y2 e R, so that, if x 4 iy £ o,

(3) LI LA -
x+z-y x2+y2 x2+})2

The second root of the polynomial X241 in C is —i; consequently
the only automorphism of C, other than the identity mapping, which
leaves all real numbers invariant, is that which maps z =x 4 iy to
x—1y; the latter is denoted by z and (in agreement with the general
definitions) is called the complex number conjugate to z. We have

i) = - (z+2) and J(z>=;’l.~(z—z>.

By reason of this automorphism, if f(z) is a polynomial with real coeffi-
cients, we have f(z) =f(z) forall zeC.

The real number £Z = x2 4 »? is called the algebraic norm of z, or
simply the norm whenever there is no risk of confusion; it is a real number
2 0, which vanishes only if z=0. Thereal number \/ 2z =\/x2 {32 >0
reduces to the absolute value of z when z is real, and we still call it the
absolute walue of z, and denote it by |z], when z is any complex’,.
number. The relation |z] = o is equivalent to z=o0. If z and“—z’fr
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are two complex numbers, the conjugate of 2z’ is Z¥, hence
[e2'|? = &2 = |2]*||* and therefore [e2'] = |2 ||z the absolute value
of @ product 15 the product of the absolute values of the factors. In particular,
if 240 and 2 =1jz, we have |ljz] =|1fz].

Finally, for all complex numbers 2z, 2, we have the truangle inequality

O] lz4 2| €2 + 12}

2. THE TOPOLOGY OF C

The mappmg (%, 3) — % + 1 of the real plane R? onto € 1s biyectue;
by means of this byjjection we can fransport to C the topology of R? (o
Chapter VI, § 1, no. 5). The topology thus defined on C s companble
‘with the field structure of C (Chapter I11, § 6, no. 7), because it is compat-
sble with the ning structure of C (Chapter VI, § 1, no. 5) and, by {3),
1/z 13 continucus on the complement C* of o in C.

If we endow the set C wath this topology and with the field structure
defined earler (no. 1, Definition 1), we have defined on C the structure of
a topological field (Chapter 111, § 6, no. 7); whenever we speak of the topology
of C 1t will always be the above topology that is meant.

In the future we shall generally 1dentify the sets € and R? considered
as topological spaces, the subfield R of C is then identified wath the
abscissa of R?, which for this reason is called the real axs; likewnse the
ordmate 15 called the imaginary axs (note that this is not a subfield of C).
The ray with ongin o and direction ratios (1, 0) (identified with Ry)
15 called the postive real semi-axis, the opposite ray, with the same ongm
and direction ratios (~— 1, 0), is called the negative real semi-axis.

For the purposes of graphical illustration we use the representation of
R* (well known 1n elementary analytic geometry) by the ponts of a plane
1 which have been drawn two axes,

respectively the real awis and the imaginary 2xis of C (Fig 71

As in every topological field, every rational function of n complex variables
with complex coefficients is confnuous at every point of C* at which the
denominator does not vanish

¥

It e zmmay

=

Figure 7.



THE MULTIPLICATIVE GROUP C¥* § 1.3

The permutation Z->%z of C is continuous, and is therefore an
automorphism of the topological field C.

TIn fact it is the only automorphism of the topological field C other than
the identity automorphism (see Exercise 4).

The functions R(z), J(z) are just the projections of R? onto its factors,
and are therefore continuous; the same is true of the absolute value |z}, since
it is the Euclidean norm (Chapter VI, § 2, no. 1) of the point (x,y) in R2

The properties of the absolute value lead to another proof of the fact that
the topology of C is compatible with its field structure (cf. Chapter IX,
§ 3, no. 2); the continuity of z + 2z’ follows from the triangle inequality
|z + 2| < |g] + |2’]; that of 2z’ follows from the relation

leg’ — zozp] = l2o(2’ —24) + (2 —z20)20 + (2—20) (&' — 25)]
< 2ol 12" —zo) + lzo- 1z — 2ol + {2 — 20| - 1" — 3|5

Iastly, the continuity of 2~ follows from the relation

et — 27 = lal 2.z — zol - Jzol ™™

3. THE MULTIPLICATIVE GROUP C*

We know from Chapter III, § 6, no. 7 that the topology induced on the
multiplicative group C* of non-zero complex numbers is compatible with
the group structure of C*. Since C¥ is gpen in C, it follows that C*
is a locally compact topological group (Chapter I, § g, no. ¥, Proposition 13)
and therefore complete (with respect to the multiplicative uniformity; cf.
Chapter III, § 6, no. 8, Proposition 8). The multiplicative group R¥ of
real numbers > o is a closed subgroup of C*. Another subgroup is the
set U of complex numbers of absolute value 1, which is identified with
the unit circle S, of R2, and is therefore a compact group. Moreover :

PROPO_SITION Y. The topological group C* is isomorphic to the product of the
topological groups R* and U.

For the mapping z — ( |z}, T}) is a homeomorphism of C* onto R¥ x U

gC_llapte? VI, § 2, no. 3, Proposition g); and it follows immediately that
1t 1s an isomorphism of the group structures.

The topological group R} is already known to be isomorphic to the
additive group R (Chapter V, § 4, Theorem 1); the study of the topolo-

gicgl group C* is therefore reduced to that of U, which we shall consider
in§ea.
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4, THE DIVISION RING OF QUATERNIONS

It follows from Theorem 1 that the field R s a maximal ordered field,
and therefore the only non-commutatewe division ring of fintte rank over R
1s (up to isomorphism) the division ning of quaternions over R; it is
denoted by H and 15 called the duwwston nng of real quatermons (or
simply the diision rng of quaterntons, when there 15 1o fear of confusion).
Smce H 1s of rank 4 over the field R, we can define a topology on H
homeomorphic to that of Ré (Chapter VI, § 1, no. 5). To be precise,
we shall usually sdenttfy H with RS, the elements 1, 1, f, & of the
canomcal basis of H bemg identified respectively with the vectors
£, €1, €5, £ Of the canonical basis of R4

We recall that the muluplication table of the canonical bass of H is
given by the formulac

W=yt -1,
H=—ly=y

The topology of H 15 compatible not only with the ring structure of H
(Chapter VI, § 1, no. 5) but also with 1ts dinsion nng structure; for if x
15 a non-zero quatermion, the coordinates of x~! are rational functions
of those of x, whose denommators do not vanish. The division ring
H, endowed with this topology, 1s therefore a non-commulative topols-
gical dimston ing The quatermions @ + bt (a, b real) form a (topological)
subfield of H, 1somorphuc to the field C, with which it is oftenidentified.

We have thus a thurd example of a locally compact, connected topological
dwision nng, the others bemg R and C. In fact these are the only
topological division nings with these two propertics.

We know from algebra that the reduced norm of a quaternion
X = Xg b 5t o+ 51+ 2k ds

N(x) =+ 2+ + a1 =l
(at is therefore the square of the Fuclidean norm of x). Since
Nixy) = NN,
it follows that the set of all quaternions of norm 1, which 1s dentical with
the sphere S;, forms a compact subgroup of the multiplicative group

H* of non-zero quaternions,

Prorosion 2. The multiplicatwe group H*  of non-zero quaternions 15 o
topalogical group ssomorphic to the product of sts subgroups RY and 8.
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Every quaternion Xs£o0 can be written as x = ||x|l.z where z is a

uaternion with norm 1; since |lxx'[| = ||x||.|]x'|, the mapping
x = (x|, x/||x|)) of H* onto R¥ X S; is an isomorphism of the group
structures, and from Chapter VI, § 2, no. 3, Proposition g it is a homeo-
morphism of H* onto R} X S,.

Remarks. 1) With the use of the relations |{x + y{| < {{x{| + {{y|l and
Hxpll = x|l 1@l it can be proved directly, as with the field of complex
numbers in no. 2, that the topology of R* is compatible with the division
ring structure of H (cf. Chapter IX, § 3, no. 2).

2) From what has been proved it follows that the spheres S; and S,
can carry a group structure compatible with their topology. We shall
see later that, for each integer n other than 1 and g, there exists no
group structure on S, compatible with the topology of S,.

8) Every point of the group S; has a neighbourhood homeomorphic
to R3 (Chapter VI, § 2, no. 4, Proposition 5) but S, is not locally isomor-
phic to R®; for if it were it would be abelian, since it is connected (Chapter
V11, § 2, no. 2, Theorem 1), and this is not the case, since ¢ and j belong
to S; and if #ji (cf. Chapter V, § 3).

2. ANGULAR MEASURE,
TRIGONOMETRIC FUNCTIONS

1. THE MULTIPLICATIVE GROUP U

TueorREM 1. The (multiplicative) topological group U of complex numbers

of absolute value 1 is isomorphic to the (additive) topological group T of real
numbers mod .

U =S8, is compact and connected, and has a neighbourhood of the identity
element 4- 1 homeomorphic to an open interval of R (Chapter VI,
§ 2, no. 4, Proposition 5); the theorem is therefore a consequence of the
topological characterization of T given in Chapter V, § 3 (Theorem 2).

QOROLL:ARY. The muliiplicative group C* of non-zero complex numbers is
isomorphic to the group R X T (cf. § 1. no. 8, Proposition 1).

Remark. The isomorphism of the groups C* and R X T implies the
existence of roots of every “binomial equation” z*=a in the field C.
Using this fact and the local compactness of C we can obtain another
proof of the theorem of d’Alembert-Gauss (Exercise 2).

105



vm COMPLEX NUMBERS

There are only fwe distinct isomorphisms of the group T onto the group
U; for if g, g’ are two somorphisms of T onto U, andif & 1s the
inverse of g', then A’ o g isan automorphism of T, 2nd therefore (Chapter
VI, § 2, no, 4, Proposition 6) we have identically cither g'(x) = g(x) or
£'(x) = g(— x). We may always assume that g is such that s is the
image under g of the class mod 1 of the point ; then, if ¢ denotes
the canonical homomorphism of R onto T, every strict morphism of the
additive group R onto the multiplicative group U is of the form
x — g(g{xfa)), where a 18 a real number o (Chapter VII § 2,
no. 3, Proposition 4); note that the interval J—1|af, 1 ]a|[ is the
largest symmetnic open interval of R which 1s mapped one-to-one onto
1ts ymage by this strict morphism, and that we have g(p(2)) =i We
shall denote the homomerphism * - g(g(x)) by x->e(2); every stmet
morphism of R onto U 15 therefore of the form ¥ ~» e (x/a), where
ao0. The function e(x} is continuous on R, complex valued, and
satisfies the wdentuties

(1) le()] =1,
(@) (s + ) = e(x)e(),

together with the relations
(@) el)=1, effl=1 ed)=—1, ed)=—i e()=1.

From {1) and (2) 1t follows that

[0) el—x) = ;(’5 =,
and from (2) and (3) that

elr+ D) = te(x), elx+ ) =—eld),
ole+3) = —uels)y elx+ 1) = e(s)e

Thus the function e(x) 15 pertodsc and has  as a principal period.

Remark. The mapping %+ ->»e%e(5) is a strict morphism of the
additive group C_onto the multiphcative group C*, and 1ts restriction
t0 & swtable neighbourhood of © 15 a local 1somorphism of C with
C*. Conscquently (Chapter VII, § 2, no. 3) every strict morphim of
C onto C* is of the form  + 19— g*=*¥e(yx + 83), where «, f, 1.8
are any real numbers such that a-—gy52 0. We shall sce later that
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there is just one of these homomorphisms, denoted by 2z —> ¢ such that

. —1 .
lim & = 1;
>0 Z

and the restriction of this homomorphism to the real axis is the same as ¢”
(whence the notation).

2, ANGLES

Since the field R is ordered, we may orient the real number plane R* by
taking e, A e, aspositive bivector (e;, e; being the vectors gf the canon-
ical basis). In the oriented real number plane R? (identified with C

P .
in what follows) we can then define the angle (A; A,) of an arbitrary
pair of rays (A;, A,) with origin o (*). Theset 2 of all angles has
the structure of an abelian group (written additively) defined by

T T N
(Ay Ag) = (Ah A,) + (Az By);
P o e~
SO that, in particular, (AIS AI) =0 and (Az, Al) _ - (A]_, Az)-

The flat angle w is the solution = o of the equation 26 = o0 in ;
it is the angle which the negative real semi-axis makes with the positive
real semi-axis.

If z is any non-zero complex number, the amplitude (or argument) of z,
denoted by Am(z), is the angle which the ray through z with origin o
makes with the positive real semi-axis. The mapping z—Am (2) is

a homomorphism of the multiplicative group C* onto the additive group A,
and therefore we have

Am (') = Am (z) + Am(z') and Am (Z) = Am (z71) = —Am(z).
The angle & = Am (i) is called the positive right angle; it is one of the
solutionsin A of the equation 208 = @, the other one being — 8 = & + w,

The homomorphism 2 — Am (z), restricted to the subgroup U of C¥,
Is an isomorphism of the group structure of U onto that of A (¥¥); if we

(*). We know from algebra that an eguivalence relation is defined on the set of
all palrs, (Ay, Ay) of rays with origin o by considering two pairs (A,, A,)
and (A}, Af) as equivalent if there exists a rofation which transforms A, into

A{ and A, into A simu.ltaneously; the angle of the pair (A, A,), or the
tzzgle AA)2 makes with 8, is then by definition the equivalence class of the pair
1y B9/

(**) This is because every ray with origin 0 meets the i i
field R is Pythagorean. ¢ © circle Sy since the
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use this isomarphism to transpert the topology of U to the group 1%,
the latter group becomes a compact topological group, and the mapping
z—>Am (2) of C* onto U is a stct morphism of the topological group
C* onto the topological group .

Let us denote by 8 —f{6) the isomorplusm of % onto U which
1s the inverse of the isomorphism z-> Am {z) of U onto 2. By defim-
tion R(F(0)) 15 denoted by cos 8 and 15 called the cosine of the angle
8, J(F(8)) 15 denoted by sin 8 and 1s called the sine of the angle §
These functions are continuous on the topological group #, and satsfy
the following relations (foc. ait.), which are immediate consequences of the
defiations above :

coso=1, sino=o, COS @ =1, sing

cos (—0) =cosh, sin (—B) = —sin8,
cos (8 + 6’) = cos § cos §' — sin § s ¢,
sin (8 + 8) = sin 8 cos 8’ + sin ¢’ cos 0,

cos® § +sin? g =1,

By defimtion, the fangent of an angle §e9 1s defined, whenever
€0s %0, to be sin §fcos@ (loc. cit.) and is denoted by tan 6; itisa
continuous function, which extends by continuity to R (Chapter VI,
§ 3, no. 4) by taking the value co for the angles 3 and —3. We have tan
(64 ©) =tanp The cotangent of 6, denoted by cot @, 15 the element
of R equalto 1ftang.

Note that, f Am () =0, we have z=|z[{cost+ ism@); ths
expression s called the imgonometric form of the complex number z 7 0.

3, ANGULAR MEASURE

By Theorem 1 of no 1, the topological group % of angles is womerphic
to T Everystrict morphismof R onto % can be obtained by composing
the 1somorphism g —+Am (2} of U onto © with a strict morphism
of R onto U, if we put 5(x) = Am (e(x)), every strict morphism of
R onto ¥ 15 therefore of the form x — 2 (xfa) (a3£0). Givenareal
number a > o, fixed onceand forall, every angle § corxesponds, by the
homomorphism  x —» (%/a), to a class of real numbers mod a (1e, an
element of Z/aZ) which 1s called the measure of @ relatwve to the base a,
by abuse af language, every real number in this class is also called & measure
of 0; the angle S(x/a) 15 called the angle unth measure x (relative to the
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base @). If x isameasure of § and x' a measure of §' (relative to the
same base) then x 4 &' is a measure of 846, and —x isa measure
of — 0. The principal measure of an angle (relative to the base ) is that
one of its measures which lies in the interval [o, af.

Choice of a base a. We restrict ourselves always to bases a>1. To
each a > 1 corresponds an angle o = 5(1/e) whose principal measure
is 1, and which is called the unit of angular measure relative to the base a;
conversely, to each angle w=£0 there corresponds a unique a>1
such that $(1/a) = w, so that knowledge of the unit of angular measure
determines the base a > 1 entirely.

In numerical calculations one usually takes either ¢ = 460 or a = 400;
the corresponding unit of angular measure is called the degree (¢ = 360)
or the grade (a = 400).

In analysis, and indeed in all branches of mathematics where numerical
calculation is not involved, the base a defined by the condition

. xja) — 1 .
hmei_L)_____.=z

x>0 X

is universally used; this base is denoted by 2z. The corresponding unit
of angular measure is called a radian, and the measure is called radian
measure; with the definition of ¢ for complex z mentioned earlier, we
have e(x) = e¢*= for all x<R.

Once the base ¢ has been chosen, when one speaks of an angle one usually
means a measure of this angle relative to the base a; this abuse of language
has no drawback provided (as is always the case when numerical calcula-
tions are not involved) the base ¢ remains fixed throughout, and provided
that one remembers that two real numbers which are congruent mod a
correspond to the same angle.

For example, what is usually understood by the amplitude of a complex
number 2 7 0 is a radian measure of this angle, determined by conventions
which will depend on the question under consideration; once these
conventions have been made, the measure of the amplitude thus chosen
is denoted by Am (z).

4. TRIGONOMETRIC FUNCTIONS

If' we compose the functions cos 6, sin 6, tan 6, cot§ (defined on %)
with the homomorphism »—+3(x/a) of R onto %, the functions

X X - X
€os 3<—>, sin 3(_>, tan :<—>, cot 3<-£>
a a a a

so obtained are called respectively the cosine, sine, langent and cotangent
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of the number x relative to the base ¢, and are written cos, #, sn, ¥,
tan, %, cot,x. The mapping x —cos,x + isin,x is the composition
of 6 —>cos 8 +isn@ andx -»3(xfa), so that, from the definition
of cos® and sin® mm no 2, we have the identity

© ,(%) = cos,x 4 1sin %,

which is equivalent to

cos,x = m(:(%)), singx = J(:(%))

and also, by (4), equvalent to

D)D) et )2

Hence the identities

® cosy &= m(%‘), siny & = sin, (‘T’)

The only trigonometnic functions which anse 1n branches of mathematics
where numerscal calculation 15 not invelved are these relatve to the
base 2- referred to above; these functions are denoted simply by cos s,
sinx, tans, cotx n place of €0z, X, SINzX, tang,x, cots.x. For the
purposes of numerical calculation, there are tables of the trigonometric
funchons corresponding to the bases a = 360 and & = 4o0; and the
formulae (6) allow us to deduce the values of the trigonometric functions
relative to any other base.

The relations recalled earlier between the cosines and sines of angles evi-
dently gve nise to the same relations between the cosines and the sines of
the numbers which measure these angles; i particular, we have

€0, (% + y) = €03, x cos, y — 51, % sin, 3,
sing {x 4 y) = sin, x cos, y + s, p cos, *,
o5, (—x) = cos,x,  sin, (— &) = ~—sin, x,
cosy x +smix=1.
The functions cos, x and sin,x are continuous on R, and are
periodic with period ¢, moreover, @ is a principal period of these functions,
for the relaton cos,x = cos,y imples that cither sin, x = sin,y of
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sin, x = —singy, 1€,

(2)=(2) = (D))
a a a a
so that either
x=y(moda) or zx=— y(moda);
and similarly
sing X = sing y
is equivalent to either ¥ =y (mod @) or x+y=3a (mod a).

Tt follows from this that cos,® never takes the same value twice in
the interval [o, 1 a]; hence, when restricted to this interval, it is a
bijective mapping of this interval onto the interval [—1, 4 r]. Since
cos0 =1 and cosg(ta) =— 1, & —>cosgx is a sirictly decreasing
mapping of [0, 2 4] onte [—1, 1] (Chapter IV, § 2, no. 6, Theorem 5
and Remark). We have cos,x =0 for x=af4, coszx>o0 for ogx< afy4,
cos,x < 0 forafq < x < aje. Since cos, (—x) = cosgx we can deduce
how cos,x varies in the interval [—21 g, 0], and hence throughout
the whole of R by periodicity (Fig. 8). Since sing % = — cos,(x 4 afs)
we can also deduce how sin, x variesin R (Fig. 8).

1
&k
;
«
1
Q.
~jp 3
8
[#v]
ol

Y=cosq

Figure 8.

The function tan,x is a continuous mapping of R onto R; it tak

the value oo for the values la -+ +ka (keZ). Since E s
period of tan, x, itis a principal period. In the interval [o laz] s}S i
Increases fr01.rn 0 to 1, cos, # decreases from 1 to o, a,n:i tl,lerel?ax
tan, x is strictly increasing in [o, +a[ and maps this interval ogie
[0, + o[; it follows that tan, x is strictly increasing in the intcrva(;

IT11
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Fagure g.

J— 1o, + taf. and 15 a homeomorphism of this interval onto
R (Fg. 9).

5. ANGULAR SECTORS

Guven two dustinet closed rays 4,, A, withorigin o, let » be the principal

measure of the angle (Ag, B;) (relative to a base 4, chosen once and for
all). The umion of the closed (resp. open) rays A withongn o whichare

Y
such that the principal measure y of the angle (B,, 1) satisfies 0 €y <x
(resp o< y<x) s the closed (resp. open) angular sector S with ongin
A, and extremuty A,, as defined 1n algebra. Forby means of a rotauon
we can always reduce to the case where S does not contan the ray
through the pomt — 1. If a and @ are then the angles which 4,
and A, respectively make with the positive real semi-axss, then the
closed angular sector S 15 the uruon of the closed half-lines & which
make an angle § with the positive real semi-axis such that tan
jo<tan 16 <tan 1B Nowif u 2, ¢ are lhe measures of «, 8,9

respectively which lie ' the wterval ]— } @, + } af, these mequaliues
are equivalent to tan, Lu < tan, i 1< zan,-,ln, and since tan, ¥ is an
wncreasing function 1n the mterval ]—4a, + 2 af, they are alse equr
valentto u S €9, orto 0K {—u € p—u; Since X = 20—, y = E— 1l

the result 1s proved for closed angular sectors, and the pruaf for open
ones 15 similar.

A closed angular sector 15 a closed set in R?, and the open augular
sector with the same onigin and the same extremity is its intersor in RY
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¥ Ap
M. s
My
B2
(E
/2 (14
g +1 @x
Figure 10.

T

(Chapter VI, § 2, no. 3, Proposition 3). The angle (A;, Ap), with prin-
cipal measure #, is called the angle of the sector S; S is said to be salient
if x< 1 a, flat (or a closed half-plane) if x = % a; re-entrant if x> %a.
A salient angular sector is acute if x << a, right if x = £a, obiuse
il x>2a. The bisector of the sector S is the ray A which makes an
angle y = 1x with A,

Two distinct closed rays A,, A, determine two closed angular sectors;
their union is the real plane R?, and their intersection is A, U A,.

6. CROSSES

We have also defined in algebra the cross of a pair of lines in a two-
dimensional vector space over a maximal ordered field (*). This definition
applies in particular to the real plane R2 The set £, of all crosses
has the structure of an abelian group (written additively) defined by

Dy, D;) = (D;, Dy) + (Dp, Dy)
so that, in particular, (D/I,Fl) =0 and (ﬁ) = — (m)

The right cross 8, is the solution £ 0 of the equation 20 =0 in o3
1t is the cross which the imaginary axis makes with the real axis.

_ (*) We recall that an equivalence relation is defined on the set of all non-
Isotropic pairs of lines (D,, Dy) by considering two pairs of lines (Dy, D,) and
_(D{, D) to be equivalent if there exists a direct similitude which transforms D,
intoDi and D, into D) simultaneously; the cross of the pair (D,, D,) is then
the equivalence class of the pair.

113



Vi COMPLEX NUMBERS

We define a canomical homomorphism ¢ of the group % of angles
onto the group 9, of crosses by making correspond to the angle which
aray A makes with the positive real semi-axis, the cross which the ine
D containing A makes with the real axis. A cross 6, 1 the mmage
under ¢ of two angles 6 and 8 4 w; thus 2, is isomorphic to the
quotient of % by the subgroup fo,w}. If we fransport to A, the
topology of the quotient group /o, w] by means of the bijectve
homomorphism associated with ¢, then [, becomes a compact topo-
logical group and ¢ a strict morphism of % onto %

1f we compose the homomorphism ¢ of % onto , with the homo-
morphism &~ 5(x/a) of R onto %, we have a homomorphism £—5(x/a}
of R onto %,; every cross fp& 9, corresponds, under this homemor-
phism, toa cfass of real numbers mod % ¢, which 1s called the measure of
the cross 8y (relative to the base a); by abuse of language, every number
in this class is called a measure of §,, and that one which belongs to the
mterval [o, 3 a[ is called the principal measure of 84; the cross 7(xfd)
15 the eross of measure x  Every measure of 8, i3 also a measure of one
of the two angles 0, § + whosc image under the homomorphism ¢
18 e

Here again, once the basc a has been chosen, when we speak of
a cross we generally mean, by abuse of language, a measure of this cross
relative to the base a.

Remark, We can define a homomorphism of C* onto ¥, by mappng
cach complex number z#0 to the cross which the lne through o
and : makes with the real axs Clearly this homomorphsm s the
composition of = and the homomorphism z—>Am {z) of C* onto %,
1t 15 therefore a strict morphum of the topological group C* onto the
topologrcal group "y, and the associated byective homororphism 1 an
ssomorphism of the quotient group C*/R* onto Y.

We know that if D denotes a line making a cress 0, with the real
axis and of (a, §) 15 a parr of direction ratics of D, then the fangent of
the cross U, (denoted bytan 6,) 18 theelement b/a of R (= if a=a),
which 1s also called the sloge of theline D. 1f @ and -+ arc the two
angles whose image under 3 15 8, then we have tan 6, = tan 0= tan (#+5)
The mapping 8 —>tan 0, 13 a homeomorphesm of %, onto R, for the
topological space C*/R*® 15 just the real projective line Py, and from
Chapeer V1, § 3, no. 3, the mapping of a line (considered as a posn¢ of Py)
to1ts slope 13 a homeomorphism of P, onto R. Ifnow we transport to R
the group structure of Y, by means of the mapping 8,—>tanty, we

have defined on R the structure of an abelian topological group, m which
the product of two elements 1,, &, is —‘1+—"L whenever 4, £, belong
T

it
to R and hty#1, for pars (4, ) which do not satsfy these
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conditions, the product of # and ¢, is obtained by extending the
function 212 by continuity to R X R, and is still denoted by Iﬁj‘—;t—:—
I—2x — iz

3. INFINITE SUMS AND PRODUCTS
OF COMPLEX NUMBERS

1, INFINITE SUMS OF COMPLEX NUMBERS

Since the additive group of the field C is the same as the additive group
R? it is not necessary to make a special study of summable families and
series in C, since this is included in the general theory of Chapter VII,
§ 3; we leave to the reader the exercise of translating the results of this
theory into the language of the theory of complex numbers. We state
only the following proposition, which is a corollary to Proposition g of
Chapter VII, § 3, no. 1:

Prorostrion 1. If ()er, and (vy)pen @retwo summable families of complex
numbers, then the family (uyvp)o, wer=u 5 summable and we have

(1) 2wy, = ( 2 ux)( ) U;L)-

peLxm AEL LEM

We leave it to the reader to state the corresponding result for quaternions.

2. MULTIPLIABLE FAMILIES IN C*

In the multiplicative group C* of non-zero complex numbers a family
(2)iex cannot be multipliable unless limz, = 1 with respect to the
filter of complements of finite subsets of I (Chapter III, § 5, no. 2, Propo-
sition 1) ; furthermore, since every point of C* has a countable fundamental
system of neighbourhoods, the set of indices 1 such that z, 5% 1 is count-

able if the family (z,) is multipliable (Chapter III, § 5, no. 2, Corollary
to Proposition 1).

?ROPO.SIT.ION 2. A family (z,) of complex numbers z, = r, (cos 8, + isin )
is multipliadle if and only if the family (r)) of absolute values of the z, is mult-

pliable in R¥ and the family (0,) of amplitudes of the Z, 15 summable in the grou
of angles 9.
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In wiew of the structure of the group C* (§ 1, no. 3, Proposition 1),
the propositionisani di of P 4 of Chapter I1I,
§5 R0 4. .

If we map each angle § to that one of its measures (to any given
base a) which belongs to the interval 1— L4, { 4], we have a losal
womorphism of A with R (§ 2, no. 2); since im0, = o with respect
to the filter of complements of finite subsets of I, we may replace the

dition (in the of Proposition 2) that the faxuly 8, should be
summable ;% by the condition that the family () of measures of
the angles 6, which belong to J—Za, 1 4] should be summable

R

The followng theorem gives another criterion for a family of complex
numbers, put in the form (z++ ), to be multipluble m C*. (It
generalizes Theorem 4 of Chapter IV, § 7, no. 4; see also Chapter IX,
Appendix, o 2, Proposition 1} ¢

Turores 1. The famly (1 -+ u),ex i multiphable in C% if and only

of the family (') is summable in R.
For each fimte subset J of I, put

pn=l{a+a), s4=Za u=2X{

i€ & =
Leswa 1 For each fimts subset J of X, let o(J) =sup (pp—1). Then
for each subset L of ] we have LS
(2) lo—1— o)< e(Dar
This 15 clear if L 1s empty. We proceed by induction on card {L).
Let L=Ku {2}, where A ¢ K; then pp = px (1 +a) and sy =s +a,,
so that pL—1-—s; = (px—1—sg) -+ (Px— 1)&; hence, by the
ductive hypothesis and the definition of ¢(J), we have

1t 1 — sl < e(Dox + ¢eBla] = o(Dsy,

which proves the lemma,

Lesaz  Jf J a5 fimte subset of 1 such that o(J} < 1/4, then

los] < 4o (D/(x — 42(7))-
For since g, < oy for all subsets L of J, it follows from (2) that
Isui < ¢(0)ss + 1, — 1| < (1 + o)e(J); but by virtue of Chapter VII,

§3, no. 1, Proposition 2, we have |a]< 4 sup lau}, hence a, < 4p(J)(r+a):
and the result follows, e

116



INTINITS PRODUCTS OF COMPLEX NUMBERS § 3.3

Now let us show that the condition stated in Theorem 1 is .fzgﬁicient.
[he hypothesis that the family (|u|) is summable in R implies that
he family {x < jz) i ruitipliahle in RT  (Chapter IV, § 7, no. 4,
Cheorem 4); hence. for each = > o0, there is a finite subset Jo of I
uch that, for each finite subset L of I which does not meet Jo, we
ave |[ (r = jsl)—1<s But we can write IHa+a)—1 in

tEL ‘€L

he form % (H "’A where M runs through all non-empty subsets of L;

M €M

ind since ‘H #, = ][ |xls we bave

tEM tEM

e+ =< (1) = [T+ uh)—r <=

t€L €M

This proves our assertion, by virtue of Cauchy’s criterion, since C* is
a complete group.

We still have to show that the condition of Theorem 1 is necessary.
If (1 + t),e; is a multipliable family in C*, there exists a finite subset
] of I such that, for every finite subset H of I which does not meet
], we have H (r +u) —1{<1/8. By Lemma 2, it follows that
t€H l
2 |u) € 1 for every finite subset H of I which does not meet J, and

e
ilence the family (Ju,]) is summable in R (Chapter IV, § 7, no. 1, Theo-
rem 1).

The proof above applies also, mutatis mutandis, to (ordered) infinite products
in certain non-commutative division rings and algebras (see Exercise 6,
and Chapter IX, Appendix).

3, INFINITE PRODUCTS OF COMPLEX NUMBERS

For an infinite product of non-zero complex numbers with general factor
Z =r,{cos §, --- 7sin §,) to be convergent in C¥, it is necessary and
sufficient, from the structure of the group C¥*, that the product with
general factor r, converge in R* and the series with general term ¢,
(the measure of §, which lies in ]—21a, 14]) convergein R. )

DerNITION 1. An infinite product of complex numbers, with general factor 1 + u,,
ts said to be absolutely convergent if the product with general factor 1 + lug] s

conrergent (or, equivalently, if the series with general term |ua} is conver-
gent).

PROI.’OSITION 3. An infinite product of complex numbers is commutatively conver-
gentif and only if it is absolutely convergent.
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Thus follows from Proposition g of Chapter 111, § 5, no. 7, and Theorem 1
ofno g above.

Remarks, 1) The product with general factor |t + i, can be convergent,
and mdeed absolutely convergent in R?, without the convergence of the
product with general factor 1+ || (sce Exercse 4); of course, this
cannot happen of all the u, arc real and > o from a certun index
onwards

2} As already remarked for products of factars > o, the concergene of
the sertes wth gencral term 1, 13 nesther necessary nor sufictent for the conver-
gence of the product with general factor 1+ uyr

4. COMPLEX NUMBER SPACES
AND PROJECTIVE SPACES

1. THE VECTOR SPACE C*

Since the topological space C can be identificd with R?,  the topological
product C* of n spaces identical with C can be identified with R™
qud topological space, likewise, the topological group structure of C?, the
product of the addive (topological) group structures of the n factors,
can be 1dentified with that of the additive group R**  Butsince C isa
field, we may define on C* the structurc of an n-dimensional tector space
ouer C, the product az of a complex number 2 and a point z = {z)
of € beng the pomt (az,); this vector space structure should be eare-
fully distingmshed from the structure of a 2n~dimensional vector space over R,
defined on R*™ (Chapter VI, § 1, no. 3). We shall reserve the notation
C" for the topological space which is the product of n spaces identical
with C, endowed in addition with the vector space structure over C
which has just been defined; C® 1s called complex number space of n dimen-
stons. Note that the mappmg (4, 2} —z is continuous on € x €%
An affine inear mapping of C" into C is also an affine Linear mapping
of R into R, but the conversc is false.
For example, the mapping z-»Z 1s a linear mapping of the vector space
R‘d;mto atself but 1s not a linear mapping of the vector space € onto
atsclf.

Exery affine inear mapping of C* into C™ is therefore umiformly contin-
uous; in particular, every affine lincar mapping of C* onto jtself it
a homeomorphusm.
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Every affine linear variely of p dimensions (p <n) in the vector space
C" is also an affine linear variety of 2p dimensions in the vector space R2;
here again, the converse is false. To avoid all confusion, (affine) linear
varieties of p dimensions in C* will be called complex linear varieties of
p dimensions (the linear varieties of R*" being called real linear varieties
when necessary to prevent misunderstanding). In particular, complex
linear varieties of one dimension (resp. two dimensions) are called complex
lines (resp. complex planes), and complex linear varieties of n— 1 dimensions
are called complex hyperplanes.

It is often convenient to regard real number space R™ as embedded
in complex number space C? by identifying R"® with the subset of
C* defined by the relations J(z;) = o0 (1 <k <n). The topological
group structure induced on this subset by the topological group structure
of C* coincides with that of R".

Note that Rn, thus embedded in C?, is not a complex linear variety in C,

A system of p vectors of R" which is free over R is also free over C.
Every real linear variety V of p dimensions in R* generates a complex
linear variety V' of p dimensions in C® such that V is the #race of
V on R% if V is defined by a system of n—p linear equations
JSiu(x) =ay, where the f, are linear forms on R® (with real coefficients,
and linearly independent over R) and the a4, are real numbers, then
the same equations define V', but now the coordinates of x take
complex values.

Conversely, if a complex linear variety of ¢ dimensions has a non-
empty intersection with R”", this intersection is a real linear variety,
but its dimension may be < p.

2. TOPOLOGY OF VECTOR SPACES AND ALGEBRAS OVER THE FIELD C

All the definitions and all the results of nos. 5 and 6 of Chapter VI, § 1,
relative to topologies on vector spaces and algebras over the field R,
and in particular spaces and algebras of matrices with elements in R,
remain valid with no modifications when we replace R by C throughout.

3. COMPLEX PROJECTIIVE SPACES

With the notation recalled in Chapter V1, § 3, no. 1, we make the following
definition, analogous to the definition of real projective spaces:

I_Dm\mq.\' 1. TFz profectice space 1?,‘{ Cj, erm_u'ed with the topalogy which
s the qustiens of that of C2., by the equivalence relation A (C), is called complex
brojectice speze of 1 dimersions.
The projective spece P,{C) i called the amplex projectics line, and P,(C)
I called the complex frofectios flore.
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Most of the arguments relating to real projective spaces extend with very
slight modifications to complex projective spaces.

In the first place we see that the topological space P, (C) 1s Hausdorff
by the argument of Proposition 1 of Chapter VI, § 3, no. 1, which applies
word for word simply by replacng R by C. Again, the proof of Proposi-
tion 2 of Chapter VI, § 3, no 1 shows that B, {C) 1s compact and connected,
and homeomorphic to the quotient of the sphere Sy, {considered as
embedded in the space C;, identified with R, by the equivalence
relation nduced on this sphere by A,(C); the only point of difference
15 that now, 1f n > o, the equivalence classes for this relation are homeo-
morphic to the arcle S,.

For this reason, Proposition g of Chapter V1, § 3, no 1 has no analogue
for compex projective spaces.

Next one shows, as in Chapter VI, § 3, no. 2, that every p-cimensional
projective linear variety m the space P,(C) is a closed set, homeomorphre
to P,(C), and that ts complement s dense in P,(C) if p < n. The
proof of Proposttion 5 of Chapter VI, § 3, no. 2 can be transposed as it
stands, sumply by xubsmmmg € for R, and shows that (if #>0)
the perplane m_P,(C) is homeomorphic
to €7, and Therefore. that every point hias a neighbourhood homeomorphic
to €% This result allows us to embed complex number space C* m
complex projective space Py(C), by C* with the

ofap , called the “ hyperplane at mfinity " (usually
the hypcrp]zne whose equation 1s xg = o). In the particular case #=1,
the hyperplane at infinity 15 a pont, and Alexandroff’s theorem shows
that Py(C) 1s homeomorphic to the space € obtained by compactifying
the locally compact space C by adjomning a  pomt at infimty "', denoted
by . Proposition 4 of Chapter VI, § 2, no. 4 then shows that the complex
projective line Py (C) 15 homeomorphuc to the sphere S,

We leave to the reader the task of enunciating the results analogous
to those of Chapter VI, § 3, no. 4, for functions which take their values
in C.
Consider the space R™1 as embedded in €1 (no. 1). Let f be the
canonical mapping of C¥; onto1ts quotient space P,(C). The subspace
S (RY,) consists of the pomts of P,(C) which have at least one system
of real homogeneous coordinates; let us show that f(R¥,) 15 homeo-
morphic to real projective space P,(R), which wall allow us to consider
the space P,(R) as embedded in P,(C). Now the relation induced by

A,(C) on RE, 13 A,(R), the canonical mapping ¢ of

RE1/A(R) = Po(R)
onto f{R%) is continuous (Chapter I, § 3, no. 6, Proposition 10); since
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P,(R) is compact, ¢ must be a homeomorphism (Chapter I, § g, no. 4,
Theorem 2, Corollary 2).

‘We can also prove that ¢ is bicontinuous without using the compactness
of P, (R), by invoking the criterion of Propesition 10 of Chapter I, § 3,
no. 6 (see Exercise 3).

Since every vector subspace of p - 1 dimensions of R"*! generates a
complex vector subspace of p -+ 1 dimensions in C™1, we see that
every projective linear variety V of p dimensionsin P,(R) (V is called
a real projective linear variety) generates a projective linear variety V’
of p dimensionsin P,(C) (V' is called a complex projective linear variety),
such that V is the trace of V' on P,(R). Moreover, every system of
(homogeneous) equations of V is also a system of (homogeneous) equa-
tions of V' when we allow the variables to take complex values.

4. SPACES OF COMPLEX PROJECTIVE LINEAR VARIETIES

With the notation recalled in Chapter VI, § 3, no. 5, we define similarly
the spaces of projective linear varieties in a complex projective space:

Derinrrion 2. The quotient space P, ,(C) of the topological space Ly, piy (C)
by the equivalence relation A, (C) is called the space of projective linear varieties
of p = 0 dimensions in the projective space P,(C).

By the argument of Proposition 6 of Chapter VI, § 3, no. 5, we see first
of all that P, ,(C) is Hausdorff. Next we prove that it is compact by
replacing the subspace Vi1 pig (in the proof of Proposition 7 of Chapter
VL § 3, no. 5) by the subspace W,y 4y of Ly, pra(C) consisting of
systems of p + 1 vectors which form an orthonormal Hermitian basis of the
vector subspace they generate; that is to say, W, p+1 consists of the
matrices X = (x;) which satisfy the conditions

n
dafy=1 (1<i<p+),
Jj=0

.Zo Mpg =0 (IFk).
J:

The proof of Proposition 8 of Chapter VI, § 3, no. 5 extends unaltered
for the space P, p(C) and shows that this space is connected and locally
connected and that cach of its points has a neighbourhood homeomorphic
to PP Finally the proof of Proposition g of Chapter VI, § -

1<
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no. 6 apples without change, and therefore the Grassmannian G, (C)
is homeomorphic to B, ,(C)» g

Remark. Most of the properties common to the real and complex number
spaces (resp. projective spaces) are also vahd for number spaces (resp,
projective spaces) defined in the same way over the divwsion ring of quaternims
H; indeed, they are capable of cxtension to many other topological fields
and dwision rings {cf. Exercises 2 and 6).



EXERCISES

§1
1) Let f(z) = 2" + 2"t + --- + 4,42 + a, be a polynomial of
n

degree n with complex coefficients and put f{z} = H(z——z,«). Let
To = sup |z i=1
1

a) Show that if the real number r > o is such that
™ < |t - Japfri=? - e - lapnfr + e,
then r, <r, and deduce that ]
Ty < sup <I’ 2 lakl>'

k=1
b?‘ Let (A)1<ign be a finite sequence of n real numbers > o such that
217\?1 = 1. Show that 74 <sup (lax)¥* [use a)].
¢) Deduce from ) that, if the l::oeﬁ"lcients a; are all non-zero, we have

an— a,

ap

1

genes 2 ]

ro < sup (2l 2

n—2

d) Deduce from 4) that
o< jag—1|+ leg—a) + -0 ey —a,] + g,

[consider the polynomial (z—1)f(2)]. Hence show that, if the ¢
are all real and > o, we have

a an— a
7o < sup al’_z,...,_"_:l,—l_.
a4 Oy Oy
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2) An algebraic number is a complex number which is algebraic over the
field Q of rational numbers. Show that the ordered field B of all real
algebraic numbers is 2 maximal ordered field, but that 1t 1s not complete
in the topology induced by that of R [this topology is the same as G,(B);
of. Chapter IV, § 3, Exercise 2 8)].

€ 3) o) Let K be a maximal ardered field, endowed with the topo-
logy T,{K), which 1s compatible with its field structure (Chapter IV, § 3,
Excraise 2). Let

SO0 = aXo aXr ot

be a polynomial in K[X] which has a simple root « m K, Show that,
for cvery clement £>0 in K, there exists >0 1n K such that
every polynomial g(X) = 8X* + 5,X*1 4 --- + b, for which
la, — b,| <% _for all 1, has exactly one simple root B such that |5——a‘]$ 3
(Expand f and g m powers of X —q.) Give an upper bound for ¢
in terms of the g,, « and ¢.

8) Deduce that, if K 15 a maximal ordered field, its completion R with
tespect to Go(K) (which 1s a field with a natural order structure :
Chapter IV, § 4, Exercise 2) is a maximal ordered field.

©) Let K, be an ordered ficld and et § = K{(X)) be the feld of
formal power series 1n one indeterminatc over Ko; lnearly order §
by taking the clements >0 1n S tobe o and the formal power sesies
whose term of lowest degree has coeflicient > 0. Show that 5, endowed
with the topology GyfS), 18 complete, but that § is not a maximal ordered
field (show that the polynomials YP —X of S[Y] are srreducible for each
nteger p > 1)

d) In the cxample of ), take K, =R Let K be a maumal ordered
algebraic extension of S, show that K is not complete in the topology
Go(K). (Embed S i the field E of formal power seres with well-
ordered exponents, ordered in the same manner as S, and embed K
in a maximal ordered extension Q of E. Observe that E is complete,
and give an example of 2 Cauchy sequence in K which converges to an
element feE which s not algebraic over S; choose f so that there
18 an mfimte number of S-somorphisms of E into an algebraic closure
of 0, such that the umages of f under these isomorphisms are all
dustinet ]

4) Show that every )} hism (i 1y injective) f
of the topologucal field € onto a subfield of C 1s exther the identity auto-
morphism or the automorphism z->3. {Note that we must have
S(x) =x forall xeQ, and deduce that f(x) =« forall xeR] Show
that there exist an infinite number of discontinuous 1somorphisms of C
onto subfields of € other than € itself.
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€ 5) a) Let K be a non-commutative division subring of the division ring
of quaternions H; show that the centre Z of K isasubfield of the centre
R of H. (Observe that every element of K commutes with every
element of the field I. generated by ZuR; if Z<¢R, the field L would
be a maximal subfield of H, and K would be contained in L, contrary
to hypothesis.)

b) Deduce that every isomorphism f (not necessarily continuous) of H
onto a division subring of H is an inner automorphism x ~ axa=1 of H.
[The restriction of f to R is an isomorphism of R onto a subfield of
R, by virtue of a); use Exercise g of Chapter IV, § 3.]

§ 2

1) Let ¢ be a non-zero complex number, and n an integer > o. For
each real number r>o0 such that 7" <|a|, show that there exists
zeC such that |z} =7 and |2+ 2" = |a] —7r" Deduce that, if
f is a polynomial of degree > o0, with complex coefficients, we cannot

have |f(zo)] < ]f ()] at all points z of a neighbourhood of a point
Zg, provided that f(z,) % o.

2) Show that, if f is any polynomial with complex coefficients, not
identically zero, there exists a real number r > o0 such that

| £ @1 > 11 ()]

whenever |z} >r. Hence, with the help of Exercise 1 and Weierstrass’
theorem (Chapter IV, § 6, no. 1, Theorem 1), give another proof of the
fact that C is algebraically closed (consider the function f on the compact
set of points z such that |z] <7).

3) Show, without using Theorem 1, that the mapping z — z[Z is a strict
morphism of the topological group C* onto the topological group U.
Deduce that the mapping ¢ — (1 4-it)/(1 —it) [(1 4+ dt)/(1 —it) =—1
if = o] is an isomorphism of the topological group R (no. 6) onto
the topological group U, and hence give another proof of Theorem 1.

€ &) Let K be the smallest Pythagorean subfield of R and let K'=K(1).
Let G be the multiplicative group of elements of K’ of absolute value 1
(a subgroup of U). Show that G is not isomorphic to the additive
group of numbers of K mod 1. (Observe that in the latter group there
exist elements of any prime order p; on the other hand, if p is a2 prime
such that p—1 is not a power of 2, show that G contains no pth
oot of unity other than 1, by noting that the degree over Q of every
element of K’ isa power of 2.)
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§3
€ 3) For every finite sequence s = (Zuher of complex numbers, put

Z ladd = ps- suP| 3 Zk|

(cf Chapter VII, § 3, no 1, Proposition 2).
o) * Iz =rc(cosg +ising), where ro=ly| and 5y is the
principal radian meastre of the amplitude of z,, put

() = 2 nleos (5 —pu)*
=%

for every pefo, 2¢[. Show that the least upper bound of £(3) in the
intenial {o, 2 1 equal to sup, 3 z+ By considering the integral
JcCr|key

.
/; f()dg, deduce that for all fmte sequences s we have g <%

and that there 1s no firute sequence (z;) = s such that p, ==,

4) Show that, for every = >0, there exists a finite sequence (z) =+
such that p, > x—s¢ (take the 2, to be the roots of a binomial equation
of sufficiently high degree). ,

2) Let (2) be an infinte sequence of complex numbers z, = x, + v,
such that x, > o for all s#. Show that if the series whose general
terms are z, and 2% are convergent, then the series whose general
term 15 22 s absolutely comvergent. Give an example in which
this result1s false when the condition x, > o {which can also be written
—=zf2 € Am (z,) € ={2) 15 replaced by

—(t—9ZsAam@) <+ 2
2 2

no matter how small the real number e> o0 may be. (Here Am (2}
denotes that radian measure of the amplitude of z, which belongs to the
mterval 1— =, + 1))

3) Let (2),e; be a famuly of complex numbers such that ]| |o=+ @,
(e Tl = o). Show that the family (2) is mdtipliable m the
space € (§ 4, no. 3) and that 1ts product 1s oo (resp. o).

4) Show that the infimte product whose general factor is 1 + ijn is not

convergent, but that the product of the absolute values of its factors is
absolutely convergent.
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5) Let (z,) be an infinite sequence of non-zero complex numbers such
that lim z, = 1. Show that, if there exist permutations ¢ of N such

n>x . .
that the infinite product whose general factor is Zz4y is convergent, then
the set of products
o
P Zany
n=0

corresponding to all these permutations can be (i) a single point; or
(i) the whole group C*; or (iii) an open ray with origin o; or (iv)
a circle with centre 0; or (v) a “logarithmic spiral”, the image of R
under the mapping ¢ — at=t (cos ¢ + isin ¢), where a is a real number
>0 and 1. (Argue as in Exercise 2 of Chapter VII, § 3, using the
fact that the multiplicative group C* is isomorphic to the additive group
RXxT)

4

1) Let f be a polynomial in n complex variables, with complex coeffi-
cients and not identically zero. Show that the complement in C* of
theset S of points z = (z;) such that f(zy, Zp, ..., 2x) = 0 (the “alge-
braic variety” with equation f=o0) is connected. (If 4, b are two
distinct points of (S, consider the intersections of S and the complex
line through a and &.)

@ 2) Let K be a non-discrete Hausdorff' topological division ring (or
field).

a) Let E be a left vector space of dimension n over K. If ();<i<n
is a basis of E, and if we transport to E the topology of X" (the product
of the topologies of the factors) by means of the bijective linear mapping

n
(xi) - 2 Xy,

=1
then the topology so defined on E is independent of the basis (a;)
chosen, is compatible with the additive group structure of E, and is
such that the mapping (f, x) >#x of K X E into E is continuous.
If ¥ is a vector subspace of E, the topology induced on F by
that of E is the same as the topology defined on F by starting from

an arbitrary basis of F, as above; F is closed in E, and [:F is dense
in E unless F = E.

b) Generalize Propositions 4, 5 and 6 of Chapter VI, § 1 to the division
ring K. (To show that the mapping X —> X-1 is continuous in the
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ighbourhood of every square mamx of order n over K,
when K 1s not ive, use induction on 2 neigh-
bourhoud of the unit matrix I, of arder =, ncte that every matnx X
sufficiently near to I, can be put n the form

1o ° PPz - B
°

: Lo : ¥ '

Ha o

where I,y 1s the unit matnx of order n—1 and 7 is a nonsingular
matrix of order 7— 1.)

¢) If K is commutauve and E is an algebra of rank n over K, then
the topology of E 1s compatible with its ring structure. Furthermore, if
E has an identity element, the group G of units of E 1s open and dense
mn E, and the topology induced on G by that of E 15 compatible with
the group structure of G (If e is the identity element of E, and if
x 132 unit of E, then each of the equations xy =e¢, ypx =¢ has ons
and one only solution y; for each of these equations consider the equivalent
system of n lincar equations which give the components of y with respect
to a baws of E.)

d) If K 15 a non-complete field and E an algebra of rank n over K,
and if the completion R of K 1 a field, then the completion £ of the
algebra E 15 that obtained by extending the ring of operators of E to K.
Hence construct examples of a topological diviston ring whose completion is
not a dwision ring

3) Using Proposiion 10 of Chapter I, § 3, no. 6, prove that the real
projective space Po(R) is homeomorphic to the subspace of Py(€)
comlstlng of lhcsc ponts whlch have at least one system of real

R, beng d as embedded in Cf,,
let A be a closed set m R, saturated with respect to A.(R), let
B be the set of all points {x, where xeA and feU; show that
B 15 saturated with respect to A,(C), and that A 1s the trace of B
on Riy]

4) In P,(C) let H, be the “quadric” defined by the equation
R FE

Show that every point of H, has an open neighbourhood homeomorphic
to C*1, that H, 1s connccted and that the intersection of H, with
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the complement of any complex projective hyperplane is connected (to
prove this last assertion, reduce to the case n = 2).

Show that H, is homeomorphic to S,, and Hy to S, X §; (use the
parametric representation of the quadric by means of its rectilinear
generators).

5) The sphere S; being considered as a subspace of C?, consider the
mapping of S; into R? which sends each point x = (%5, %y, %) of
S, (#1, %2, %3 complex) to the point y = (P)1<i<r of R?, where

K= lelz - |x2|2, Jo = R (x,%2), Js = 3("1@): Dy = R (x1%3),
5 = J(x%), Yo = R(x5%;), Y7 = J(%5%s).

This function has the same value at two points x, x’ of S; such that
x' ={x, where |{| = 1. Show that, by passing to the quotient, it
induces a homeomorphism of P,(C) onto a subspace of R

6§ 6) Let K be a non-discrete Hausdorfl topological division ring (or
field).

a) Endow the left projective space P, (K) with the quotient of the topology
of K¥, by the equivalence relation A,(K). Extend Propositions 1,
4 and 5 of Chapter VI, § 3, to P,(K) endowed with this topology. Show
that P,(K) is connected if K is connected, and otherwise is totally
disconnected.

* b) If K is locally compact (but not discrete), show that P, (K) is
compact. (Let U be a compact neighbourhood of o in K; let
aeX be such that

lim o™ = o;
ma»o»

let S be the subset of K¥, consisting of points x = (x;), all of whose

coordinates x; belong to U, and such that x,&4.[U for some index
k; show that P,(K) is the canonical image of S).

¢) Likewise, extend Definition 2 and Propositions 6 and 8 of Chapter VI,
§ 3 to the set P, (K) of projective linear varieties of p dimensions in
P,(K); * also Proposition 7, assuming that K is locally compact [for
Proposition 7 consider, for each sequence ¢ of indices, the subset S, of
Ag consisting of matrices all of whose rows belong to the set S defined
in 8); show that P, ,(K) is the canonical image of the union of the sets
Sql. + Generalize Proposition g of Chapter VI, § g, when K isa Seld.

d) .:[f K is not commutative, let P, ,(K) denote the space of p-dimensional
projective linear varieties in the right projective space of n dimensions
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t d of every lar square matrix of order 7 over K,
when K 1s not use on n: anc:gh.
bourhood of the unit matrix I, of order n, note that every matrix ¥
sufficiently near to I, can be put in the form

10 o R
A 0

: J : r '
2 o

where I,_, 1s the unit matrix of order 2 —1 and 7 1s 2 nonsingular
matrix of order 7 —1,

¢) If K 1s commutative and E is an algcbra of rank n over K, then
the topology of E is compatible with its ring structure, Furthermore, if
E has an identitv element, the group G of units of E is open and dense
n E, and the topology induced on G by that of E is compatible with
the group structure of G. (If e is the identity element of E, and if
x 152 unit of E, then each of the equations xp = e, yx —e has on
and one only solution y, for each of these equations consider the equivalent
system of # linear equations which give the components of p with respect
10 2 basis of E.)

d) If K 15 a non-complete field and E an algebra of rank n over K,
and if the completion K of K 1s a field, then the completion £ of the
algebra E 15 that obtained by extending the ring of operators of E to X.
Hence construct examples of a topological division ring whose completion is
not a davision ring

3) Using Proposition 10 of Chapter I, § 3, no. 6, prove that the real
projective space Po(R) is homeomorphic to the subspace of Py(C)
conslshng of !hcsc points whxch have at lcast one systcm of

[R2,; being das din Cy
let A be a closed set in R¥,, saturated with respect to Ay (R); let
B be the set of all points {x, where xeA and {eU; show that
B 18 saturated with respect to A4(C), and that A 1s the trace of B
on RY:]

4) In P(C) let H, be the “quadric” defined by the equation
A+t tah=0

Show that every pomt of H, has an open neighbourhood homeomorphic
to €1, that H, is d, and that the i of H, with
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the complement of any complex projective hyperplane is connected (to
prove this last assertion, reduce to the case n = 2).

Show that H, is homeomorphic to S,, and H; to S, X S, (use the
parametric representation of the quadric by means of its rectilinear
generators).

5) The sphere S; being considered as a subspace of C3, consider the
mapping of S; into R?7 which sends each point x = (x5, x5, ;) of
S; (%1, %5, ¥, complex) to the point y = (¥)1<i<y of R’, where

5= fxrf® — |xel?, Yo = R(x%s), Iy = J(xi%y), Y1 = R(x%s),
s = J(x1%,), Yo = R(x:%s), Y7 = Jxs%s).

This function has the same value at two points x, x' of S; such that
x'=1{x, where |[{| = 1. Show that, by passing to the quotient, it
induces a homeomorphism of P,(C) onto a subspace of R".

§ 6) Let K be a non-discrete Hausdorff topological division ring (or
field).

a) Endow the left projective space P,(K) with the quotient of the topology
of K¥, by the equivalence relation A,(K). Extend Propositions 1,
4 and 5 of Chapter VI, § 3, to P,(K) endowed with this topology. Show
that P,(K) is connected if K is connected, and otherwise is totally
disconnected.

*5) If K is locally compact (but not discrete), show that P,(K) is
compact. (Let U be a compact neighbourhood of o in K; let
acK be such that

lim a™ = o}
ma>o

let S be the subset of Kj¥,, consisting of points x = (x;), all of whose

coordinates x; belong to U, and such that xkea.ﬂﬁ for some index
k; show that P,(K) is the canonical image of S).,

¢) Likewise, extend Definition 2 and Propositions 6 and 8 of Chapter VI,
§ 3 to the set P, ,(K) of projective linear varieties of p dimensions in
P,(K); * also Proposition 7, assuming that K is locally compact [for
Proposition 7 consider, for each sequence ¢ of indices, the subset S; of
A consisting of matrices all of whose rows belong to the set S defined
in b); show that P, ,(K) is the canonical image of the union of the sets
S¢]. » Generalize Proposition g of Chapter VI, § 3, when K isa Sield.

d) f_[f K is nof commutative, let P;, ,(K) denote the space of p-dimensional
projective linear varieties in the right projective space of n dimensions
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over K [the topology of P; (K} being defined in the same way as
that of P.,{K)]. Show that ‘P, ,(K) and Pi, , (K} arc homeo
morphic {w every (p + 1)-dimensional \v:cmr subspacc V oof u:e Lt
vector space E = Ki*t make

of V, which 15 a vector subspace of the dual E* of E].

7) Extend Exercise 6 of Chapltl VI, § 3 to spaces of projective hnear
varieties over C and ¥

€ 8) Extend Exercises 7, 8 and g of Chapter VI, § 3 to the spaces W, ,
{ro. 4).
In lhe vector space H' over the division nng of quaternions, we

agun denote by W, , the set of all sequences (xyigagy Of § vectan
Xy = {(%hgsea such that

(r<i<y)

and
.
S xf =0 (k)
I

(¥ denoting the conjugate of the quatcrnion x). Extend Exercises 7,
8 and g of Ghapter VI, § 3, to these spaces W, .
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HISTORICAL NOTE

(Numbers in brackets refer to the bibliography at the end of this note.)

We shall not repeat here the complete history of the development of the
theories of complex numbers and quaternions, since these theories belong
essentially to algebra; but we shall say something about the geometrical
representation of complex numbers, which in many respects was a deci-
sive step forward in the history of mathematics.

Without any doubt the first to have a clear conception of the one-to-one
correspondence between complex numbers and points in the plane was
C. F. Gauss (*), who moreover applied this idea to the theory of complex
numbers and foresaw the uses to which it would be put by the analysts
of the 1gth century. During the 17th and 18th centuries, mathe-
maticians had gradually come to the conviction that imaginary numbers,
which allowed them to solve all quadratic equations, could also be used
to solve algebraic equations of any degree. Many attempts to prove
this theorem were published during the course of the 18th century; but,
not mentioning those which were based only on a vicious circle, there was
not one which was not open to serious objection. Gauss, after a detailed
examination of these attempts and a closely reasoned criticism of their
deficiencies, proposed in his inaugural dissertation (written in 1797,
published in 1799) to give at last a rigorous proof. Taking up an idea
thrown off in passing by d’Alembert [in his proof published in 1746 (**)],

(*) The first to have had the idea of such a correspondence was undoubtedly
Wallis, in his Treatise on Algebra published in 1685; but his ideas on this topic
were confused and had no influence on his contemporaries.

_(**) This proof (in which in fact &’ Alembert does not make any use of the remark
which served as Gauss’s starting point) is historically the first which does not reduce
to blat:}ntly begging the question. Gauss, who justly criticized its flaws, nevertheless
recognized the value of d’Alembert’s fundamental idea: “the essence of the proof
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Gauss remarked that the points (a, 8) of the plane which are such that
a4 b is a root of the polynomial P(x + v) = X(x, y) + i¥(x, 5) are
the intersections of the curves X = 0 and Y = o; by means of a qualita-
twve study of these curves, he then shows that a contuons arc of one of
them jons points of two distinct regions bounded by the other, and concludes
from this that the curves mtersect ([1], vol. 3, p. 3; see also [14]}. Inits
clarity and origmnality this proof was a considerable advance on previous
attempts, and was certainly one of the first examples of purely topological
reasoning applied to a problem of algebra (*).

1In his dissertation, Gauss does not explicitly define the correspondence
between points of the plane and complex numbers; as to the latter,
and the questions of “‘existence” to which they had given rise for two
hundred years, he reserves his position and deliberately presents all bis
arguments 1n a form which involves only real quantities, But the march
of adeas n his proof would be wholly unintelligible if it did not presuppose
a fully conscious identification of points of the plane with complex numbers;
and hus research at the same period m number theory and elliptic functions,
which also involve complex numbers, remforces this supposition. The
way 1o which the 1 jon of inaries became familiar
to him, and the results 1t could lead to in his hands, are clearly shown by the
notes (published only recently) m which he applies complex numbers
to the solution of problems of elementary geometry ([1], vol. 4, p. 366 and
vol. 8, p. 307) Even more exphat 15 the letter to Bessel m 1811 {[1},
vol. 8, p. g0-g1) mn which he sketches the essentials of the theory of integra-
tion of functions of a complex variable: “Just as the whole domamn of real
quantsties can be represented by means of an wnfinite ine, so the complete domatn
of all quantities, both real and tmaginary, can be realized by means of an snfinite
blane, 1n which eack pornt, determined by 1ts abscissa a and sis ordinate b, repre-
sents at the same lime the quantily a - &b, The continuous passage from one value
of x 1o another consequently takes place along a curve, and can therefare be achieved
1n an anfimity of ways .7

But 1t was not unttl 1831 that Gauss (2 propos the introduction of
“Gaussan integers” 4 +ib, where a and 4 are integers) publicly
expounded his 1deas on this point so precisely ([1], vol. 2, Theoria Residuo-

seems to me ot to be affeted by all these objections™ ([1], vol 3, p 11), a lidle later, be
sketched 2 method which would make d’Alembert’s argument nigorous, and this
1 effectively the line of argument used by Cauchy in one of his proofs of the same
theorem (cf § 2, Exercuse 2).

{*) Gauss publuhed altogether four proofs of the “Theorem of d’Alembert-
Gauss”, of these, the last 1s a vanant of the first and, like 1t, appeals to intmuve
topological propertics of the plane; but the second and third are based on eompletely
different principles.  The proof we have given in § 1 is essentially Gauss's seco:
proof, which iself s the realization of an idea of Euler and de Foncenex.
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rum Biquadraticorum, Commentatis Secunda, art. 38, p. 109, and Anzeige, p. 174
¢t seq.). In the intervening years, the idea of representing complex
numbers geometrically had been independently rediscovered by two modest
amateurs, both of them more or less self-taught, who made no other contri-
bution to mathematics, and who were both without much contact with
the scientific circles of their time. For this reason their work was in danger
of passing completely unnoticed; this is precisely what happened to the
first in point of date, a pamphlet written by a Dane, C. Wessel. Published
in 1798, it was clearly conceived and written, but was not rescued from
oblivion until a century later. The same mishap might have overtaken
the second, by the Swiss J. Argand, who owed it only to chance that he
saw his work, published in 1806, exhumed seven years later (*). This
work provoked an active discussion in the Annales de Gergonne, and was
the subject, in France and England, of several publications by obscure
authors between 1820 and 1830. But the authority of a great name
was needed to put an end to these controversies and to rally mathema-
ticians to the new point of view, and it was not until the middle of the
century that the geometrical representation of complex numbers at last
became universally adopted, following the publications of Gauss (men-
tioned above) in Germany, the work of Hamilton and Cayley on hyper-
complex systems in England, and finally the support of Cauchy (*¥)
in France, only a few years before the genius of Riemann was to extend
still further the role of geometry in the theory of analytic functions, and
at the same stroke create the science of topology.

#®
® ok

The measurement of angles by means of the arcs they cut off on a circleis as
old as the notion of angle itself, and was already known to the Babylonians :
their unit of angular measure was the degree, which we still use. The
Babylonians used only measures of angles lying between o and 360°; this

(*) Unlike Gauss, Wessel and Argand were more concerned with justifying
o_perations with complex numbers than with applying the geometrical representa-
tion they proposed to new investigations; Wessel gives no applications, and the
only one given by Argand is a proof of the theorem of d’Alembert-Gauss, which
Is scarcely more than a variant of d’Alembert’s proof, and is open to the same
objections.

(**) In his first investigations on integrals of functions of complex variables
(betwec.:n 1814 and 1826), Cauchy considered complex numbers as “symbolic’’
expressions and did not identify them with the points of the plane; but this did
not hinder him from constantly associating the number x + iy with the point
(x,»), and freely using the language of geometry in this context.
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was adequate for their purposes, which were primarily to fix the positions
of celestial objects at determinate points of their apparent orbits and to
construct tables of these orbits for scientific or astrological purposes.

Among the Greek geometers of the classical era, the notion of angle
(Euckid’s Elements, 1, Defiations 8and g) was even more restricted, because
it applied only to angles smaller than two right angles; and since on the
other hand their theory of proportion and measurement was based on the
comparison of arbitranly large multiples of the magnitudes being measured,
angles could not be measurable quantines for them, although of course
they had the concepts of equal angles, of one angle being greater or less
than another, and of the sum of two angles, provided that the sum did
not exceed two night angles  Just as with the addition of fractions, the
measurement of angles must have been in their eyes 2n empirical proce-
dure, devord of scientific value. This atntude is well illustrated by the
admirable essay of Archumedes on spirals ([3], vol. 2, pp. 1-121) 1n which,
since he cannot define them by the proportionality of radms vector to
angle, he gives a kanematic definition (Definition 1, p 44; cf. the statement
of Proposition 12, p. 46) from which he succeeds in extracting, as the rest
of the work shows, everything that the general notion of angular measure
would have given hum had he been in possession of it.  As to the Greek
astronomers, they scem to have been content to follow their Babylonian
predecessors on this point as on many others.

Here too, as in the evolution of the concept of real number (cf the
Historical Note on Chapter 1V), the relaxation of the spint of rigour
during the decadence of Greek science brought a retumn to the “naive”
pomt of view which, 1n some respects, comes nearer to our own than does
the nigid Euclidean conception.  Thus an ill-advised interpolator inserted
the following famous proposition in Euchd (Euchd’s Elements, V1, 33):
“Angles are proportional to the arcs which they cut out ona cirde” (*),
and an anonymous scholar who comments on the “proof”” of this propo-
sition does not heutate to mtroduce, of course without justification, arcs
equal to arb ly large iples of a fe and the angles
corresponding to these arcs (**). But even Vietd, m the 16th century,
although he appeared to come close to cur modern conception of angle

(*) That thus really 15 an interpolation is shown wathout doubt by the absurdity
of the proof, which 15 meptly based on the classical paradigms of the method of
Eudoxus; moreover, 1t 15 clear that this result has nothing to do wath the end of
Book VI Tt1s amusing to see Theon, m the 4th century A.D, congratulate
tumself for having grafied, onto this interpolation, another 1 which he
to prove that “the areas of sectors of a circle are proportonal to their angles at the
centre” (Euchd’s Elements, edited by Heiberg, vol. 5, p. XXIV). This was six
centunes after Arclumedes had determined the areas of sectors of spirals.

{*%) Euclid's Elements, ed. Hesberg, vol. 5, p. 357
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when he discovered that the equation sin nx = sin « has several roots,
obtained only those roots corresponding to angles smaller than two right
angles ([4], p. 305). Only in the 17th century was this point of view
definitively superseded; and, after the discovery by Newton of the power-
series expansions for sinx and cosx had furnished expressions of these
functions which were valid for all values of the variable, Euler finally
formulated the precise conception of the notion of angular measure, in
connection with logarithms of “imaginary’ numbers ([5], (1), vol. 17,
p. 220).

Of course, the classical definition of angular measure in terms of the
length of a circular arc is not only intuitive but essentially correct; however
it requires, to make it rigorous, the notion of the length of a curve, i.e.,
integral calculus. From the point of view of the structures which come into
play, this is a very long-winded procedure, and it is possible, as we have
seen in the text, to arrive at the same end by no other means than those
of the theory of topological groups; in this manner the real exponential and
the complex exponential appear as arising from the same source, the
theorem which characterizes the ‘““one-parameter groups” (Chapter V,
§ 3, Theorem 1).
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CHAPTER IX

Use of real numbers
in general topology

1. GENERATION OF A UNIFORMITY BY A FAMILY
OF PSEUDOMETRICS; UNIFORMIZABLE SPACES

1. PSEUDOMETRICS

Dermvrrion 1. If X s aset, a pseudometricon X is any mapping f of X X X
into the interval [0, + 0] of the extended real line R which satisfies the following
conditions :

(BECy) Forall xeX, f(x,x) = o.

(ECy) Forall xeX andall yeX, f(x,9) =f(y %) (symmetry).
(ECiy) Forall x,9,z in X,

S 9) <f(x2) +1 (&)

(triangle inequality).

Examples. 1) On real number space R", Euclidean distance (Chapter VI,
§ 2, no. 1) is a2 pseudometric.

2) If X is any set, the function f defined on XxX by the conditions

S x) =0 forall xeX, f(x, ) =+ = if x5y is a pscudometric
on X.

3) If X isany set and if g is any finite real-valued function defined on
X, then the function f defined on XXX by f (% 3) = lg(x) — g(9)]
is a pseudometric on X.

* 4) Let X be the set of all continuous mappings of the interval [o, 1]
of R into R. Iffor each pair of elements %,y of X we put

f 5= fo " ety — ()] b

then f is a pseudometric on X. ,
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Remarks, 1) Example 2 above shows that a pseudometric can take the
value + @ for certain paics of clements of X.

2) If £ is a pseudometric on X, we can 1 general have f(x,5) = o
without x = y, as Example 3 above shows (cf. § ).

From the triangle inequality it follows that if f (x, 2} and f(y 2) are
fimte thenso s £ (s, y); moreover, in this case we have

flo A< 4+ S and S A <Sfl )+S( ),

so that
O] 6 —f(5 A<Slx )

If f isa pseudometric on X, thensois Af for any finite real number
A>0" If (f)eq is any family of pseudometrics on X, the sum

S, f(x,5) is defined for all (x, ) e XX X; if f(x,5) denotes the value
&

of this sum, then f is a pseudometric on X. Again, the upper envelope
¢ of the family (f) (Chapter IV, § 5, no. 5) is a pscudometric on X,
for the relations fi(x, ) <f(x 2) + /(5 imply

sup fils ) Ssup (A% 2 +A4(0 ) S sup filx, ) + sup (s )

[Chapter IV, § 5, no. 7, formula (17)].

2. DEFINITION OF A UNIFORMITY BY MEANS OF A FAMILY
OF PSEUDOMETRICS

We have scen in Chapter VI, § 2, no. 3 that f, for each real number a > o,
we denote by U, the set of all pairs (x, 5) of pointsof R* whose Euclid-
ean distance apart is <o, then the U, form a fundamental system of
entourages of the uniformity of R® as a runs through the set of real
numbers > o.

More generally, let f be a pseudometric on a set X, foreach a>o,
let U, denote f‘ ({0, 6]), and let us show that, as @ runs through the set
of all teal numbers >0, the U, form a fundamental system of enlourages
of 2 umformity on X, Axom (Uf) is satisfied by reason of (ECy);
if agb, we have U,cU, and thercfore the U, satisfy (Bp; by
(ECy), we have U. U, and therefore (Ufp) 1s satisfied; finally, by

(ECry) we have U,c Uy, so that {Uyy) issatisfied [Cf Chapter II,
§ 1, no. 1, Definttion 2. Consequently we may make the following
definition :
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DerFINtTION 2. Given a pseudometric f on a set X, the uniformity defined by
f is the uniformity on X which has as a fundamental system of entourages the

family of sels ;’1([0, a)), where a runs through the set of all real numbers > o.

Two pseudometrics on X are said 1o be equivalent if they define the same
uniformity.

Remarks. 1) If (a,) is any sequence of numbers > o and tending to
o, the U, form a fundamental system of entourages of the uniformity
defined by f.

2) The definition of a uniformity by a pseudometric f consists in taking
as a fundamental system of entourages the inverse image under f of the
neighbourhood filter of o in the subspace [0, + «] of R. Note that
this procedure is quite analogous to that which allowed us to define the
uniformities on a topological group (Chapter IiI, § 3, no. 1).

Let f and g be two pseudometrics on X. From Definition 2 it follows
that the uniformity defined by f is coarser than the uniformity defined by
g if and only if, for each a > o there exists & > o such that the relation
g(x, ») <Ib implies f(x, ) <a. A necessary and sufficient condition
for f and g to be equivalent pseudometrics is that for each a > o there
exists b > o such that g(x,y) < b implies f(x,9) <a, and f(x,») <b
implies g(x,3) < a.

In particular, if there exists a constant % such that f < kg, the uniformity
defined by f is coarser than the uniformity defined by g.

Let o be a mapping of the interval [0, + ] into itself, satisfying
the following conditions: 1) ¢ (0) =0, and ¢ is continuous at o;
2) o isincreasing in {0, 4- 2] and is strictly increasing in a neighbourhood
of o; g)forall x>0 and v = o0, we have o(u + 2) < o(1) + 9(v).
Then if f is any pseudometric on a set X, the composition g= vof
is a pseudometric equivalent to f.

The reader may easily verify that we may, for example, take ¢ to be
any one of the following functions :

u .
Va, log (1 + u), P inf (4, 1).

The last two examples show that there always exist dounded pseudometrics
equivalent to any given pseudometric (finite or not).

DeFmrioN 8. If (f)iex i a family of pseudometrics on a set X, then the
{east upper bound of the set of uniformities defined on X by the pseudometrics f,
is called the uniformity defined by the family (f,).

Two families of pseudometrics on X are said to be equivalent if they define
the same uniformity on X.

From the definition of the least upper bound of a set of uniformities (Chap-
ter II, § 2, no. 5), the filter of entourages of the uniformity AU defined
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on X bya famiy of pseudometrics (f),ey s the fiter gmerated (Chapter 1,

§6, no. 2) by the family of sets 4, ([0, a]), where ¢ runs through 1 and
a runs through the sct of real numbers >o0. In other words, we cbtain
a fundamental system of entourages of Il by proceeding as follows:
we take at random a fimte number of indices v, 43, .. , 1, and, corres-
ponding to cach v, a number g, >0; then we consider the set V of
pairs (x, 3) e XXX such that f,(x, y} €, for 1<k<n; these
sets V. (for alf possible choices of 7, the v, and the a,) form a funda.
mental system of entourages for 4. Moreover, we may restrict ourselves
to the casc in which all the g, are cqual to the same number 23>0,
since the entourage consisting of all pairs (x,y) such that

sup (fu(x 5)} < inf a
1gkgn 15kga

is evidently contained in V.
For each finitc subset H of I, let gy denote the upper cavelope
of the family (f),cy- As H runs through the set of all finite subsets

of 1 and a runs through the set of real numbers > o, the sets ga{[o, 2])
form a fundamental spstem of entourages of the umformity U. Now the gy
are peeudometrics on X (no. 1), and the upper envelape of a finite number
of functions of the family (z,) belongs to this famdy, by definton; we
express this property by saying that the family of pseudometrics (gn)
1s saturated  The family of pscudometrics (gn) is therefore equwalent to
the family (£, and s said to be the family of pseudometrics obtained by
saturating (f) From what has just been said it follows that we may
always restrict oursclves to considering uniformities defined by safurated
families of pseudometrics

Tn the particular case where T 13 a fimte set, this argument shows that the
uniformuty defined by the family of pscudometrics (fideer 1= also defined
by the ningle pseudometnic g = sup f,.

et

Let 6, A1’ be two uniformitics on X, defined respectively by two satu-
rated families (f),er, (2)uex- Then AL 18 coarrer than AL 1f and only
A, for each index ve I and each real number > o, there s an index
x€K and a number 5> 0 such that the relation g(x, ») < 6 imphes
Simy) < a

Example of a umformily defined by a famly of psendometnes  Let (f)ier
be an arbitrary family of (finite) real-ralued functions defined on a set X.
Let A be the coarsest umformity on X with respect to which the f,
arc umformly continuous (Chapter II, § 2, no. 3). Then it follows from
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the definition of the entourages of A (loc. ¢it.) that Al is the unifor-
mity defined on X by the pseudometrics

&x ) = 1Ll —F()])-

3. PROPERTIES OF UNIFORMITIES DEFINED BY FAMILIES
OF PSEUDOMETRICS

Let U be a uniformity defined on a set X by a family of finite pseudo-
metrics (f;). If we endow X X X with the uniformity which is the
product of A by itself, then each of the real-valued functions f, is
uniformly continuous on X X X; for by (1) we have

[z 2) — Al 0] < (35 %) + (0 "),
and therefore the relations f(x, x') < ¢f2, fi(», )"} < ¢f2 imply
lft(x: )’) '—.ft(x” )")l e

For U to be Hausdorffit is necessary and sufficient, from the definition
of the entourages of U, that for each pair of distinct points x,y of X there
is an index 1 such that f(x, ) = o.

In particular, if 4l is defined by a single pseudometric f, then A is
Hausdorff if and only if the relation f(x, ) = o implies x =y (cf. § 2).
If 4l is not Hausdorff, the intersection of all the entourages of U is the
subset of X x X consisting of pairs (x,») such that fi(x, y) = o for
all 1; this subset is the graph of an equivalence relation R on X, and the
Hausdorff uniformity associated with U is defined on X/R (cf. Chapter
II, § 3, no. 8). Itis then easily verified that the functions f. are compatible
(in x andin ») with the relation R (Sef Theory, R, § 5, no. 7) and that
the functions £, obtained from f by passing to the quotient (with
respect to x and ), are pseudometrics on X/R which define the
Hausdorff uniformity associated with 4l (cf. § 2, no. 1),

If A is a non-empty subset of X, the restrictionto A X A of a pseudo-
metric on X is clearly a pseudometric on A. The uniformity induced
by U on A is clearly that defined by the family of restrictions to A X A
of the pseudometrics f,.

Let us now look at the completion of the uniform space X when U
is Hausdorff.

Prorosrrion 1. Let X be a Hausdorff uniform space whose uniformity U
is defined by a family of finite pseudometrics (f)), and let X be the completion
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of X. Then the funchons f, can be extended by continuity to K X X; the
extended functions f, are fimte pseudometrics on XXX, and the family (f)
defines the umformty of K.

First, the f; can be extended by continuity to X x X, because they are
uniformly continuous on XX X; and the extended functions 7, are
uniformly continuous on XXX (Chapter IT, § 3, no. 6, Theorem 2);
moreover, they are pseudometrics on X by wirtue of the principle of
extension of inequalities (Chapter IV, § 5, no. 2, Theorem 1), Let 4,
denote the uniformity on X obtained by completion, and let 41, denote
the uniformity defined by the family of pseudometrics (f). Then A,
15 coarser than A1, for each f; is umformly continuous on Xx X with
respect to ‘U, and hence for each a> o there exists an entourage V
of Uy such that, whenever (x,5) €V, we have (s, 5) —fi(n 9} <4
that 1s [since fi{x, x) = o], V ([0, a]); hence every entourage of U,
15 an entourage of 4, On the other hand, A, and 1, induce the same
umformity U on X. As X s complete with respect to Uy, it
follows that U, and 4L, aresdentical (Chapter I1, § 3,10, 7, Proposition 14).

4. CONSTRUCTION OF A FAMILY OF PSEUDOMETRICS
DEFINING A UNIFORMITY

The of defining a umfc by means of a family of pseudo-
metrics lies 1n the face that all unsformuties ean be so obtained. Namely:

Turorem t. Guwen a amformety W on a set X, there ss @ fasuly of poevds-
metries on X suck that the uniformity defined by this famuly o5 sdentscal wnth L.
For each catourage V of the umformuty Al, defire mductively a
.
sequence of symmetric entourages (U,) such that U;eV and U,y cUs
forall n> 1. Thesequence (U,) 1sa fundamental system of entourages
of a uniformity 4ly coarser than l; moreover, at is clear that U 1s the
least upper bound of all the uruformuties Uy as V runs through the filter

of entourages of Il Theorem 1 is thercfore a consequence of the following
Pproposition

ProPOSITION 2. If @ wnsformaty U on X has & countable fundomental system

of entourages, then there 1 a pseudomeinic f on X such that 4L 15 dentrcal unth
the untfornnty defined by f.
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Let (V,) be a countable fundamental system of entourages of |. Define
inductively 2 sequence (U,) of symmetric entourages of U such that
U,cV; and .
U1 cUpnV, for nzi.

Clearly (U,) is another fundamental system of entourages of U, and

we have in particular ﬁ,m cU, for n>1. We define a real-valued
function g on XXX as follows: g(x, y) =0 if (x, y) €U, for all n;
gxy) =27%if (,9)eU, for 1 <n<k but (x9) ¢ Uppy; glx, ) =1
if (x, y)&U,. The function g is symmetric and positive, and we have

g x) =o forall xeX, Put
-1

Slx ) =inf X gz, zin)s

1=0
the greatest Jower bound being taken over the set of all finite sequences

(2)ogigp (p arbitrary) such that z, =2 and z,= . We shall show that
[ is a psendometric which satisfies the inequalities

(2) —x 9) <f (% 9) < )

It follows immediately from the definition that f is symmetric and
positive and satisfies the triangle inequality. Also it is clear that
S(x ) <g(x, ), hence f(x, x) =o0 for all xeX, and therefore f is
a pseudometric. To prove the left-hand half of the inequalities (2), let
us show by induction on p that, for every finite sequence (zi)ogi<p
of »+ 1 points of X such that z, = x and z, =y, we have

p—1
(3) 2 ez an) >—gls ).
i=o0 2
p—1
This is clear if p=1. Put a= 3 g(2 zu1); the inequality (3)

- . l—o
Is true if a> 1fe, because g(x, y) < 1. Suppose then that a < 1/2,
and let £ be the largest of the indices ¢ such that

a
E gz zi) < —;
1<q 2

we have then 3 g (2, z4y) <af2 and 3 g (2, 2z;41) > af2, whence
i<h i<h+1

a
2 &z 2iy) < —-
i>h 2
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By the inductive hypothesis we have (%, Z) <a and g(zy, 3) €4

on the other hand it 1s clear that gz, Za) S @ Let & be the smallest

integer >0 such that 27%<a; then k22, and (v, z)eU,
3

(21 2411} € Ups (2a41,9) = Uy, by thedefinitionof g; hence (x,5) e Uy c Uy,
which imples that g(x, ) € 22* < 2a.

Hence the inequaltties (2] are proved, they show that, for each a >0,
the set ([0, a]) contains U, for each index k such that 2% <a,
and conversely that each U, contains the set £ ([o, 27*-1]); hence the
sets 7([0, a]) form a fundamental system of entourages of the structure A1,

QED.

Remark, A umformuty U on X 1 defined by the family & of all
pseudometrics on X whch are umformly continuous on X XX For clearly
the umformity defined by the family @ is coarser than AL; conversely,
Theorez 1 shows that there is a subfamuly of © which defines the unir
formuty U and therefore the umformity defined by © 15 finer than A,

5. UNIFORMIZABLE SPACES

In Chapter II, § 4, no. 1, we posed the problem of characterizing uni-
formizable topological spaces. The solution is given by the following
theorem:

Tuzorem 2 A topological space X 15 untformazable sf and only f 1t satusfes
the follounng avom:
(Ow) Grwen any pownt %y X and any neighbourhood V. of x,, there exits
& continmous real-valued function on X which takes 1ts values m [o,1], 18 equal
o o at %, andisequalto 1 on [V,
The condition is necessary. For if there is a uniformity on X compatble
with the topology of X, then by Theorem 1 this uniformity can be defined
by a family (f) of pseudometrics on X, and we may assume with no
loss of generality that this famuly 1s saturated (no. 2). From the definitien
of the entourages of the uniformity defined by such a family of pseudo-
metnies, there 15 a pseudometnc fy of the family (f), and a number
a>o0, such that fy(xp, ) 2 a forall xe(V. It follows that the fne-
tion g(x) = mf(x,i Fu (o x)) sasfies all the conditions laid down
a
in (Op)-

The condition is suffirent, Forlet ¢ be the set of all contrnmous mappings
of X mto [o, (. Axiom (Opy) shows that the coarsest unsformily usth
respect 1o whieh all the functions belonging to & are uniformly continuousis compai-
thle with the topology of X (Chapter 11, § 2, o, 3).
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UNIFORMIZABLE SPACES § 1.5

DEFINITION 4. A topological space is said to be complelely regular if it is uni-
formizable and Hausdorff.

Equivalently, in view of Theorem 2, a space is completely regular if it
satisfies axioms (H) [cf. Chapter I, § 8, no. 1, Proposition 1] and (Opy).

Remark. Axiom (Oy,) implies (Oypy) (cf. Chapter 1, § 8, no. 4), for
if V is a neighbourhood of x, and if f is a continuous real-valued
function on X with values in [0, 1], such that f(x)) =0, f(x) =1

for all xeGV, then the set ?([0, 1/2]) is a closed neighbourhood of
x, contained in V. In particular, every completely regular space is regular
(which justifies the terminology). But there are examples of regular spaces
which are not completely regular (*), so that (Op,) does not imply

(Ow)-

Every compact space is completely regular (Chapter II, § 4, no. 1, Theo-
rem 1) and therefore so is every subspace of a compact space. We can
now complete this proposition by proving its converse:

ProrostTioN 3. A topological space X is completely regular if and only if it is
homeomorphic to a subspace of a compact space.

Consider the coarsest uniformity on X with respect to which all contin-
uous mappings of X into [o, 1] are uniformly continuous; we have
already used this uniformity in the proof of Theorem 2, where we saw
that it is compatible with the topology of X if X is uniformizable.
Furthermore, this uniformity is a structure of a precompact space, by the
compactness of the interval [o, 1] and Proposition g of Chapter II, § 4,
no. 2. If X is Hausdorff, the completion of X with respect to this
is therefore compact, and the proposition is proved.

We can therefore say that a completely regular space can be embedded
in a compact space. It is often convenient to present this result in the
following way:

In general, a cube is a topological space KI, the product of a family
of topological spaces each identical with a compact interval X of R, indexed
by an arbitrary set I. If I is finite and has 7 elements, we recover
the notion of an n-dimensional closed cube, which was defined in Chapter VI,
§1,n0. 1. A cube is a compact space (Chapter I, § 9, no. 5, Theorem 3).

PR.OPOSITION 4. If a topological space X is completely regular, it is homeomor-
Dbhic to a subspace of a cube.

Let (f)ier denote the family of all continuous mappings of X into
K=o, 1], and let ¢ denote the mapping x — (f,(x)) of X into

(*) See A. Tycuonorr, Math. Ann., 102, (1930), p. 553.
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KL If %y are any two distmct points of X, 1t follows from axioms
(H) and (Ogy) that thereisanindex 1 such that fi(x) # f( ]), and
therefore g 15 a one-to-one mapping of X mto KL Moreover, it 15 imme.
diate that g 1s an 1somorphism of the coarsest uniformity en X for which
all the f; are onto the uniformity inducedon g(X)
by the product uniformity of K¥; afortion, g 152 homeomorphism of X
onto g(X)

6. SEMI-CONTINUOUS FUNCTIONS ON A UNIFORMIZABLE SPACE

In Chapter IV, § 6, no. 2, Corollary to Theorem 4, we showed that the
upper envelope of a family of contious real-vatued functions on a topo-
logrcal space 1s a lower semi-continuous function. If the space 1s umfor-
mazable, there is a converse to this proposition :

ProvostTION 5 In order that every Iower semi-continuous real-valued function
f (fimte or not) on a topological space X should be the upper envelope of the
contunuous real-valued functions on X (finste or not) which are < f, 1 15 neces-
sary and sufficient that X be umformizable.

The condition 15 necessary Let x, be any point of X and let V be
any open neighbourhood of #,, then the characteristic function gy of
the set V15 lower semi-contmuous (Chapter IV, § 6, no. 2, Corollary
1o Proposition 1); by hypothesis, there is therefore a continucus real
valued function g on X such that g< ey and g{x) =a>0 The

continuous function nf{1, L g+) takes 1ts values in [o, 1], 15 equal
a

to o m (V, andequalto t at x, Hence (Theorem 2) X 15 untfor-
uzable,

The condition 13 suficeent  Consider first the case in which f takes
its values m [—1, 4-1]. We have to show that, for each x e X and
each number a < f(z,), there is a continuous realvalued function g
on X such that ¢<f and glx)) 2e¢ I a<-—1, we may take
g tobe the constant — 1 If — 1 < a < f(x,), there 1s a ncighbour-
hood V of #, such that f(x) >a forali xeV Smce X 15 unifor-
muzable, there 1s a continuous real-valued function & on X, with values
m [o, 1], such that h(x)) =0 and A(x) =1 for all xe[V. We
may then take g(x) = a— (e + 1)A(x), and we have a contmuous
funetion satisfying the stated conditions Note that this function takes
s valuesin [—r, + 1]

The general case follows by transfer of structure, for thcrc is a strictly
ncreasing  homeomorphism of {—1, 4-1] onto {Chapter IV,
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§ 4, no. 2, Proposition 2), and the definition of a semi-continuous function
involves only the order structure and the topology of R.

Remark. In the above proof we see that the function g does not take
the value -+ 1. By transfer of structure it follows that every lower
semi-continuous real-valued function f on the uniformizable space
X is the upper envelope of the continuous real-valued functions g <f
on X which do not take the value + . :

2. METRIC SPACES AND METRIZABLE SPACES

1. METRICS AND METRIC SPACES

DermuTioN 1. A metric on a set X is a finite pseudometric d on X such that
the relation d(x, y) = o implies x =3. A melric space is a set X endowed
with the structure defined by a given melric on X.

A metric space X is always considered as carrying the uniformity and
the topology defined by the given metric on X,

Examples. 1) The Euclidean distance d(x, y) (Chapter VI, § 2, no. 1)
is a metric on real n-dimensional number space R"; so are the functions

n
sup |x; — ¥ and 2 4 — ;1
1gign i=1

All these metrices are equivalent (§ 1, no. 2).

2) Onanyset X the pseudometric d, defined by the relations d(x, x) = o

and d(x,y) =1 if x5£y, is a metric. The uniformity it defines on X
is the discrete uniformity.

We have a definition equivalent to Definition 1 if we say that a metric
is a finife pseudometric such that the uniformity defined by this pseudometric
is Hausdorff; a finite pseudometric which is equivalent to a metric is there-
fore a metric.

Uniform spaces defined by a single pseudometric (which we may assume
to be finite} can be reduced to metric spaces when the pseudometric is
not a metric. Let f be such a pseudometric on a set X, and let U be
the uniformity defined by f; U is not Hausdorff, and the intersection
of the entourages of A is the subset of X XX defined by the equivalence
relation f(r,y) = 0. Let R denote this relation. If x = %’ (mod R),
then by the triangle inequality we have

S (x %) S (% #) +fG ) =f(xl’ B))

147



x USE OF REAL NUMBERS IN GENERAL TOPOLOGY

and similatly £(#', 3} <f{x, 3), %o that f(x, 5) =f(x, 5); in other
words, f 15 a function compatible (in x and y) with the equivalence rela.
tion R (Set Theoy, R, § 5, mo. 7). Let  be the function induced by
f on the quotient set; 7 is defined on (X/R) X (X/R), and if x and
y areany twopointsof X and if » and j denote the equivalence classes
(mod R) of x and y respectively, then we have F(%, 3) =f(,5). It
follows immeduately that 7 1s a metric on X/R; it is called the metric
assocrated with the d ic f, furth the unifc 1t defines
on X/R is precisely the Hausdorff uniformity assoctated with Ul by the
definztton of this umiformuty (Chapter 11, § 3, no.8, Remark). Thus, by
passing to a suitable quotient space, the uniform structure defined by a
single pseudometric can be reduced to the structure of a metric space.

Proposition 1 of § 1, no. 3 determines the structure of the completion
of a metric space :

Propostrion 1. Let X be @ metnic space and let d be its metnie. If X is
the completion of X (wrth respect to the uniformity defined by d), the
Sunction d can be estended by continuity to K X K the extended function  is
ametricon X, andtheunformsty of X corncrdes with that defined by the meinc d.

Proposition 1 of § 1, no. 3 shows that d is a finite pscudometric on ¥,
and that the unifornuty defined by @ on X is the uniformity obtained
by completion; since this latter uniformity is Hausdorfl, 4 is a meine.
‘Whenever we consider the completion of a metric space X as a metric
space, 1t is always to be understood that the metric on X is that obtained
by extending the metric on X by continuity.

2. STRUCTURE Of A METRIC SPACE

Let X and X' betwo metricspaces, d themetricon X, d' themetric
on X'. In accordance with the general definitions (Set Theory, R,
§ 8, no. 5) a onc-to-onc mapping f of X onto X' is an isomorphism of
the metric space structure of X onto that of X' 1f

® d(x, 5) = d'(f (£ ()

forall xeX andall yeX,

Note thatf f is a mapping of X onto X' which satisfies the identity
(1), then f must be byjective and thercfore an isomorphism of X onto X';
such an isomorphism is also called an tsometry (or an isometric mapping)
of X onto X',
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STRUCTURE OF A METRIC SPACE § 2.2

An isometry of X onto X’ is of course an isomorphism of the uniformity
(vesp. topology) of X onto the uniformity (resp. topology) of X’; the
converses of these statements are false, as is shown by the existence of
distinct equivalent metrics (§ 1, no. 2).

Let X be a metric space, d the metric on X. For each a>o0 let
V, denote the subset of X XX consisting of all pairs (x, y) such that
d(x, y) < a, and let W, denote the subset of XXX consisting of all
pairs (x, ») such that d(x, y) < a. As a runs through the set of all real
numbers >0 (or merely a sequence of numbers > o which tends to
o), the sets V, (resp. W,) form a fundamental system of open (resp.
closed) entourages of the uniformity of X, because of the continuity of
d (§ 1, no. 3). We have V,cW,, but these two sets are not necessarily
the same.

Byanalogy with the case of the Euclidean distance on  R?, the set V()
[resp. W,(x)] is called the open (vesp. closed) ball with centre x and radius
a; itis an open (resp. closed) set in X. Again, the set of all yeX such
that d(x, ») = a 1is called the sphere with centre x and radius a; it is
a closed set. From what has been said, the open (resp. closed) balls with
centre x and radius ¢ form a fundamental system of neighbourhoods of
x as a runs through the set of all real numbers > o, or a sequence of
numbers > o which tends to o.

The reader should beware of assuming that balls and spheres in an arbitrary
metric space enjoy the same properties as the Euclidean balls and spheres
studied in Chapter VI,§2. Thus the closure of an open ball need not be the
closed ball of the same centre and radius; the frontier of a closed ball need
not be the sphere of the same centre and radius; an open (or closed) ball
need not be connected; and a sphere can be empty (cf. Exercise 4).

Let A and B be any two non-empty subsets of a metric space X.
The number
d(A,B) = inf d(x, »)
zEA,YEB

is called the distance between the sets A and B. In particular we denote
by d(x, A) the distance between the set gx} and the set A; thisis
called the distance from the point x to the set A. Thus

d(x, A) = inf d(x, »)
yEA
whence d(A, B) = inf d(x, B)
TEA
(Ghapter IV, § 5, no. 4, Proposition g).
R_emark. If d(x, A) = g, it can happen that there is no point of A whose
distance from # is equal to a. However, this situation can never arise

if A is compact, for then Weierstrass’s theorem (Chapter IV, §6, no. 1,
Theorem 1) shows that there exists yeA such that d(x, A) = d(x, ).
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and silarly f(¥, 5) £ (%, 3), 5o that f(x, 3) =F(¥, 3); in other
words, f 13 a fanction compatible (in * and y) with the equivalence rela-
tion R {Set Theory, R, § 5,00, 7). Let f be the functioninduced by
f on the quotient set; 7 1s defined on (X/R) X (X/R), and if x and
"y areanytwopointsof X andaf # and § denote the equivalence classes
(mod R) of x and y respectrvely, then we have F(% 5) = f(x.5). It
follows immediately that F is a metnc on X/R; 1t 13 called the metnc
assocated with the d S5 furt e uni ity 1t defines
on X/R 1s precisely the Hausdorff uniformity associated with U by the
definttron of this uniformuty (Chapter II, § 3, no. 8, Remark). Thus, by
passing to a swtable quotient space, the umform structure defined by a
single pseudometric can be reduced to the structure of a metric space.

Proposition 1 of § 1, no. 3 determines the structure of the completion
of a metric space:

Prorosrion 1. Let X be a metnc space and Izt d be its metric. If X u
the completion of X (wath respect to the uniformity defined by d), the
Sunction d can be extended by continuty to X X X the extended function T is
ametricon X, and theuryformity of X coincides with that dfined by the metnc 4.

Proposition 1 of § 1, no. 3 shows that 7 is a finite pseudometric on X,
and that the uniformity defined by 7 on X is the uniformity obtained
by completion, smce this latter umformity is Hausdorff, 7 is a metnc.
‘Whenever we consider the completton of a metric space X as a metnc
space, 1t 15 always to be understood that the metric on X 1s that obtained
by extending the metric on X by continuity.

2. STRUCTURE OF A METRIC SPACE

Let X and X' betwo metricspaces, d themetric on X, d' themetric
on X', In accordance with the general definitions (Set Theop, R,
§ 8, no. 5) a one-to-one mapping f of X onto X' is an womorphism of
the metric space structure of X onto that of X' if

) d(x5) = d'(f (=S O)

forall xeX andall yeX.

Note that if f 152 mapping of X onto X’ which satisfies the identuty
(1), then_f must be byectioe and therefore an 1somorphism of X onto X'
such an isomorphism s also called an tsomeiry (or an isometric mapping)
of X onto X',
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An isometry of X onto X’ is of course an isomorphism of the uniformity
(resp. topology) of X onto the uniformity (resp. topology) of ) X’; the
converses of these statements are false, as is shown by the existence of
distinct equivalent metrics (§ 1, no. 2).

Let X be a metric space, d the metric on X. For each a>o let
V, denote the subset of XXX consisting of all pairs (x, ) such that
d(x, ») < a, and let W, denote the subset of XXX consisting of all
pairs (x, y) such that d(x, ) <a. As aruns through the set of all real
numbers > o0 (or merely a sequence of numbers > o which tends to
0), the sets V, (resp. W,) form a fundamental system of open (resp.
closed) entourages of the uniformity of X, because of the continuity of
d (§ 1,n0.3). Wehave V,cW,, but these two sets are not necessarily
the same.

Byanalogy with the case of the Euclidean distance on R?, the set V()
[resp. W,(x)] is called the open (resp. closed) ball with centre x and radius
a; it is an open (resp. closed) set in X. Again, the set of all yeX such
that d(x, y) = a is called the sphere with centre x and radius «; it is
a closed set. From what has been said, the open (resp. closed) balls with
centre ¥ and radius « form a fundamental system of neighbourhoods of
x as a runs through the set of all real numbers > o0, or a sequence of
numbers > o which tends to o.

The reader should beware of assuming that balls and spheres in an arbitrary
metric space enjoy the same properties as the Euclidean balls and spheres
studied in Chapter VI,§2. Thus the closure of an open ball need not be the
closed ball of the same centre and radius; the frontier of a closed ball need
not be the sphere of the same centre and radius; an open (or closed) ball
need not be connected ; and a sphere can be empty (cf. Exercise 4).

Let A and B be any two non-empty subsets of a metric space X.
The number

dA,B) = inf d(x, )

z€A,YEB
is called the distance between the sets A and B. In particular we denote
by d(x, A) the distance between the set gx and the set A; thisis
called the distance from the point x to the set A. Thus

d(x, A) = inf d(x, »)
yea
whence d(A, B) = inf d(x, B)
ZEA
(Chapter IV, § 5, no. 4, Proposition g).

Remark. If d(x, A) = a, it can happen that there is no point of A whose
distance from x is equal to a. However, this situation can never arise
if A is compact, for then Weierstrass’s theorem (Chapter 1V, §6, no. 1,
Theorem 1) shows that there exists yeA such that d(x, A) = d(x, 5).
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Prorosirion 2. The statements d{x, A) =0 and xe & are equivalent.

For d{x, A) = o expresses the fact that the ball Vo(x) meets A whatever
the value of 2 > o0; and this is equivalent to xeA.

Propostrion 3. The funchion d(x, A) s uniformly continuous on X,

Let x and y be any two points of X; then given any ¢ >o there
exists zeA such that d(, 2) € d(y, A) + ¢, and therefore

d(x, 2) <d(x, p) +d( ) <dx ) + 4 A) 4 ¢
by the triangle inequality.

A fortiors d(x, A) < d(x,3) +d(» A) + ¢, and since ¢ 15 arbitrary
it follows that d(x, A) < d(x,3) + d(3 A). Simlarly we have

d(5, A) < dlx,) +d(x, A),
so that

(2} |4z A) — d(3, A)} < d(x,5),
whence the result follows,

Remark We canhave d(A,B) = o for twosubsets A,B of X such that
AnB = @, provided that neither subset consists of a single point. For
example, on the real ine R, the set of integers > o and the set of pomnts
of the sequence {n 4 1/2n),5, are two disjoint closed sets whose distance
a part 1s zero

However, if A s compact and B 1 closed, the relauon d(A, B) =0
mplies AnB s @, for by virtue of the relation

4A, B) = mf dix, B)
2en

1t follows from Proposition 3 and Weierstrass’s theorem that there exsts
xo€A such that d(x,, B) = d(A, B) — o and hence (Proposiion 2}
phes
The duameter of a non-empty subset A of X is the number (finite
or equal to - )
HA) = sup  d{z, )
zex yer

The notion of a “W,-small set * (Chapter II, § 3, no. 1) is identical
with that of 2 set of diameter < 4. A mon-empty set A consists of a
single pownt 1f and only 1f 3(A) = o,

A subset A of X is bounded (with respect to the metnc d) if its
diameter is fimie; equivalently, if for each pomt x,& X, A 1s containedina
ball with eentre x,. Every subset of a bounded set 1s bounded, and the
union of a fintte family of bounded sets 15 a bounded set

Note that a subset of X can be bounded with respect to a metric d
but unbounded with respect to a metric equivalent to d {cf § 1, no. 2)-
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3. OSCILLATION OF A FUNCTION

Related to the notion of diameter is that of the ascillation of a function f,
defined on an arbitrary set X and taking its values in a metric space X';
if A is any non-empty subset of X, the diameter 3(f(A)) is called
the oscillation of f in A.

If moreover X is a subset of a fopological space Y, and if reX,

the number
w(x; f) =inf3(f(V n X))

(as V runs through the neighbourhood filter of x in Y) is called the
ascillation of f at xeX.

ProrostTION 4. The oscillation w(x; f) of an arbitrary function f, defined
on a subset X of a topological space Y and taking its values in a metric space

X', is upper semi-continuous on X.

Let a be any point of X; then for each % > w(a; f) there exists an
open neighbourhood V of & such that 3(f(VnX)) <k; for each

xeVnX,V isa neighbourhood of x and therefore
ofx; f) <3S (VaX)) <k,

which shows that « is upper semi-continuous at the point a.

In order that w(x;f) = o0 at a point xe X it is necessary and suffi-
cient that for each ¢ > o there should exist a neighbourhood V of =x
such that f(V nX) is contained in a ball of radius ¢; if xeX, this
condition expresses the fact that f iscontinuousatthe point » (with respect to
X); if xeX n[X, the image under f of the trace on X of the
neighbourhood filter of x in Y is a Cauchy filter base on X'; in
particular:

ProrosirioN 5. Let f be a function defined on a subset X of a topological
space 'Y, taking ils values in a complete metric space X'. Then f has a

limit relative to X at a point x € X if and only if the oscillation of f at x is
zero.

4. METRIZABLE UNIFORM SPACES

DeFINITION 2. A metric on a set X is said to be compatible with a uniformity
W on X if the uniformity defined by the metric coincides with U.

A uniformity on a set X is said to be metrizable if there is a metric on X
compatible with this uniformity. A uniform space is said to be metrizable if its
uniformity is metrizable.
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Distinct metrics can be compatible with the same uniformity; they are
then eguizalent (§ 1, no. 2, Definition 2).

Trrorem 1. 4 uniformity is metrizable of and only if it is Housdoff and the
filter of entourages of the umiformuty has a countable base.
The condition is necessary, for (with the notation of no. 2) the entourages
Vya (n > 1) form a base of the filter of entourages of the uniformuty of a
metric space,

‘The condition is sufficeent, for, if it is satisfied, the uniformity under
consideration 1s defined by a smglc pscudomcmc, by Proposxuon 2 of
§ 1, no. 4; since the is a metne,

CorovLary 1. A Hausdorff umformty defined by a countable famnly of poeudoe
melnes v metnzable.
Forif (f,) is a sequence of pseudometrics defining such a structure, the

filter of d by th family of sets f ([0, 1/m}),
where m and r cach run through the set of integers > o.

CoroLLARY 2 Euery countable product of metrizable unyform spaces is metri-
zable

For such a space is and its has a ble funda-
mental system of entourages (Chapter 11, § 2, no. 6).

5. METRIZABLE TOPOLOGICAL SPACES

DerrvTioN 3 A metric on a set X 15 sawd fo be companble mnth a fopology
T on X if the topology defined by this metrc comcides wath G A topological
space 15 sard to be metrizable sf there exisis a melnic on X compaible with the
topalogy of X.

Two metrics on a set X which are both compatible with the same topol-
ogy G can be tnequoalent.

The subspace R of R provides an example of this  Both the uniformity
induced by the additive uniformity of R and the umformty mduccd
by the of R* are and are
with the topology of R¥, but they are not comparable,

‘We remark also that there can cxist non-meirazable umformities compatible
wath the topology of a metnzable topological space (Exercise 7).

‘We shall content ourseives here with necessary conditions for the metris
zability of a topological space (for a necessary and sufficient condition,
f. § 4, Exercise 22). ~ In the first place, a space cannot be metrizable unless
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it is completely regular (indeed we shall see, in § 4, no. 1, Proposition 2, that a
metrizable space is necessarily “ normal >’, which is a stronger condition).
On the other hand, Theorem 1 shows that:

ProPOSITION 6. Every point of a metrizable space has a countable fundamental
system of neighbourhoods.

More generally :

ProPOSITION 7. In a metrizable space, every closed set is the intersection of a
countable family of open sets, and every open set is the union of a counfable family
of closed sets.

Let d be a metric compatible with the topology of a metrizable space
X. If A is a closed subset of X, it is the intersection of the open sets
Vyja (A) [theset ofall xe X such that d(x, A) < 1/n; cf. Proposition 2].
The second part of the proposition follows by taking complements.

Remarks. 1) These necessary conditions are not sufficient (cf. Exercise 13).
2) There are spaces in which every point has a countable fundamental
system of neighbourhoods but in which there exist closed sets which are
not countable intersections of open sets (Exercise 15); such spaces are not
metrizable.

Corollary 2 of Theorem 1, no. 4, shows that a countable product of metrizable
topological spaces is metrizable. Also the sum X (Chapter I, § 2, no. 4)
of an arbitrary family (X,),ey of metrizable spaces is metrizable. For if
d, is a metric compatible with the topology of X, for each 1eI, we
may assume that d, is bounded and that the diameter of X, is <13
we can then define a distance 4 cormpatible with the topology of X by
putting d(x, y) = d,(x, ») if x and y both belong to the same X,
and d(x, y) = 1 otherwise.

6. USE OF COUNTABLE SEQUENCES

Proposition 6 is the origin of the part played by countable sequences of points
in the theory of metrizable spaces; for many problems, they can be used
to advantage in place of filters. This is because the neighbourhood filters
of points of a metrizable space (and therefore also convergent filters) are
determined by convergent sequences of points of the space: for since the neigh-
bourhood filter of a point has a countable base, it is the intersection of the
flementa(y Jfilters finer than itself (Chapter I, § 6, no. 8, Proposition 11),
Le., of the elementary filters associated with sequences which converge
to the point in question.
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On the other hand, the noton of a convergent sequence 15 not adapted
to the study of topological spaces n which there are points whose neighbour-
hood filter has no countable base  In particular, Hausdorff non-cuscrete
topological spaces can be constructed mn which, at every pont x, the
sntersection of any countable family of nmghbourhoods of x 1 agaim a
nexghbourhood of # (*), 1 such a space the only convergent sequences are
those 1n which all the terms are equal from a certain index onwards

As examples of the use of countable sequences we give the following propo-
sitions :

ProvosiTion 8. In @ metrizable space X, a pownt x hes in the closure of
non-empty subset A of X of and only of there 15'a sequence of points of A tehich
converges fo %.

We know already, from Chapter I, § 7, no. 3, that the condution is suffaens,
To see that 1t 15 necessary, consider a countable fundamental system (V,)
of neighbourhoods of # such that V,, eV, foreach n If x lesm
the closure of A then each V, meets A, and if %, lies m V,nA,
the sequence (x,) converges to x (**).

From Froposition § we deduce .

ProrostTion 9 A metric space X 15 complete 1f and only if cuery Cachy
sequnce 1n X 15 convergent.

Let X be the completion of X. If there is a point xe X which does
not belong to X, then there 1s a sequence (x,) of points of X which
converges to % and this is a non-convergent Cauchy sequence in X.

Provosirion 10. Let X be a metnizable space and let f be a mapping of X
wnto a topological space X' Then f 15 continuous at a pownt x € X if and only
tf, whenever (x,) 15 a sequence of pownts of X which converges to x, the sequence
(F (%) converges to f(x) n X'

The condition 15 mecessary, from Chapter I, § 7, no 4, Proposition 9,
Corollary 1. Toshow thatats sufficient, consider the filter 55’ of nexghbour-
hoods of f(a) in X'; the hypothesis umplies that Jf(®) is coarser
than every elementary filter associated with a sequence which converges
to g, that s to say every clementary filter which converges to 2; but

(*) See eg, J. Dievnonne, Notes de Teratopologre (1), Revue scuentsfigue (Revue
rose), 1939, P. 39

(**) This proposition can still be vahd 1n certan spaces m whch at lcm one
pomt does not have any countable system of for
example, the space obtained by compactifying an uncountable discrete space by
adjoining a pomnt at infimity (Chapter I, § g, no. 8, Theorem 4).
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the intersection of these filters is the neighbourhood filter of a (Chapter I,
§ 6, no. 8, Proposition 11). Hence the result.

Note that Propositions 8 and 10 are valid in any space X in which
every point has a countable fundamental system of neighbourhoods.

7. SEMI-CONTINUOUS FUNCTIONS ON A METRIZABLE SPACE

ProrostTioN 11. Let X be a metrizable space and let f be a lower semi-

contimuous function on X which takes its values in a closed interval [a, 8] of R.
Then f is the upper envelope of an increasing sequence of continuous functions on
X which take their values in [a, b].

By transfer of structure we may assume that ¢ =0 and & = 1.

(i) Suppose first that f = ¢,, where A is an open subset of X. Then
the function g, defined by gu(x) = n.inf (d(x, X — A), 1/n) is continuous
and > o0 on X; also g,(x) =f(x) when xe X — A and when

d(x, X —A) = 1/n.
It follows immediately that f = sup (g,)-

(ii) In the general case consider, for each integer n > 1, the finite decreas-
ing sequence of open sets

A":'}l(]%’"*’w[) o<k <n—i);

n—1

3 I . . .
the function g, =— Yo A, is lower semi-continuous, and we have
n k=1

0 < f(*) —ga(x) < 1/n for all n; hence f is the upper envelope of the
sequence (g,). On the other hand, g, is a linear combination with
positive coefficients of a finite number of characteristic functions of open
sets and is therefore the upper envelope of a countable sequence (Aun)ms0

of continuous functions >o, by (i); hence f= suph,, If we put
m, n

Ju=sup h,, weseethatthesequence (f;) is an increasing sequence
PERKIL

of continuous functions > o, with f as upper envelope, and which do
not take the value 1, since g, <n— 1/n.
8. METRIZABLE SPACES OF COUNTABLE TYPE

DEFINITION 4. 4 metrizable space is said to be of countable type (or separable)
if its topology has a countable base.

Clearly every subspace of a metrizable space of countable type is again
of countable type. The definition of the base of the topology of a product
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Let H be the subset of N consisting of indices n such that U, is
contained in at least one of the V,; the sequence (U,),en is a covering
of X, because every point xeX belongs to some V,, and since V, is
open, thereisanindex # suchthat ¥« U, cV,. Hence thereisa mapping
 of H into I suchthat U,cVy,, for each neH; taking J = ¢(H),
which is countable, the proposition is proved.

9, COMPACT METRIC SPACES; COMPACT METRIZABLE SPACES

The criterion for precompactness of a uniform space (Chapter II, § 4,
no. 2, Theorem g) gives rise to the following proposition for metric spaces:

PROPOSITION 14. A metric space X is precompact if and only if, for each ¢ > o,
there is a finite covering of X by sets of diameter < e.

If we adjoin the hypothesis that X is complete we have a criterion for
compaciness of metric spaces.

From Proposition 14 we get a flopological criterion for compactness,
applicable to metrizable spaces:

ProrosiTioN 15. A metrizable fopological space X is compact if and only if
every infinite sequence of points of X has a cluster point in X,

Axiom (G) of Chapter I, § g, no. 1 shows that the condition is necessary.
To show sufficiency, let d be a metric compatible with the topology of X.
We show first that the metric space X so defined is complete : every Cauchy
sequence in X has a cluster point and is therefore convergent (Chapter
11, § 8, no. 2, Proposition 5, Corollary 2); hence X is complete, by Propo-
sition 9. Next we shall show that X is precompact; if this were not so,
then by Proposition 14 there would exist a real number « > 0 such that
X could not be covered by any finite number of subsets of X of diameter
<a. We could then define by induction on =7 an infinite sequence
(%) of points of X by the condition d(xp, x,) >t a for all p<an;
and such a sequence can have no cluster point, since every ball of radius
< 3o contains at most one point of the sequence.

GOROLL.ARY. A subset A of a metrizable topological space X is relatively
compact if and only if every infinite sequence of points of A has a cluster point in X.

Let d be a metric compatible with the topology of X. We shall show

that the space A is compact, by applying the criterion of Proposition 15.

Let (x,) be a sequence of points of A; then for each index n there
exists y,e A such that d(x,, y,) < 1/n; the sequence (»,) has, by
hypothesis, a cluster point aeX, and ¢ is also a cluster point of the
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sequence (%), for if 3, lies 1n the ball with centre @ and radus 1jn,
for some m >n, then xn lies m the ball with centre ¢ and radius a/n.

It should be remarked that Proposition 15 is not a consequence of the
exastence of a countable fundamental system of neighbourhoods at each
pomt of X; there are examples of non-metrizable, non-compact spaces
1n which every pomt has a countable fundamental system of neighbourhoods
and every nfinite sequence of points has a cluster point (Exercise 15).

PropostTioN 16, A compact space X 15 metrizable f and only 3f 1ts topology
has a countable base

The condition 15 necessary. By Propomtion 14, for each integer a1

there is a finite subset A, of X such that the distance of A, from every

point of X 15 <t/n; the countable set A=[J A, is therefore dense m
v

X, and the result follows from Proposition 12 of no. 8.

The condition 1s sufficient. Let (U,) be a countable base of the
topology of X. Every neighbourhood of a pomt of the diagonal A of
X x X therefore contains a nesghbourhoed of the form U, x U,, applying
the Borel-Lebesgue axiom to the compact subset A of X x X, 1t follows
that every neighbourhood of A contains a fimte union of sets of the
form U, X U,, which s a neighbourhood of A. Hence the neighbour-
hoods of A which are finite uruons of sets of the form U, X U, forma

d 1 system of of the ity of X (Chapter II,
§ 4, no. 1, Theorem 1), and the result therefore follows from Theorem &
ofno. 4

CorovLary Let X be a locally compact space and let X' be the compact
space obtaned by adyoming a pownt ot snfivty w fo X (Chapter I, § g, no 8)
Then the follounng statements are equivalent

a) The topology of X has a countable base.

b) X' us metnzable

©) X is metnizable and c-compact.

a)=sb): Let (U,) be a countable base of the topology of X. Each
naighbourhood of a point xeX contans a compact neighbourhood
of x, which 1n turn contains a neighbourhood of x equal to some U,
Hence the relatvely compact U, form a base of the topology of X,
and we may therefore suppose that all the U, are relatively compact
X 15 therefore a countable union of compact sets U, 1¢.1t 1s g-compact;
this implies thatin X’ the pomnt © has a countable fundamental system
(Vi) of open neighbourhoods (Chapter I, § g, no g, Proposition 15,
Corollary 2). Hence each neighbourhood of a pomt yeX' contams
cither one of the U, or onc of the V,, which s a neghbourhood of
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and so the U, and the V, form a countable base of the topology of
X’'. Hence X' is metrizable, by Proposition 16.

b)=3~c): If X' is metrizable, then » has a countable fundamental
system of neighbourhoods, and therefore X is g-compact by Chapter I, § 9,
no. g, Proposition 15, Corollary 2.

¢)=sa): By hypothesis, there is an increasing sequence (V,) of
relatively compact open sets which cover X and are such that V, eV,
(Chapter I, § 9, no. g, Proposition 15). The subspace V, is compact
and metrizable and therefore has a countable base (Proposition 16), and
therefore so does V,. Let (Up.)m>, be a base of the topology of V..
For each xe X and each neighbourhood W of x, there exists n such
that xeV,, hence there exists m such that xeU,,cV,nW. Hence
thesets Uy, (m = 1,7 > 1) form a base of the topology of X.

10. QUOTIENT SPACES OF METRIZABLE SPACES

If X is a metrizable space and R is an equivalence relation on X,
the quotient space X/R is not necessarily metrizable (even if X is
locally compact * and X/R is normal ,). However:

ProrostrioN 17.  Every Hausdorff quotient space of a compact metrizable space
is compact and metrizable.

Equivalently, if f is a continuous mapping of a compact metrizable
space X into a Hausdorff space X', then f(X) is a metrizable subspace of
X' (Chapter I, § 9, no. 4, Theorem 2, Corollary 4).

Let X be a compact metrizable space, and let R be an equivalence
relation on X such that X/R is Hausdorfl. Then X/R is compact
(Chapter I, § 9, no. 4, Theorem 2), hence by Proposition 16 it is enough
to show that the topology of X/R has a countable base. To do this,
we use the facts that R is closed (Chapter 1, § 10, no. 4, Proposition 8)
and that the classes mod R are compact. Let ¢ be the canonical mapping
of X onto X/R, and let (U,) be a countable base of the topology
of X. Let z be any point of X/R and let V be a neighbourhood
of z in X/R; then '(V) is a neighbourhood in X of the compact
set 9 (2). If x is any point of '(z), there is a set U, containing x
and contained in ¢(V), and therefore by the Borel-Lebesgue axiom
there is a finite open covering (Un)igrgr of 9'(2) such that, if W denotes
lZJ U., W is a neighbourhood of 3'(z) contained in (V). Since R

is closed, it follows that (W) is a neighbourhood of z in X/R, contained
In V (Chapter I, § 5, no. 4, Proposition 10). Let B denote the set
of interiors of sets of the form o(W), where W runs through the set §
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of all finite unions of sets of the form U,; we have then shown that %
is a base of the topology of X/R, andsinec § is countable, sois 3.

Propostrion 18, Let X be a complete metric space, let R be an apen equivalence
relation on X suck that X/R is Hausdorff, and let g: X—>X[R be the
canomcal mappng. Then of K 15 any compact subset of X[R, there is o
compact subset K' of X such that o(K') = K.
Let B, be the set of all open balls of radius 1/2 in X. As B runs
through @, the scts o(B} form an apen covering of K, and therefore
there exists a finite number of points %y, .., %, of X such that the images
under o of the open balls with radius 1j2 and centre x (1 <igm)
form an open covermg of K. Let H; = { %y o.0s %} and suppose that
we have defined a finite set H,, for 1 <i<n, such that:
(l) H,cH,, and each point of H,, is at a distance < 1/2* from
H, for 1<ig<n—1;
{u) the images under ¢ of the open balls of radius 1f2, with centres
at the pomts of H,, form an open covering of K, for 1€i<n.
Let $,,, be the set of all open balls of radius 1j21 whose centre x
15 such that d{x, H,) < 1/2" (4 being the metnic on X). The properties
of H, show that thesets ¢(B), for BBy, form an open covering of K;
hence there 15 a fimte set L, cX such that the images under ¢ of
the open balls of radius 1/2"+1 whose centre belongs to Ly, form an
open covering of K. Taking H,4y = H,UL,y,, we sce that we can
define inductively an infinite sequence (H,) of finite subsets of X with
propertes (1) and (n) above. Let H=UH,., and let us show that H

15 precompact For each p> o0 and each pmnt Zrep&Hyy,, there exists
a sequence of points Z,,, e Hy, (0 €3 p—1) such that

dznso Zrbry) < 12" for  og1<p—1;

—1
1t follows that  d(z, Zaep) < Z 1f2" < 1f2",  and  consequently
d(y, H,) < 1/2"1 for all yeH' which proves our assertion. Since X
is complete, H 15 compact, hence (H) is compact. Next, let us show
that Keo(H). If zeK, then by definition d(H, F{2)) <r/e" for
all n, and therefore d(H, §(z)) = 0; but F(2) 1s closed and H is
compact, so that this lmph:s Hngx) #8 (no.2, Remark followicg
Proposition 3); hence the assertion. Thus if K' = Hn $(K), then K’

1s closed in H and thercforc comnpact, and from what has been proved
we have p(K') = QED.
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3. METRIZABLE GROUPS, VALUED FIELDS,
NORMED SPACES AND ALGEBRAS

1. METRIZABLE TOPOLOGICAL GROUPS

ProposrrionN 1. The left and right uniformities of a topological group G are
metrizable if and only if G is Hausdorff and the identity element e of G has a
countable fundamental system of neighbourhoods.

The condition is clearly necessary. Conversely, if it is satisfied, let (V)
be a fundamental system of neighbourhoods of ¢; if U, denotes the set
of pairs (v, »)€G X G such that x'yeV,, then the U, form a
countable fundamental system of entourages of the left uniformity of Gj;
since this uniformity is Hausdorff, it follows from §2, no. 4, Theorem 1
that it is metrizable. Similarly for the right uniformity of G.

A topological group G is said to be metrizable if its topology is metri-
zable. Proposition 1 then shows that its two uniformities are metrizable.

This result can be sharpened with the help of the following notion :

Dermvition 1. A metric d on a group G (written multiplicatively) is said to
be left-invariant (vesp. right-invariant) if we have

d(zx, zy) = d(x,y)  [resp. d(xz, y2) = d(x, »)]
Sorall x,9,z in G,

ProrosrrioN 2. The left (resp. right) uniformity of a metrizable group G can
be defined by a left-invariant (vesp. right-invariant) metric on G.

Suppose that the fundamental system (V,) of neighbourhoods of e

consists of symmetric neighbourhoods such that V3i,;cV, for each =.

Then the corresponding entourages U, of the left uniformity are symmetric
3

entourages such that Uyyy cU,. The method used in the proof of Proposi-
tion 2 of § 1, no. 4 allows us to construct, from the sequence of entourages
(Un), a metric d on G compatible with the left uniformity of G;
and since for each ze G the mapping (x, ») — (zx, 2) leaves each of
the U, invariant, the definition of d shows that it is a left-invariant
metric. This method also holds for the right uniformity.

Note Fhat, .if the two uniformities of G are distinct, the metric 4 is not
right-invariant, and hence in general d(x~1, y~1) = d(x, y).
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In particular, if G 15 a metrizable abelian group, its uniformity is defined
by an invariant metnic d; 1f G 15 written additively, we have

d(x, 3) = d(0, y — %) = d{o, x—3).
We shall often write x| (or [l]) for d(o,x); we have then
dlx,5) = [x—3|.
The function |x| satisfies the following three conditions :
@) |—a} = |#| forall xeG.

B) |x+3| < |1l + 1| forall G andall y&G.
Q |} =0 fandonly if z =o.

Conversely :

PropostTION 3. Let G be an abelian group, written additively, and let x — |x]
be a mapping G —» Ry which satisfies conditions a), &) and ¢} above. Then
the function d(x, 3) = |x—3| 15 an snvanant metric on G; the topology
G whick 1t defines on G 15 compatible with the group strutture of G, and the
uniformaty defined by d 5 the same as the umformily of the fopologecal group
obtaned by endounng G with the topology .

The function d(x, ) 18 a metric on G, for the relation d(x, ) = o0 is
cquivalentto x — 7 by ¢}, wehave d(x5) = d{ %) by ); and

A 3) = |(x—3) + @—Nlglx—z+le—y=dx 2)+dlz »

by ). Morcover, 4 15 wmvariant, since (x +2) —(y +2) =x—»
For each real number « >0, let V, be the set of all xeG such that
{%| < a; then the V. form a fundamental system & of neighbourhoods
of o for the topology B, and sinee 4 is invariant, ¢ + & 1s a funda-
mental system of neighbourhoods of a for the topology ©, for each
aeG. By a), the V, aresymmetric, and by 8), we have Voo Vo € Viai
hence the topology G 1s compatible with the group structure of G (Chap-
ter 111, § 1,no 2). The last part of the proposition follows immediately.

Condutions a), ) and ¢) are equivalent o ¢) together with the condition

) lr—sf<ixl + 151

For o) and 5} clearly mmply #); conversely, taking x =0 m &)
and using ¢), we sce that |—3| < |yl; replacng y by —y it follows
xhztb;—))=\yl, which 18 aj, replacing y by —y mn &) wethen
get
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PropostTION 4. If G is a metrizable group, then every Hausdorff quotient
group G[H of G is metrizable. If G is also complete, then G[H is com-

plete (*).

The first part of the proposition is a consequence of the fact that the iden-
tity element of G/H has a countable fundamental system of neighbour-
hoods in G/H; for if (V,) is a fundamental system of neighbourhoods

of ¢ in G, then the canonical images V, ofthesets V, in G/H form
a fundamental system of neighbourhoods of the identity element of G/H
(Chapter III, § 2, no. 6, Proposition 17).

To show that G/H is complete if G is complete, it is enough, by
§ 2, no. 6, Proposition g, to show that every Cauchy sequence (%,) (with
respect to the left uniformity of G/H) is convergent. We may assume,
by passing to a subsequence of (#,) if necessary, that for each pair of
indices p, ¢ such that p>n and ¢>rn, we have #;%,eV,; this
means that for each pair of points y € %, 2z € %, wehave 322 e HV, =V, H;
and therefore, for each ye 4, the intersection of #, and the neighbour-
hood »V, of y is not empty. Suppose then that the sequence (V)
has been chosen so that V3, eV, and define inductively a sequence
(x,) of points of G, such that x,e4£, and x,4, €x,V,; this is possible
by what has been said. It follows then by induction that for each p > o
we have x,,€x,V,Viy... VeV, The sequence (x,) is
therefore a Cauchy sequence in G, so it converges to a point a; and it
follows immediately that the canonical image ¢ of ¢ in G/H is the limit
of the sequence (#,).

Cororrary 1. Let G be a complete metrizable group, let G, be a dense
subgroup of G and let Y be a closed normal subgroup of G, If H is the

cosure of Hy in G, the quotient group Go/H, has a completion isomorphic
to G/H.

H is a normal subgroup of G (Chapter III, § 2, no. 3, Proposition 8)
and Proposition 4 shows that G/H is complete. Also if ¢ is the canon-
ical mapping of G onto GfH, itis clear that ¢(G,) is dense in G/H.
The result therefore follows from Chapter III, § 2, no. 7, Proposition 21.

Let G, G’ be two Hausdorfl abelian topological groups, and G, G/
their respective completions. We recall (Chapter 111, § 3, no. 3, Propo-
sition 5) that if u is a continuous homomorphism of G into G', then
% is uniformly continuous and extends uniquely to a continuous homomor-

phism of G into &', which we shall denote by # in the remainder

(*) There exist non-metrizable complete groups G containing a closed sub-
group H such that GfH is not complete.
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of this subsection, The diagram

GG

i It

G5
(i which i, ¢ are the ical injecti Ifoxa
continuous homomorph)sm of G’ mtoa Hausdorﬂ' abelian !opologlml
group G*, andif w=v o u, then it is follows immediately that &=17 4.

Let H beaclosedsubgroup of G andlet E = G/H.” Let j:H-G
and # G->E be the canonical mappings, Let H be the closure
of H in &; H is a complete group and we identify it with the completion
T of H The connnuous extension § of j to ¥ is evidently the canon-
1cal injection of H in G.

Suppose from notw on that G is metnzable. 'Then the canonical mapping
of E=G/H mto G/f is a topological isomorphism of E onto a dense
subgroup of the complete group GffI (Corollary 1), and thus we may
identify (/A with B and the continuous extension § of p to G with
the canonical mapping of & onto G/AL

CorowLany 2. Let G, G' be two metrizable abeian topological grovps b
u+ GG’ beastrictmorphiom unth kernel N andimage ®. Then 538

15 a strict moyphism with kernel W and image P.

Let u=jop0p be the canonical factorization of u, where s is an
1somorphism of the topologlcal group G/N onto the topologncal group
u(G) =P. We have &= jofofp, and we haveseen that s the
canomcal mapping of G onto /N, and that j is the canonical mapping
of £ into &' On the other hand, & 15 an 1somorphism of G/N onto P
(Chapter III, § 3, no 4, Proposition 5), whence the result.

CorovLary 3. Let G, G, G be thiree metrizable obelian topological groups

and let u. G ->G' and o3 G' =G b two strict morphisms suck that the

sequence G == G' - G" 15 exact [ie., u(G) =T (0)]. Then the sequence
656 46" 15 exat,

For if we put N = u(G) =0}, it follows from Corollary 2 that N
is both the image of # and the kernel of 5.
Remarks. 1) Let G be a non-Hausdorff topological group such that the
Hausdorff group associated with G is metrizable; equivalently, such that
the identity element of G has a countable fundamental system of neigh-
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bourhoodsin G. The proof of Proposition 4 applies to this case without
modification, H being an arbitrary normal subgroup of G, and shows
that the Hausdorff group associated with GfH is metrizable, and that
G/H isa complete group (in general not Hausdorff) whenever G is complete.

2) Let d be a left-invariant metric which defines the topology of a metri-
zable group G, and let H be a closed normal subgroup of G. If #
and 7 are any two points of G/H, consider the distance d(¥, ) of the
two closed subsets £, 5 in G (§ 2, no. 2); we shall see that this function is a
left-invariant metric on G/H and defines the topology of this quotient group.

Notice first that if ¥ € # and ¥ € j we have d(X, ) = d(x, Hy); for
d(x, Hy) = Iinlf; d(x, b »), and therefore d(h'x, Hy) = d(x, Hy) for all

h&

k" e H, since d is left-invariant; this proves the assertion (§ 2, no. 2).
Hence for each Z € G/H we have [§ 2, no. 2, formula (2)]
[d(#, 2) —d( 5, 2)| = d(x, &) —d(y, )] < d(x,);

and since this inequality is valid for all ¥ € £ and all » € $, we have
|d(%, 2y — d(y, 2)] < d(#, ), which shows that d(«, J) is a metric on
G/H. Moreover, for any z € Z, we have

d(éx, 2p) = hig{ d(zx, hzy)

from above; but since hgy = 2(2-%hz)y and since 2~z runs through
H as & runs through H (H being normal), the left-invariance of d(x, »)
shows that we have d{zx, Hzy) = d(x, Hy) = d(%, J). Finally, if V
is a neighbourhood of ¢ in G defined by d(¢, x) < «, the image V
of V in GfH is the set defined by d(¢, ¥) < «; this completes the proof.

2. VALUED DIVISION RINGS

DEFINI:I‘ION 2. An absolute value on a division ring K is a mapping x — |x}
of K into R, which satisfies the following conditions :

(VM) |x| = o ifand only if x = o.

(VMp) |o| = |x|.]5| forall x,5 in K.

(VM) |x+5 <|x| + |3 forall x5 in K.

By (VMy) we have |x| = |1].]*|, and since by (VM,) there is at

leastone » suchthat |x] # o, wehave |1} = 1; itfollows that 1 =|—1{2,
hence |—1| =1 and consequently
l—=# = |— 1] |5 = {x[;

therefore |x—3y| < o] + |y] for all x, y in K. We can therefore
say that d(x, y) = |x —| is an invariant metric on the additive group
K, and that the mapping » —> |¥| is a komomorphism of the multiplicative
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group K* of non-zero clements of K into the multiplicative group
Rf of real numbers > o,

The invariant metric ¢ —y defines a metric space topology on K,
compatible with its additive group structure (no. 1, Proposition 3); but,
morcover, this tepology is compatible with the du-umn ning structure of K,
For the continuity of 7 on K X K follows from the relation

2y == xoyp = (x— %) (3 =20} + (¥ — ) Fo + xo(7 — 30}
which gives
ly — %30l < I — %ol |3 —J0l + 15| |7=20| + | 7ol I — ).

Likewse, the continuity of x~! at every point x, 5% o follows from the
identty x-1— 231 = x-3 (s, — 2)x71, which gives, by (VMy),

it — ) = Ll
Tl T

now if €>0 15 such that ¢ < [z,), the relation xol €& 1mplies
15l 2 lrl — e, whence (x=) — x51| < ¢/ |xof(lxe] — 0 Toed this st
blishes the continuity of s~} at the pomnt x,

DeriNITION 3 A ralued dimnon ning 15 a duision nng K endowed with the
structure defined by a gruen absolute value on K.

A valued dwision ning will always be considered as endowed with the
topology defined by its absotutc value, which makes 1t fopological division
rng  If K4 13 a davision subring of a valued division ring K, the restric-
uon to K, of the absolute value on K is an absolute valuc on K,
whichdefineson K, the topology induced by the topology of K.

Evamples 1) Let K be an arbitrary dwision g For each reK,
put [x] =1 if x50, and |o]=0. The mapping x —r [x! so defined
15 an absolute value on K, called the improper absolute value. The topol-
ogy defined by an absolute value |x] on a division nng K s discrete
if and only of [x| 15 the unproper absolute value. This conditon 15
clearly sufficient, conversely, if the topology of K s discrete, |x| can
take no value @ > ¢ other than x; for if we had Jr== <1, the
sequence (x3) would consist of non-zero terms and would converge to
0, todeal with the case a > 1, consider x;? wnplace of x,r

2) The absolute value of a real number (Chapter IV, § 1, no. 6) satsfies
aooms (VMy), (VM) and (VMy,), and the topology it dcfines on
the field R 1 the topology of thc real hme.  On the ficld’ C_ of complex
numbers (dentified with RY) [resp. the dwinon ring H of quaternions
(dentificd with RY] the Euchidean norea again an absolute value and
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defines the topology of the field C (resp. the division ring H)
{Chapter VIII, § 1, nos. 2 and 4).

3) On a division ring K, a real valuation is afunction v defined on K*
with values in R which satisfies the following conditions: a) if xeK¥*
and yeK*, then »(xy) = v(x) + v(p); b) if in addition x4 y 4o,
then v(x + ) = inf (v(x), v(»)). If a is any real number > 1, we
can then define an absolute value on K by putting |x| = a® for x # o,
and jo]= 0. For the relation w(xy) = v(x) + v(y) for x50 and
y 5~ 0 implies the relation |xy] = |x|.|»] for these values of x and y,
and this relation is trivially true if one of «x, y is zero; likewise, from the
relation o(x 4 ») = inf (o(x), v(»)) for x50, y5£0 and x4 ys£o0
we deduce |x -+ | < sup (|#], | ») < x|+ 1}, and these inequalities
are still satisfied if one of x, y, x + » is zero. In particular, if
v,(%) is the p-adic valuation on the field Q of rational numbers (the
exponent of p in the decomposition of x into a product of prime factors),
then the corresponding absolute value (x|, = p~vp® is called the p-adic
absolute value on the field Q (cf. Chapter 111, § 6, Exercise 23).

Remark. If x is a root of unity in a valued division ring, then |x|= 1,
for x*=1 implies |[xj* =1 and hence |x]= 1, In particular, the
only absolute value on a finite field is the improper absolute value, since
every element £ o0 of such a field is a root of unity.

DeFmviTiON 4. Two absolute values on a division ring K are said to be equiv-
alent if they define the same topology on K.

Prorostrion 5. Two absolute values |x|, |x|, on a division ring K, neither
of whick is the improper absolute value, are equivalent if and only if the relation
lxh < 1 implies |x|y < 1. There exists then a real number o> o such that
|#l = |x|¢ for all xeK.

The condition is necessary, for the set of all xeXK such that |z}, <1
is the same as the set of all x such that, with respect to the topology
defined by the absolute value |x, lima" = o.

5»-00

Suppose conversely that |x], < = x<1. Then |¢}> 1===|2|,>1,
because [x~1|, < 1 and therefore |¥), < 1. Since by hypothesis
the absolute value |x|, is not improper, there exists x,e K such that
[¥oh > 1. Let a=lxg|;, b =|r|, and let p=logb/loga > 0. Let
*eK* and put |x); =|x,]]. If m and n are integers such that n>o0
and mfn > v, then |x|, <|xo|P/", and therefore |x"x5™); < 1; hence
[xgmy< 1, [xly < |xo[p/n.  Similarly,if mjn <+, we see that |%]2> ||/
it follows therefore that |x|, = |%,|}; in other words

log |x], = vy log b = yplog a = plog ||,
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iy [sla=|s[% It s now clear that the neighbourhoods of zero for the
topologies defined on K by |s]; and |z, arcidentical.

Conversely, 1f {s| is any absolute value on K, the function |sfe is an
absolute valuc on K (cquivalent to [+]) for all p such that 0 <p < 1.
We have only 10 venfy the mequality |« +3ft < |54 + |5 and simes
e+ ¥P < (Jxl + I30)° 1t 1s enough to show that,if a >0 and § >0,
we have (a-+8)f <at-+ b for any p such that o <p< 1 If we
put c=gf(a+b) and d=b/(a+5), we have ¢+d=1, and the
wequality 10 be proved 15 ¢+ dt > 1, but thus follows ummeduately
from the relations ¢t > ¢ and d* > d, which are valid since 0 <o <1,
o<dg1,0<p S 1.

Hence the set of values of 7 > o such that [xjr 15 an absolute valueis a
fimte or infinute wmterval of R with left-hand end-pownt 0 1f st 15 fimute, it
15 evidently closed; for if we have jx + 3" < |x" + |5)" for any x,y in
K and alf r such that o < 1 < 7o, then by continuty the inequality 18
sull vald for r=ry If [f* 1s an absolute value for oll 7> o, then we
have

e+ < (W Y

forall x and y 1n K andall r > 0. Now,if 4,5 are two real numbers
>0, wehave Lm (2" + b)1 = sup (a, 5}, for, supposing for example
that a 2 b, we have a € (a” + &)V < 2%ra, and the result follows
by letung 7 -+ + o,

Thus, of Jxfr 1 an absolute value for all r > o, we bave

I+ 51 < sup (il 1)

which can be expressed by sayng that o(x) = —logid (xs£0) is a
valuation on. K.

Remark. "The proof of Proposition 5 shows that, if the topology defined
by [xly 1 coarser than that defined by [+,, and of |sly is not smproper,
then |x|; and [s], are equivalent, for the relaton ||, < t then mmphes
|¢ls < 1. Thus the topologics defined by two absolute values on K,
nather of which 15 improper, cannot be comparable without being wental.

Prorostrion 6. The completion R of a dursion ning K endowed with an
absolute talue |x| 15 @ dirsion ring, and the function |s| can be extended by
continuty to an absolute value on R, which defines the topology of K.

Let § be a Cauchy filter on K (with respect to the additive uniformity)
which does not have © as a cluster point; to show that R is a division
ring it 1s enough to establish that the image of § under the mapping
*—>x"1 13 a Cauchy filter base (Chapter III, § 6, no. 8, Propasition 7).
Now, by hypothesis there exists a real number o >0 and a set A=§
such that |x| > 2 for all xeA; on the other hand, for cach ¢>0
there exists a sct Be§ such that BcA and [x—)| Se for all xeB
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and yeB; hence
|a=1 — Y] = Jr=al =

ERE S

and the first part of the proposition follows. The invariant metric
|x—»| = d(x, ») extends by continuity to a metric on K (§ 2, no. 1,

Proposition 1) which defines the topology of R and is invariant by the
principle of extension of identities; we continue to denote this invariant
metric by d(x, ). If we put |x| = d(o, x) for xeR, it is clear that
2] is the extension by continuity of the function |x| on K and is therefore
an absolute value on K by the principle of extension of identities.

H

3. NORMED SPACES OVER A VALUED DIVISION RING

Dermation 5. If E is a (left) vector space over a non-discrete valued division
ring X, anormon E is a mapping x — p(x) of E into R, which satisfies
the following axioms :

(NOp p(x) =o0 ifandonly if x = o;
(NOp) p(x +y) <p(x) + p(») Sforall x,y in E;
(NOy) p(tx) = |t|p(x) forall teK and all xeE.

The normed spaces most frequently met with have either R or C as
field of scalars (with the usual absolute value).

From (NOyy) it follows in particular that p(— x) = p(x); hence if
we put d(x, y) = p(x — y), d is an invariant metric on the additive group
E, and defines a metric space topology compatible with the additive group
structure of E (no. 1, Proposition ) ; moreover, the mapping
(t, x) >ix
is continuous on K X E; for we have
by — toX = (t—to) (x — xo) + (¢ — to)x + fo(x — x,)
and therefore
bltx —tx,) < |t — to] p(x — xo) 4 |t — to| p(x) + {to] p(x — x4),

whi_ch shows that the left-hand side can be made as small as we please by
taking |t —4,| and p(x — x,) sufficiently small.
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Deevimion 6 If K 15 @ non-duscret valued dicision ning, a vrctor space E
aver K, endoued wrth the structure defined by a guen norm on E, it called 2
normed space over K.

A normed space will always be considered as endowed with the topology
and the umformty defined by its norm

Examples 1) On a non-ducrete valued division ving K, considered as a
(left or right) vector space over atself, the absolute valuc |xf s a norm.

2) The expression [[x]| = \/ Z 1, which we have called the Euclidean

norm on the space R* (Chaptcr Vl § 2) 18 evidently a norm 1n the sense
of Defimtion 5 So are the functions sup |x| and }.. e
116 =

3) Let (L, K) be theset of all functions f onaset E which take therr
Values 1n & non-discrete valued division ring K and are such that the real-
valued function x —» 1 ()| 1s bounded on E. This set s clearly a vector
subspace of the (left or night) vector space K® of all mappugs of E mto
K Ifwe put plf) = sup|f(s), then p 18 a norm on the vector

B
space B(E,K) (cf. Chapter X, § 1)

* 4} On the vector space C(I, R) of all finite continuous real-valued
functions defined on the interval 1= [o, 1] of R, the function

s = £ won e

isanorm ,

In 2 normed space E, the {closed) ball B with centre o and radus 1,
that 1s to say the set of all xeE such that [(x) <1, will be called d'ne
unit ballin E. Let us show that a fi 1 system of

of 0 1 E 13 formed by the transforms of the unit ball by the komothefies
x —tx, where t runs through the set of non-zero elements of K. The
mage of B under this homothety 15 the closed ball with centre o and
radius |¢}, hence 1t 15 enough to show that for each real number r>o0
there exists teK such that o < [¢] <r. Now since the absolute value
of K is not impropet, there exists foeK such that o < Ji} < 151t is
therefore enough to take ¢= {3, where n 1s a sufficiently large integer,
n order that [¢] = |f|* < r.

Dermrrion 7. Twe norms on a vector space E (over a non-duscrete valued
dxvl‘s?:on rng K) are said to be equvalent 1f they define the same fopology
on
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ProPOSITION 7. Two norms p, q on a vector space B are equivalent if and only
if there exist two numbers a > 0, b > 0 such that

(1) a.p(x) < g(x) < b.p(x)
fordll xeE.

These inequalities are syfficient, for it follows from the relation a.p(x) < ¢(x)
that, for each r > o, the closed ball with centre o and radius ar (rela-
tive to the norm ¢) is contained in the closed ball with centre o and
radius 7 (relative to the norm p); hence the topology defined by ¢
is finer than the topology defined by p. Similarly the inequality
g{x) < b.p(x) shows that the topology defined by p is finer than that
defined by ¢, and hence p and ¢ are equivalent.

Let us now show that the inequalities (1) are necessary. If the topology
defined by ¢ is finer than the topology defined by #, then the unit ball
with respect to p contains a closed ball with centre o and radius
a >0 with respect to g¢; i.e., the relation ¢(x) € ¢ implies p(x) < 1.
If t,eK issuchthat o < |tg] < 1, then for each x40 in E there is a
unique rational integer £ such that «ffy] < ¢(t¥x) < «; therefore
p(thx) < 1, so that

S < —
#x) [Zo]*  alto]

putting @ = «|¢)] we have therefore a.p(x) < ¢g(x) for all x50, and
this inequality is also valid when x = o. Similarly we show that if the

topology defined by p is finer than that defined by ¢, there exists b >0
such that ¢(x) < &.p(x).

q(x);

Example. In the space R®, the three norms

n n
y/ Y, sup lx) and D |z
i=1 Lign i=1

are equivalent, because we have

n n
<)/ 2 < Dish < sup x)

(2) sup
i< 1<ign

1g

[ikn

Prorosition 8. Let E be a normed space over a non-discrete valued division

ring, let p be the norm on E, and let B be the additive topological group which
15 the completion of the additive group E. Then the function (1, X) = tx can

be extended by continuity to K x B and defines on £ a vector space structure

over K; the norm p can be extended by continuity to @ norm p on B which
defines the topology of E.

The extension of fx by continuity is a particular case of the theorem of
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GONTINUOUS MULTILINEAR FUNCTIONS § 3.5

On the other hand, it is clear that |ltx]} = |¢].||x]}, and that if ||x}] = o,
then [zl = o and therefore x; =o for 1 <t<mn, so that x = o;
hence [jx]| is 2 norm on E. Also the relation [[x{j< a is equivalent
to the n relations |Jxj] < a, and therefore the norm ||x|| defines the
product topology on E.

n n
Similarly we can show that the functions Z {lxll and \/ Z [lx,|[2 are
i=1 i=1
norms on E; the inequalities (2) show that all three norms are equivalent,

In particular, in the (left or right) vector space Kr, if we put

i=1 Vs
b =swlel o) = Dbl po®) =\/ D lxp
i i=1 i=1

for x = (¥)1<;<n then the threc functions py, p,, p, are equivalent
norms which define on K* the topology which is the product of the
topologies of the factors K.

5. CONTINUOUS MULTILINEAR FUNCTIONS

Tueorem 1. Let E;(1 <i<n) and F be normed spaces over a non-discrete
n

valued division ring K, and let f be a multilinear mapping of H E; into F.
n i=1

Then f is continuous on I_[ E; if and only if there exists a real number a > o

i=1
such that, for all x; € E; (1 <1< n), we have

(3) 1 (ers X5 - o5 )l < @yl - {1l

The condition is necessary. Forif f is continuous at the point (o, 0, ..., 0)
there exists a number 4 > o such that the relations ||xj]] <5 (1 < i< n)
imply ||f(x, ..., x)J<1. Let £ be an element of K such that

n
0 < |t} < 1; then for every point (x;) e H E; such that none of the x;

3 . . b i=1
Is zero, there exist 2 rational integers k; such that b|s| < ||t¥x]] < &;
consequently we have

ltolkﬁ‘kﬂn ) '+k"“f(x1> xz, ey xn)“ < I;

on the other hand we have —tll; < b—l—lt——l“xi“, and the relation (3) therefore
ol ¢ 0

follows, with a = (1/b|t,|)". This relation is evidently still valid when one

of the x; is zero.
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The condution is suffictent. We shall show that, if it is satisfied, f iy
"

contnuous at every point {a,) of [ E. We can write
=]

FACEE AR AT ,an)~‘§‘f (@ B X — Bu Xy LT

Now, using (3), the conditions [jx,— af} <7 (1 <+ <n) imply that

N
1 @ e s @y 5= @ Xy <> TS mg (ladl +1);
3
hence, if ¢ is the maxunum of the numbers [ja] (r < ¢ < n), we have

I sx)—Sflan . )l <nar e+

Snce the right-hand side of this inequality is a polynomial m 7 with
zero constant term, it tends to o as r tends to o hence f is continuous.

Remark. Two of the propositions proved carlier are consequences of this
theorem * the continwty of the bilinear function #x, by vartue of the relaton
lltxll = [#] ||xll; and Proposition ¥, by applymng Theorem 1 to the iden-
uty mapping of E, considered as a hnear mapping of the space E, en-
dowed wath the norm p 1nto the space E endowed with the nom ¢
(or owe versa).

6. ABSOLUTELY SUMMABLE FAMILIES IN A NORMED SPACE

DervmoN 8. In a normed space E, a famly (%) of powts of E is said
10 be absolutely summable of the famly (\£J) of norms of the x, is summable
in R

This concept appears to depend on the norm chosen on E, but by Propo-
sition 7 of no 3 and the comparison principle for summable familes of
real numbers, a family which 1s absolutely summable with respect to a
norm p on E s absolutely summable with respect to any normon B
which 1s equvalent to p

If (x).a isafamily of pomnts of E which 15 summable and absolutely
summable, we have

PR

Indeed, for each finute subset J of I we have ” b xll < E,U:JI,
= i

and the inequality (4) follows by passing to the limst with respect to the
directed set of finite subsets of 1.
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PROPOSITION 11. In a complete normed space B, every absolutely summable
Sfamily is summable.

For if (x,) is an absolutely summable family in E, then for each ¢ >0

there is a finite subset J of the index set I such that, for each finite subset

H of I which does not meet J, we have Y ||x/|<e; hence a fortiori
=

3, x|l < e, and this proves the proposition, since E is complete (Cauchy’s

;i
clr?terion, Chapter III, § 5, no. 2, Theorem 1).

A series whose general term is x, is said to be absolutely convergent in
E if the series whose general term is ||x,|| is convergentin R, or (equiva-
lently) if the family (x,) is absolutely summable; consequently (Chapter
111, § 5, no. 7, Proposition g) :

CoroLLARY. In a complele normed space E, every absolutely convergent series
is commutatively convergent.

The converse of Proposition 11 is in general false.

Consider for example the space $(N; R) of bounded sequences x = (xn)reN
of real numbers, with the norm |jx|| = sup |#,|]. Let x, be the sequence
n

{(xmn)neN such that xm, =0 if msén and xpp=1/m for m=1. It
is immediately verified that the sequence (xm)meN is summablein B(N;R)
and that its sum is the element y = (y,) suchthat y, =0 and y, = 1/n
if n > 1; butsince ||x,]| = 1/m, the sequence of norms of the x,, is
not summable in R.

However, we have seen in Chapter VII, § 3, no. 1, that every summable
family in R" is absolutely summable.

7INORMED ALGEBRAS OVER A VALUED FIELD

Dermnrrion 9. If A is an algebra over a non-discrete valued field K, a norm
p(x) on A (A being considered as a vector space over K) is said to be
compatible with the algebra structure of A if the topology it defines is compatible
with the ring siructure of A. An algebra over K, endowed with the structure
defined by a norm compatible with the algebra structure, is called a normed algebra.

If A is a normed algebra over K, and if p(x) is the norm on A, the
bilinear mapping (x, ) >xy of A X A into A is continuous, by
hypothesis; hence by Theorem 1 of no. 5 there exists a real number 4 > o

such that p(xy) < a.p(x)p(y). Replacing p(x) by the equivalent norm
a.p(x), we may therefore always assume that the norm ||x|| on a normed
algebra A is such that

(5) eyl] < ). |1p])-
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The condition is sufiaent. We shall show that, if it is satisfied, f i
v

continuous at every point (a) of | E,. We can write
=

Sy s m) —f{an 0

.
= ‘Ef(np By X, By Ty - X
=
Now, using (3), the conditions [lx, —al| <r (1 € i< n) imply that
B
e SN L | AN R
\
hence, if ¢ is the maximum of the numbers [la]] (1 < ¢ ), we have

IS cox)—f(ay s all<nar (o4 0%

Since the right-hand side of this i Lity is a pol ial in r with
zero constant term, it tends to 0 as r tends to o5 hcnc: f is continuous,

Remark, “Two of the propositions proved earher are consequences of this
theorem . the contintuty of the bilinear function fx, by virtue of the relation
itx| = |t} lx'l; and Proposition 7, by applymg Theorem t to the iden-
tuty mapping of E, considered as a hinear mapping of the space E, en-
dowed with the norm p into the space E endowed with the norm ¢
(or vuce versa).

6. ABSOLUTELY SUMMABLE FAMILIES IN A NORMED SPACE

Dervimion 8. In @ normed space E, a family (x) of points of E is md
ta be absolutely summable 1f the family (\x]) of norms of the x, is summable
m R.

This concept appears ta depend on the norm chosen on E; but by Propo-
sition 7 of no 3 and the companson principle for :ummablc families of
real numbers, a fanuly which is absolutely summable with respect to 3
nomm p on E is absolutely summable with respect to any norm on E
whnch is equualent to p.

If (x),er 18 a2 famly of points of E which is summable and absolutely
summable, we have

@ “ 3 .r." < Z el

Tndecd, for cach finite subser J of 1 we have |3 %[ < ElLrJl-

and the inequality (4) follows by passing to the limit with mpeu tothe
drrected set of finite subsets of I.
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If (t)rer and (Pp)pem are two absolutely summable families in a
normed algebra A, the family (x\y,)0, wersy is absolutely su-Jr}mable,
because || pull < lxll-Ilyull (Chapter IV, § 7, no. 3, Proposition 1);
if in addition A is complete, all three families are summable and we

o= (30) (37)

O weLXxM peM

by the associativity of the sum on the left-hand side (Chapter III, § 5,
no. g, formula (2)).

If the normed algebra A has an identity element e %= o, the mapping
t —te is an isomorphism of the field structure of K onto that of the
subfield Ke of A; this isomorphism is also an isomorphism of the fopolog-
ical field structure of K onto that of Ke (the topology of the latter being
induced by that of A), for the restriction |jte]| of the norm of A to
Ke isa norm equivalent to the absolute value

I
I] =MH’9”-

If |lefl =1 we have |[te]] = ||, and we can then identify the valued
field K with the normed subfield Ke of A, and in particular we
may denote the identity element of A by the symbol 1.

In what follows we shall be concerned only with normed algebras
which have an identity element e, and in which the norm satisfies the
inequality (5); putting x = y = e in this inequality, it follows that
llef] > 1.

ProposiTION 12. If the series whose general term is z" is convergent in A,
then e —z is aunit of A and we have

(7 (e—2)t = § "

n=0

Conversely, if |jz]| <1 and if e—z is a unit in A, then the series whose
general term is z is convergent and formula (7) is valid.

For each p > o0 we have
P
(8) (e—3z) D 7" = e — zPHL,
n=o

If the series whose general term is z" is convergent and if y is its sum,
then z” tends to 0 as n—> + oo; hence by passing to the limit in (8)
we have (e —z)y = e; similarly we prove that y(e —z) = e, and hence
Y = (e—2z)~! (note that this part of the argument is valid in any topo-
logical ring which has an identity element).
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Conversely, if |jz]] < 1, then since [2P*Y] < [le]fP*, it follows that
221 tends t0 0 a3 p~> -+ e multiplying both sides (8) on the Ieft by
{e—z)~! and leting p tend to infimty, we see that the series whose
general term s z* converges and has (e —z)~! asitssum.

Cororrary. Let A be a complete normed algebra.  Then for each zeA
such that [l[ < 1, e—z waumim A

The series whose general term is 2" is absolutely convergent, since
Uzl < {lzli* for 7> o, and is therefore convergent, since A is complete
(no. 6, Proposition 11).

Proposrrion 13, Let G be the group of units of a complete normed algebra A,
Then G 15 an open subset of A; the lopology nduced on G by the topology of
A 15 compatible wrth the group structure of G; and G, endowed wath this topology,
is a complete group (with respect to each of its two uniformutres).

The corollary to Proposition 12 shows that G contains 2 neighbourhood V
of e in A; hence, for each x,€G, theelementsof x,V areunits, and
xV 152 neighbourhood of X, 1n 4, since x> xox 15 a homeomorphusm
of A onto itself (x, being 2 unit of A), Hence G isopenm A.

To show that the topology induced on G by the topology of A is
compatible with the group structure of G, it is sufficient to show that the
function x~! 1s continuous on G. Let x,eG, and for each xeG,
write x 1n the form x = xo (¢ + #), so that &= xzl(x —x,); then
llaf] < [z}l flx—axf], and thus f Jlx—xil}< 1fllxqll, we have [d]| <1,
€+ 8= x3lx 152 unt, the series whose general term 1s {— 1)%" is abso-
lutely convergent, and
(9) Fr=(e+u)tnt =5+ ( 3 (= x)"fl"> xh

n=t
from winch it follows that
Il — 53] <H S —ow
=

-l lesih

13U [l — e

<“§ Ja

As x tendsto x, |¥ — x| tendsto o, and since

<l + AL

t— ]

5 o

remamns hounded, 1t follows that x~! tends to xp%
Finally, to show that the left uniformity of G is complete, let us show
that every Cauchy filer § with respect to this uniformity is 2 Cauchy
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DEFINITION OF NORMAL SPACES § 4.1

filter with respect to the additive uniformity of A and converges to a point
of G. For each ¢ such that o< e¢< 1, thereis a set Me® such
that |[jx~ly —¢||<e forall x, y in M, i.e.,such that

lly — x| < |ll}-

Let a be a point of M; for each xeM we have [lx—a|| <elldl],
and therefore []x]] < (1 4 €)])g]]. On the other hand, there exists a
set NcM belonging to § and such that |[Jx~1y —e]| < ¢/(1 4 ¢€)|)a]|
forall x and y in N; it follows that ||y — x|| < ¢||d}/(z + ¢)|Ja]] <,
which shows that § is a Cauchy filter with respect to the additive uni-
formity of A, and therefore converges to a point x,, since A is complete.
Since x, is the limit of §, we have |[x~Ix,—e¢||<e forall xeM
by the principle of extension of inequalities; since e > 1, it follows that
xlx, isa unitin A; hence x, isa unit, ie, x,eG.

ProrosrTioN 14. In a complete valued division ring, the multiplicative group
of non-zero elements is a complete group.

The proof is similar to that of Proposition 13; we have only to replace the
norm of A by the absolute value of the division ring under consideration.

Note that we cannot apply Proposition 13 directly, because a (non-commu-
tative) valued division ring is not necessarily an algebra over a non-discrete
valued field (the restriction of the absolute value to the centre of the divi-
sion ring might be improper).

Remark. Proposition 13 is not necessarily true for 2 non-complete normed
algebra. For example, in the algebra C(I; R) of all finite continuous
real-valued functions on I = [0, 1] [the norm being |jx|| = sup |x({¢)]],

tel

the subalgebra P of all polynomialsin ¢ (restricted to I) is nof complete;
if x(#) is any non-constant polynomial, then 1 4 ex is arbitrarily close
to the identity element 1 of P when ¢ is arbitrarily small, but 1 - ex
is not a unit in P. FHowever, if A is a non-complete normed algebra,

G its group of units, A the completion of A, then G is a subgroup of

the group of units of A, and therefore the topology induced on G by the
topology of A is compatible with the group structure of G.

4. NORMAL SPACES

1. DEFINITION OF NORMAL SPACES

Axiom (Oyy) for uniformizable spaces (§ 1, no. 5) can be stated in the

following-form: given any closed set A and any point x € A, there is a contin-
uous mapping of X into [o, 1] whichisequalio o at x and isequal to 1 at

179



x USE OF REAL NUMBERS IN GENERAL TOPOLOGY

every point of A; this property can agamn be expressed by saying thatm a
untformizable space we can separate a pownt and a closed set (not containing
the point) by a contintous real-valued function.

We shall now study spaces i which 1t is possible in the same way to
separate two diggornt closed sets by a continuous veal-valued function:

Drrnamion 1. A topological space X 15 said to be normal 1f it is Howsdorff
and satusfies the follounng avom !

(Oy) If A and B are any two digpornt closed subsels of X, there exasts a contin-
uous mapping of X 1nto [0, 1} which 15 equal o © at every point of A and
10 1 at every point of B,

Clearly every normal space 13 completely regular; but there are completely
regular spaces which are not normal (see Exercises g, 10, 13, 26 2ud § 5,
Excrases 15 and 16).

‘The statement of Axiom (04}, ke that of (Oyy), involves the real line
R as an awaliary set.  But there is a condition equivalentto (Oy) which
1nvolves no auxiliary set :

Treorem 1 (Urysohn). Axtom () 5 equivalent to the follownng -

(O%) If A and B are any two duggownt closed subsets of X, then there exsst two
diggont open sets U, V such that AcU end BeV
It follows immediately that (Oy) implies (O%), foraf £ is a contimuous
mapping of X into [0, 1] whichisequalto o on A andto1on B, then
- b

the open sets f([0, 1/2]) and £ (] 1/2, 1]} contan A and B respect-
wely and do not intersect.

To prove the converse, notice first that (0%} 1s equivalent to the
followang axiom
(OY)  Gioen any closed set A and any open nesghbourhood V' of A, there sssts
an open novghbourhood W of A such that We V.
If there 15 a continuous mapping f: X — [ 1, + 1] which 1s equal to
—1on A andto +1 on B, and of we put U(t) =7 ([—1, 10
for each tefo, 1], then we have defined a family of open sefs in X,
mdexed by fo, 1], such that (i} AcUlo), (1) Be[U(1) and {m) for
each pair of real numbers ¢, ¢’ suchthat o € ¢#< ¢’ <1 we have
) T < UE);
for U(t) s contamned in the closed set f([—1, £])  Conversely, suppose
that we have defined a family (U(z)) of open sets (o< ¢<1) with
these three properties (i), (1) and (). For each reX, put g(f) =1
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if xe GU(I), andif xeU(1) let g(x) be the greatest lower bound of the
values of ¢ such that xeU(t). Clearly o < g(x) <1 for each xeX,
g(x) =0 on A, g(x) =1 on B; also g is continuous on X, for if we

put g(x) =a, we have |g(»)—g(x)j<e forall yeU(a+e)n (T(a—o),
which is a neighbourhood of x by (1) [with the conventions that
Ua+e)=Xif a4e>1, and Ula—e) =g if a—e<0].

Hence Theorem 1 will be proved if we can define a family (U(t)) of
open sets satisfying conditions (i), (ii) and (iii) above; to do this we use
Axiom (Of). Take U(1) = {B; since AcU(1) there exists an open
set U(o) such that AcU(o) and U(o)cU(1r) by (Ov). Suppose
then that for each dyadic number kf2” (k= o, 1, ..., 2") we have defined
an open set U(kf2"), these sets being such that U(kfe") c U((k + 1)/2)"
for 0 <k € 2" — 1. For each dyadic number

(2k + r)f2™! (o<k L2 —1)
there exists by (O%) an open set U{(2k -+ 1)/2"*!) such that

T(kf2") < U((2k + 1)/2"Y)
U((2k + 1)/e™) c U((k + 1)/2").

Hence for each dyadic number 7 such that o<r <1 we can define
an open set U(r), such that A cU(o), BcfU(1), and

(2) U(r) < U(r)

for each pair of dyadic numbers r, ' such that o €r<7 < 1.

and

Now define, for each real number ¢« [o, 1],
U) =U U ¢ dyadic);
r<it

by (2), this definition agrees with the preceding one for ¢ dyadic; also, if
0< <t <1, then there exist two dyadic numbers 7, ' such that
I<r<r' <t'; by(2) wehave U(¢) c U(r), hence

U@) «cT@r) cUE) cUt');

this proves (1) and therefore completes the proof.
Theorem 1 will enable us to show that two important categories of
topological spaces are normal. 1In the first place:

ProposiTion 1. 4 compact space is normal.

g&compact space satisfies axiom (Oy), by Proposition 2 of Chapter I,
g, no. 2,
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A to locally compact spaces, every pownt of such a space has a compact
acighbourhood, which 15 a normal subspace; but there are examples of
Tocally compact spaces which are not normal (cf. Exescises g and 26, and
§ 5, Exercise 15).

PROPOSITION 2. A metrizable space is nommal.

Let X be a metrzable space and let 4 be a metric compatible with
the topology of X Let A, B be two digjoint closed subsets of X;
since the functions d(x, A) and d{x, B} are continuous, the set U (resp. V)
of pomts x such that d(x, A) <d(x, B) [resp. d(x, B) < d(x, A)] 1s
open; clearly AcU and BeV and UnV = ¢, hence Axiom (O3
is satisfied.

Remarks. 1) Proposition 2 gives another nacessary condition for metrizabil-
16y; but ths condition, even in conjunction with all the nccessary
condtions given 1n § 3, docs not give a sct of sufficient condstions for metnz-
ability (cf. Excrase 6 and § 5, Exercise 10).

2) There acc examples of normal spaces which are neither metnzable
not locally compact (sce § 5, Excrcise 16).

By (O4). cvery closed subset of a normal space is a normal subspace; but
this 1s not always the case for an arbitrary subset of a normal space.

For example, a completely regular space which is not normal is homeo-
morphic to a subspace of 2 compact space § 1, no. 5, Proposition 3), and
the latter is normal.

Finally we record that the product of two normal spaces is not necessarily
normal (sec Exercise g and § 5, Exercise 16).

2. EXTENSION OF A CONTINUOUS REAL-VALUED FUNCTION

Let X and Y be two topological spaces and let A X be a closed
subset of X. If f is a continuous mapping of A into Y, it is not
always possible to extend f to a continuous mapping of the whole of X
into Y. When Y =R, the ibulity of such an extension is d
by the following theorem

Tuzorem 2 (Urysohn). dsiom (Oy) is equiwalent fo the followng property:
(03) Given any closed subset A of X and any continuous real-valued function
f (finite or not) defined on A, there exsts an extension g of f to the whole space
X, whck 15 a continuous mapping of X 1nto R.

It 15 easy to see that (OF) implies (Oy); forif B and C are two dis-
Jomt closed subsets of X, then the function which 1s equal to o on B

182



EXTENSION OF A CONTINUOUS REAL-VALUED FUNCTION § 4.2

and equal to 1 on C is defined and continuous on the closed set Bu G,
hence by (Oy) has a continuous extension f to X. If g=inf ( 1),
then g is continuous on X, takes its values in [0, 1] and is equal
to o on B andtor1 on G _ N

Let us show conversely that (Oy) implies (Oy). Since R and the
interval [—1, + 1] are homeomorphic, we need consider only the
case where the continuous mapping f: A — R takes its values in [—1,
+ 1]. Weshall construct an extension g of f to X by forming a sequence
(g,) of continuous functions on X, such that the sequence (ga(x)) con-
verges for all xeX to a point of the interval [—1, + 1]; this limit
will, by definition, be the value of g at x, and it will follow from the choice
of the g, that the function g satisfies the required conditions.

The definition of the g, rests on the following lemma :

Lemma 1. Let u be a continuous mapping of A inio [— 1, + 1]; then
there is a continuous mapping v of X into [—1/3, + 1/3], suck that
lu(x) — v(x)| < 2/3 for all x€A.

Let H be the set of all xe A such that —1 <u(x) < —1/3, and let
K be the set of all x& A such that 1/3<u(x) <1; H and K are
closed in A, and therefore in X, and do not intersect; hence by (Oy)
there is a continuous mapping » of X into [—1/3, 4+ 1/g] which is
equal to —1/g3 on H and to 4- 1/3 on K. The mapping v satisfies
the conditions of the lemma.

We now define the functions g, by induction. Applying the lemma
with u=f, we define g, to be a continuous mapping of X into
[—1/3, 4- 1/3] such that |f(x) — go(x)| < 2/3 for all xeA. Suppose
now that a continuous mapping g, of X into the interval

=1+ @™ 1 — 3]
has been defined, such that |f(x) —g,(x)] < (&)™ for all xeA.
Applying the lemma to the function u(x) = (2)™1 (f(x) — g.(¥)),
we see that there exists a continuous mapping #,y; of X into the interval

2n+1 n+1
[——— 2 ] such that

3n+2’ 3n+2
|f (%) — ga(2) — husa ()] < (2/3)"**

f9r all xeA; the induction is completed by taking g, = g, + Ao,
since this function satisfies the inequality |gara ()] < 1 —(2/3)™*2 for
all xeX, by virtue of the definition of )

From this definition it follows that, for m > p and 2> p, we have

p+1

lgn(%) — ga(¥)] < 3:;21 (2/3)% = (2/3)P+1
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at each point xeX, hence the sequence (g,,(x)) is a Cauchy sequence
for each xeX, and thercfore converges to a point g(x) of the interval
[—1, + 11, and since f(x) — £a(x) tends to o forall x€A as n— s,
£ 1s an extension of f to X. It remains therefore only to show that
¢ is continuous on X,

Now let x be any point of X; then, given any ¢ > o, there exists
an integer n, such that |g,(3) —z(»)] € for all yeX and ali
m 3z n, andall 1> n,; hence,letting m tend to 4 co, we have

o) —gN < e

Let V be a neighbourhood of x such that {g,(y) —gu(x)|<e for all
y€V; then, forcach yeV we shall have

l2() — £ S [8() ~ gl )| + |8a(2) — £a(®)| + |2(3) — £ ()| < 3¢,

which shows that ¢ is contnuous at x, and completes the proof of
Theorem 2. (The last part of the proof uscs, in a partrcular case, the
idea of ungform convergence, which we shall study m general in Chapter X,
no 1.)

CoroLLary If f s a fimite continuous real-valued function defined on A,
then there exists o fimte continuons real-valued function g defined on X, which
extends f

First consider the case in which f(z) 2 0 for all xeA; then there
13 a continuous extension gy of f to X, taking its values m {o, + 0]
If we put B = 7 (+ o), then B 1s closed and by hypothesis does not
meet A, the function £ which 1s equal o f on A andto o on B
15 therefore a continuous function on the closed set AuB. Let g, bea
continuous extension of & to X, again taking 1ts values in [0, + 0],
the function g = 1nf{g,, g,) 15 then a continuous extension of f to X,
whose values are > o and fintfe at every point of X.

To pass to the general case, 1t 15 enough to remark that, if f is finite
and continuous on A, then so are f*+ and f-; extendng f* and
S~ to X by fimte continuous functions g, and g, mp:cnvdy, we
see that the function g, —g; 15 finite and continuous on and
extends f

Remark. I X 1 a normal space and 1if A 1s a closed subset of X,
there exists also 2 continuous extension to X of every continuous mappmg
fof A ntoacube KI (§1,n0 35), for we have then f=(fhent
bewng a continuous mapping of A into the compact mterval K of R;
since there cxsts a contnuous mappmg g . X K which extends
£, themapping g = (g) 152 continuous extension of f to X
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3. LOCALLY FINITE OPEN COVERINGS OF A CLOSED SET
IN A NORMAL SPACE

TueoreM 3. Let (A).ex be a locally finite open covering of a closed set Y
in a normal space X. Then there is an open covering (B),ey of Y such that
B,cA, for each 1e1.

Well-order the indexset I (Set Theory, Chapter III, § 2, no. 3, Theorem 1).
We shall define a family (B,),e; of opensetsin X, by transfinite induction,
such that (i) B,c A, for each 1 e1I; (ii) for each 1 eI, the family formed
by the B, such that A <t and by the A such that A > is an open
covering of Y. Suppose that we have defined the B, for 1< y so that
(i) and (ii) are satisfied for all v < vy, and let us show that we can define
B, in such a way that (i) and (ii) are also satisfied for v=+v. Let us
first show that the B, for which v<+y and the A, for which >y
form a covering of Y. By hypothesis, for each xeY there is only a
finite number of indices ) eI such that xe A, say A< hg< +++ < Ap;
let %, be the greatest of the ); such that % < v; if h<n we have
xehy and A, >y, andif k= n the inductive hypothesis shows that x
belongs to some B, such that A <), <<y, and our assertion follows.

Now put C = ([¥)u <L<JY B‘) u <L>JYA,>; C is open, and from what has

been said we have [}AY c C; by virtue of Axiom (Oy) for normal spaces,
there is therefore an open set V such that BAY cVeVeC Ifwe put
B, =[V, we have B,c(jVcA, and B,uC =X, so that the B,
such that + < y and the A, such that . >y cover Y.

Remark. Note that we have used only the fact that the covering (A,)
is point-finite, i.e., that every point of X belongs to only a finite number
of sets A..

DermviTion 2. Let X be a topological space and let f be a real-valued function
defined on X. The support of f, denoted by Supp (f), is the smallest closed
set S in X suchthat f(x) = o forall x&8.

In other words, Supp (f) is the closure in X of the set of all xeX
such that f(x) s 0; or again, it is the set of all xeX such that every
neighbourhood of x contains a point y for which f(y) £ o.

Let (f).e; be a family of finite real-valued functions on X whose
supports form a locally finite family; then the sum Y, f,(x) is defined for

. . . . [1=F
each xeX (since it contains only a finite number of non-zero terms).

The finite real-valued function x— 3 Ji(x) is called the sum of the

. . teX
family (f), and is denoted by ) f. If each of the f, is continuous,
teX
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thensois f= 3 f;; forif # isanypointof X, thereis a neighbourhood

1
V of x which'meets only a finite number of supports of the f,, and hence
there is a finite subset H of T such that f(y) = % f(») forall yeV.
i

Dermvrion 3. Gioen a fomily (A),eq of subsets of a topological space X,
afamly (f).eq of real-valued functions defined on X 15 sard to be subordinate
to the famsly (Awey if we have Supp (f) < A, for each index ve L
A continuous partstion of unity on X is any famly {f),ex of real-valued
continuous functions >0 on X whose supports farm a locally fnite family and
which are such that D, fi(x) = 1 forall xeX.
=

Provostrion 3. Gizen any locally finsle open covering (Adee; of @ normal
space X, there exists @ continuous partstion of unsty {fvey on X, subordimate
to the covenng (A )er

By Theorem 3 there cxsts an open covering (B),e of X such that
B,cA, for each e, and it is clear that the covering (B is locally
finute. By axom (OJ), for each 1e there exists an open set C, such
that B,cCeCeA, By adom (Oy), for cach el there exists 2
continuous mapping g, of X mto [0,1], such that g(x) = 1 on E,
and such that thesupport of 7, 15 containedin G, and therefore contains
ed in A, Since (B) 1s a covering of X, we have E 2 >0 for

cach xeX, 1if we put
e Eg(x)

for all 1el and all xeX, then the f, form a continuous partition of
unity subordinate to the covering (A).

CoROLLARY. Guzen any locally fimte open corening (A)) of a closed set F ina
normal space X, there exsts a famuly (f)) of contorusous real-valued functons

>0 on X, subordinate to the covering {A)ey and such that E Sl =1
ﬁrall xeF and 2 S <1 forall xeX.

The famly of sets consisting of [F and the A, is a locally finite open
covenng of X. There is therefore a continuous partition of unty subor-
dmate to this covering, consising of a family (f),ey such that
Supp (f) cA, for each 11, and a function g whose support is
contained 1n the complement of F. The family (f}) clearly satisfies the
required conditions.
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4. PARACOMPACT SPACES

We recall (Chapter 1, § g, no. 10) that a topological space X is said to be
paracompact if it is Hausdorff and if every open covering of X has a locally
finite open refinement.

ProPOSITION 4. Every paracompact space is normal.
This is a consequence of the following lemma :

Lemma 2. Let A, B be two disjoint closed subsels of a paracompact space X.
Iffor eack x < A there is an open neighbourkood Vo of x and an open neighbour-
hood W, of B which do not intersect, then there exists an open neighbourhood
T of A and an open neighbourhood U of B which do not intersect,

Assuming the truth of this lemma for the moment, we can apply it to the
case where B consists of a single point, because X is Hausdorff, and it
shows then that X is regular. We can then apply Lemma 2 again to any
two disjoint closed subsets of X, and this shows that Axiom (Oy) is
satisfied.

To prove the lemma, consider the open covering of X consisting
of JA and the V,, where xeA; let (T,),e; be a locally finite open
refinement of this covering. Then, by definition, if AnT, s @ there
exists x,e A such that T,cV,. Let T be the open set which is the
union of the T, which meet A, and let us show that there is an open
neighbourhood U of B which does not meet T. For each yeB
there is an open neighbourhood S, of y which meets only a finite number
of sets T,; let J be the finite subset of I consisting of those indices t

such that T, meets both S, and A; if we put U, = S,n N Wa.
J

then U, is an open neighbourhood of » which meets none of the T,
which meet A, and hence U,nT=g. Let U= U U,; then U’

. . . yeB
Is an open neighbourhood of B which does not meet T, and the lemma
1s proved.

There exist normal spaces which are not paracompact (Exercise 19).

CoroLLaRY 1. Given any open covering (AN« of a paracompact space X,

there exists a continuous partition of unity (f),ex On %, subordinate to the
covering (A).

Let (Uj)ye, be a locally finite open covering of X which refines the
covering (A,),g; then thereisamapping ¢ :L —1 such that U, Agay
for each J eL. By Propositions g and 4, there exists a continuous parti-
tion of unity (g,)y¢, subordinate to (U;). Foreach 1el, put

fi= D &
)=t
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this sum is defined and continuous since the supports of the g form 2
Iocally finite covering; moreover, the union B, of the supports of the
2, such that o(h) = is closed, by Proposition 4 of Chapter I, § 1, no. 6,
and is contamed in A, Since we have f(x) =0 whenever xe[B,
the support of f, 1s contained 1 B, and therefore in A, On the
other hand, the famuly B, is locally finite, because for each xeX there
1s a neighbourhood V of x and a finite subset H of L such that
VaU, =@ forall AeH, and it follows therefore that VnB,= ¢ for
all «&2(H) Frnally, for each xeX we have

=Zaw=3(3 A’x(x)) = J A0,

fhr=t

and the proof1s complete.

CoroLary 2. If F s a closed subset of @ paracompact space X, then every
neighbourhood of F 1n X conterns a ¢losed (and therefore paracompact) neighbour-
hood of F.

By Proposition 16 of Chapter I, § g, no. 10, any closed subspace of X is
paracompact; the corollary therefore follows from Proposition 4 and
Axiom (Oy)

5. PARACOMPACTNESS OF METRIZABLE SPACES

The following theorem sharpens the result of Proposition 2 of no. 1

Tugorem ¢ Every metrizable space s paracompact.
The theorem 15 a consequence of the followng four lemmas.

Lewta 3 Let R = (Up)ge, be an open covenng of @ metnzable space X.
Then there 15 @ sequence (S,) of locally finste famibtes of open subsets of X,
such that & = J &, 15 an open covering of X whach refines R

Let d beametnicon X compatible with its topology. For each aeA
and each mteger n, let F,, denote the set of all xeU, such that
d(x, X—Ug) 227" Since X —U, 15 closed, we have Uy = F.

Well-order the set A; for each a=A and each integer n, let G, be
the set of all xeF,; such that x@Fpyp for all f<e, and let V),

be the set of all yeX such that d(3, Gyq) —27"% V,, is clearly
an open set; on the other hand, V,,cU,, because for cach yeV,,

;‘hcr: exists xe Gy, such that d(x, y) 271, and since xeF,, we
ave

4 X—Uy) 2 d(x, Xx—U) —d(x, 5) 2 27",
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so that ye U, Furthermore, for each xeX let = be the smpflen

index in~ A such that xeU,; then there is 2n integer ¢ ¢
xeF,,, and the definition of « implies that xeG,., o thar

This shows that if we put &, = (V,o)aea, then € =U£§= i 2n open
-4

covering of X which refines ®; thus it remains to be shovn they ezch

of the families &, is locally finite. To this end we shall first hesy thas

d(Gpay Gpp) = 2770 if a . Suppos<? .that f<a; then if #eG,,

and yeF,g we have x&F,yy by definition, hence d(x,X_Ua‘}<2-,,.1
and d(y, X—Ug) 27", and therefore d(x, ) 227"%; since Guck,,,
the assertion follows. From this it follows immediately, using the defirs.
tion of V,, and Vg, that d(Vaes Vag) > 272 From this Last
inequality we deduce that, for each zeX, the open ball with centre
z and radius 2-"3 meets at most one set of the family & ; hence s
is a locally finite family, and the proof is complete. :

Lemma 4. Let (©,) be a sequence of locally finite families of open sets iy 4
topological space X, such that

@=U©n
n

is a covering of X. Then there exists a locally finite (but not necessarily open)
covering B of X whick refines &.

Let E, be the open set in X which is the union of all the sets of S,;
n

let U, denote |JE, andlet A, denote U,— U, (with Uy = g),
=1

Consider the set B of subsets VnA, where V&, and n is any
integer; we shall show that % satisfies the conditions of the lemma.
For each xe«X there is an integer n such that xeA,, since the A,
form a partition of X; thus xeE, and there exists Ve, such that
xeV; so xeVnA, and we have proved that B is a covering of X.
Clearly, this covering refines &. On the other hand, for each xeX
there exists an integer n such that xeU,; since U, is open and the
&, are locally finite families, there exists a neighbourhood W,, of x, for
each m, contained in U,, which meets only a finite number of sets

of &,; hence the neighbourhood W = nW,,, of x meets only a finite

=1
number of sets of B, because Wn Apm= @ for p>n. Hence B is
locally finite, and Lemma 4 is proved.

Lemma 5. Let X be a regular space such that, for each open covering R of
X, there exists a (not necessarily open) locally finite covering A of X which

refines R.  Then for each open covering R of X there exists a locally finite
closed covering § of X which refines R.
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Let R be any open covering of X. For each xeX_there is an open
set UeM which contans x, and therefore (snce X is regular) an
open neighbourhood V. of x such that V,cU. The family B formed
by the V, isanopen coveringof X, hence by hypothesis thercisa locally
finite covermg B which s finer than 2 Let § be the famuty of closures
of the sets of @, Smce the covening B’ formed by the V, is finer than
N, andsince § 1s finer than ', 1t follows that § 15 a closed covering
of X which refines ® Butalso § 1s locally fimte, becausc if an open
sct does not meet a set Be B, thenat does not meet its closure B either,

Lesnw 6 Let X be a Hausdorf] space such that, giren any open covening R
of X, there exists a locally fimie closed corering § of X which refines R.
Then X s paracompact.

Let R be any open covering of X We have to show that there is
a locally finite open covering of X which refines ®. Let % bea
locally fimite covermg (closed or not) of X which refines 8 for each
xeX, let W, be an open neighbourhood of x which meets only a finite
number of scts of % The family S8 of sets W, is an open covering
of X Let § bea locally finute closed covering of X which refines 13
Forcach Aef, let U, beasctof 9t which contams A, andlet G,
be the umon of thesets Fe® suchthat AnF = 8, Since § 1 locally
fimte, C, 15 closed m X (Chapter I, § 1, no. 6, Proposition 4) and
therefore A’ = U, n(X—GC,) 15 open  Since we have AnCy=¢
and AcU,, itfollowsthat AcA’, and the famly 2’ ofsets A’, as A
runs through 9, 15 an open covening of X; morcover, sce A'c U, e ®,
2% refines M It remains to show that U’ s locally fintte. For each
xeX there s a neighbourhood T of x which meets only a finite number
ofsetsof §, say F, ,F, Sinceeach F, 1s contamed in a set of the
form W,‘, by defimtion F, meets only a finite number of sets of ; let
Ay (1€7<s) be thesescts If A 13 asct of % other than one of
the A, (1€1<n, 1 <7<y, 1t follows from the definitions that

»

A’ mects none of the F,, and therefore does not meet Te [JF,. Ths
completes the proof of Lemma 6 and of Theorem 4. =

5. BAIRE SPACES

1.

NOWHERE DENSE SETS

DeFnvTioN 1. A subset A of a topological space X is said o be noubere
dense 1f vis closure has no intenor pornts

190
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Equivalently, A is nowhere dense in X if and only if the exterior of A
is dense in X

A closed set A is nowhere dense if and only if it has no interior points;
that is, if and only if it coincides with its frontier. An arbitrary subset A
is nowhere dense if and only if the closure of A is nowhere dense. Every
subset of a nowhere dense set is nowhere dense.

Examples. 1) The empty subset of X is nowhere dense. In a Hausdorff
space X, a set consisting of a single point is nowhere dense if and only
if the point is not isolated in X. A dense subset is never nowhere dense
(unless X = @).

2) The frontier of an gpen or of a closed set is always nowhere dense.

3) In the space R®, every lincar subspace of dimension p<<n is a
nowhere dense set (Chapter VI, § 1, no. 4, Proposition 2).

Remark. The frontier of an arbitrary subset need not be nowhere dense:

for example, if A and GA are both dense sets, then the frontier of A
is the whole space.

PropositioN 1. The union of a finite number of nowhere dense sets is nowhere
dense.

It is enough to show that the union of two nowhere dense sets A, B is
nowhere dense, and without loss of generality we may assume that A and
B are closed. The proposition is then equivalent to saying that the inter-
section of two dense open sets [)A, (B is dense. Now if U is a non-
empty open set, then U n A is open and non-empty, hence

(UnBA)nGB:Un(BAn[}B)

is open and non-empty.
Let Y be a subspace of a topological space X. A subspace A of Y

is said to be nowhere dense relative to Y if A is nowhere dense when consid-
ered as a subset of the topological space Y.

ProrositioN 2. Let Y be a subspace of a topological space X, andlet A bea
subset of Y. If A is nowhere dense relative to Y, then A is nowhere dense
relative to X.  Conversely, if Y is open in X and A is nowhere dense relative
lo X, then A is nowhere dense relative to Y.

Sup_pose that A is nowhere dense relative to Y. If the closure A of
A in X contains a non-empty open set U, then Un A is not empty
(by the definition of closure); hence U n'Y is a non-empty open set rela-

tivg to .Y, and is contained in the closure AnY of A with respectto Y,
which is contrary to the hypothesis.
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Now suppose that Y 1sopenin X and that AcY is nowhere dense
relative to X. If U isopenin Y and is not empty, then U is open
in X and therefore contains a non-empty set V which is open in X
(and a fortion in Y) and does not meet A; hence A is nowhere dense
relative to Y.

The second part of Proposition 2 1s clearly not valid if ¥ is not openin X;
consider, ¢ g , the mtuation where ¥ % ¢ is nowhere dense in X, and

2. MEAGRE SETS

Derwvrrion 2. A subset A of a topological space X 15 said o be meagre if
115 the union of & countable famuly of nowhere dense sels.

Equivalently, A is meagre if it is contained in a countable union of
closed sets each of which has no interior points.

A meagre set can perfectly well be demse . X; even the whole space
X eanitsell be a meagre set.

An example of the latter possibility is provided by any countable Hausdorff
space with no 1solated points, ¢ g , the rational ne Q. But a topological
space X whichisameagresctin X need not be countable (s¢e Exercise g).

Every subset of 2 meagre set 1n a space X is meagre, and the union of a
countable farmly of meagre scts is meagre.

Let Y be a subspace of X. A subset A of Y is said to be meagre
relatizeto Y 1f A is meagre when considered as a subset of the topological
space Y. It follows from Proposition 2 of no. 1 that if A 1s a subset
of Y which is meagre relauve to Y, then A is meagre relative to X;
and that if also Y 15 oprmn X, cverysubsct A of Y which 1s meagre
relative to X 1s meagre relative to Y.

3. BAIRE SPACES
Dervrmion 3. A topological space X 15 sard to be a Baire space if af satugfies
one or the other of the following two equivalent conditions :

(EB)  Etery countable ntersectson of dense open sets n K. s dense tn XK.

(ER)  Every countable umon of closed sets unth no snterior pownts 1n X has na
ntersor pant in

Axiom (EB) can be stated 1n two other equivalent forms:
(EB')  Every non-empty open setsn X is non-meagre.
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Indeed a set is meagre if and only if it is contained in a countable union
of closed sets with no interior points.

(EB")  The complement of a meagre set in X s dense in X.

This signifies that a meagre set cannot contain a non-empty open set,
and is therefore equivalent to (EB”).

PropoSITION 3. Every non-empty open subspace Y of a Baire space X is a
Baire space.

This follows from (EB"), for every open (resp. meagre) set in Y is open
(resp. meagre) in X.

1t follows from Proposition 3 that every point of a Baire space has a
fundamental system of neighbourhoods, each of which is a Baire space.
Conversely :

ProPOSITION 4. If every point of a topological space X has a neighbourhood
whick is a Baire space, then X is a Baire space.

Let A be a non-empty open setin X, let xcA andlet V bean open
neighbourhood of % which is a Baire space. If A were meagre in X,
then VnA would be meagre in 'V and open in V, which is contrary
to hypothesis.

ProrosiTioN 5.  In a Baire space X, the complement of a meagre set is a Baire
shpace.

Let A be a meagre set in X; then its complement Y =[JA in X
is dense in X. Let B be a meagre set relative to Y; B is also meagre
relative to X, hence A uB is meagre relative to X. Hence the comple-
ment of AuB in X, which is also the complement of B in Y, is dense
in X and afortioridensein Y. Hence Y isa Bairespace.

Turorem 1 (Baire). (i) Ewvery locally compact space X is a Baire space.
(ii) Every topological space X on which there exists a metric, compatible with the
topology of X and which defines on X the structure of a complete metric space,
is a Baire space.

We shall show that axiom (EB) is satisfied in each case. Let (A,)
be a sequence of dense open sets in X, and let G be any non-empty
open set. We can then define inductively a sequence (G,) of non-
empty open sets such that G; =G and G,,cG,nA,: for since by
hypothesis G, is not empty, G,n A, is a non-empty open set; and since

X is regular in both cases envisaged, there is a non-empty open set G,

such that G,;; cG,nA,. Hence theset Gn n A, contains the inter-

n=1
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section of the sets G,, which is cqual to the intersection of the sets G,;
hence it is enough to show that n G, # 5. Nowif X is locally compact,
a=

we may assume that G, is compact, in the compact space G,, the
G,(n22) form a decreasing sequence of non-empty closed sets, and
their mtersection is therefore not empty by axiom (C”) {(cf. Chapter I,
§0, no. 1, Definiton 1}. I X isa complete metric space (with respect
to a metric compatible withits topology) we may suppose that G, has
been chosen so that its diameter (with respect to this metric) tends
tooas n tendsto 4 oo; the G, therefore form a Cauchy filter base
which converges to a pmm z, and x necessanly belongs to the inter-
section of the sets Gy, ED

Remark. ‘There are Bawre spaces which belong to nerther of these two
categones, 1 particular Bawre spaces which are neither metrizable nor
Tocally compact (Excrcise 16); there are also metrizable Baire spaces which
possess no complete metnc space structure compatible with their topology
(Exeresse 14).

4. SEMI.CONTINUOUS FUNCTIONS ON A BAIRE SPACE

Trrores 2 Let X be a Bawre space and let (fy) be a family of louer
Semi-contsnuous nnl-mlued functions on X such that, at every point x of the
upper envelope Up, fulx) s fimie. Then every non-emply open set in X contarns

a non-empty ppm set on wlurh the family (fy) 1t uniformly bounded above.

Tlus theorem may also be stated 1n the form that the set of points in the
neighbourhood of which the famaly {f3) is uniformly bounded above s a
denst open set

Let f=supf, be the upper envelope of the famuly (). The function

£ 15 lower semu-continuous (Chapter 1V, § 6, no. 2, Theorem 4) and finite
at every pomnt of X. It s thercfore enough to carry through the proof
1n the case where the family (f,) consists of a single function f. Let
A, be the set of pomnts xeX such that f(x) < n; A, is closed (Chapter
IV, § 6, no. 2, Proposition 1}, and the assumptions imply that X 1s the
umon of the sets A,, hence at least one of the A, has an interior point,
and therefore there 15 a non-empty open set on which f 15 bounded abave
(by aninteger n). If we apply this result to any non-empty open subset
of X (this subspace 15 also a Bawe space by Proposition 3 of no. 3), we
have the theorem

In appheations of this theorem 1t is gencrally the case that the fu are
conttnuous on
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Remark. The theorem may be false if we do not suppose that X is a
Baire space. For example if, for each rational number p/g (9, ¢ bem.g
coprime integers, ¢ > 0) we put f(p/g) = ¢, we have a lower semi-
continuous function f on the rational line Q which is finite at each
point (cf. Chapter IV, § 6, no. 2); but there is no non-empty open set in
Q on which f is bounded above.

6. POLISH SPACES, SOUSLIN SPACES,
BOREL SETS

1. POLISH SPACES

DeriNrTioN 1. A topological space X is said to be Polish if it is metrizable
of countable type (§ 2, no. 8) and if there is a metric, compatible with the topology
of X, with respect to which X is complete.

ProrosiTioN 1. a) Euvery closed subspace of a Polish space is Polish.
b) The product of a countable family of Polish spaces is Polish.
c) The sum of a countable family of Polish spaces is Polish.

Every subspace of a metrizable space of countable type is metrizable
of countable type, and every closed subspace of a complete space is complete
(Chapter II, § 3, no. 4, Proposition 8). Every countable product of
metrizable spaces of countable type is again metrizable of countable type
(§ 2, no. 8), and every countable product of complete metric spaces is a
complete metric space with respect to a metric compatible with its topology
(Chapter II, § 3,n0. 5, Proposition 10 and Chapter IX, § 2, no. 4, Theorem 1,
Corollary 2). Finally, let (X,) be a sequence of non-empty Polish

spaces, and consider the product space Y = N X HX,,, where N carries

the discrete topology; Y is a Polish space by what has already been proved.
On the other hand, let q, be a point of X, for each n, andlet f, be the
mapping of X, into Y such that for each ¥ e X, we have

Jalx) = (m, (.yp»:

where y,=a, if p£n and y,=x If X is the topological sum of
the X, itis clear that the mapping f of X into Y which agrees with
Jun on X, foreach n is a homeomorphism of X onto S (X); also, for
each n, fy(X,) isclosed in Y, and the family ( F(X)) is locally finite

because N is discrete; therefore f(X) = U So(X,) is closed in Y

n
t()(3h::1§)ter I, § 1, no. 5, Proposition 4), and thus f(X) is a Polish space,
y a).
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PROPOSITION 2. Every open subspace of a Polish space is Polish,
Let X be a Polish space, let d be a metric on X compatible with its
topology, and let U = X be an open subset of X, Let V be the subset
of R x X consisting of all points (4, %) such that

tdix, X—U)=1;

V is closed by Pmposmon 3 of§ 2, no. 2 and is therefore Polish {Proposi-
tion 1). Smce the restriction to V of the projection pry: R X X > X
13 2 homeomorphism of V onto U (§ 2, no. 2, Proposition 3), U isa
Polish subspace of X

‘COROLLARY. Every locally compact, o~compact, melrizable space X is Polish.
Let X' be the compact space obtained by adjoining a point at infinity
to X; X' is metrizable and of countable type (§ 2, no. g, Corollary to
Proposition 16), and X' is complete with respect to its unique uniformity
(Chapter 11, § 4, no. 1, Theorem 1). Hence X' is a Polish space; since
X isopenin X, it follows that X is Polish,

PropostioN 3. Let X be a Housdorff topological space. Then the intersec-
tion of a sequence (A,) of Polish subspaces of X s a Polish subspace.

Let f be the diagonal mapping of X into XN [Set Theory, ChapterI1,
§ 5, 10 3, recall that f(x) = (7) where y, = x for all neN]. We
Sl e she following lemma :

Lesoss 1 Let (A,) be a sequence of subsets of @ Hausdorff topological space XK.
Then the restriction of the diagonal mapping f+X — XN to the ,mb.rpm:: n Ay
of X 15 a homeomorphism of nA onto a closed subspace of 1'[

This image is the wtersection of ] A, and the diagonal A =f(X),

which 15 closed in XN because X is HausdorfT (Chapter 1, § 8, no. 1);
and f is a homeomorphism of X onto A,
With the hypotheses of Proposition 3, ]| A, isa Polish spacc (Propo-

sition 1), hence {7} A, is Polish by Lemma 1 and Proposition 1.
R

CoroLLaryY.  The set of irrational numbers, endowed wnth the topology induced
by that of the real Une R, 15 @ Polush space.

It 1s the mntersection of a countable family of open sets in R, namely
the complements of sets consisting of a single rational number.
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TueoreM 1. A subspace Y of a Polish space X is Polish if and only if 'Y
is the intersection of a countable family of open sets in X.

The sufficiency of the condition follows immediately from Propositions 2
and 3. To show necessity, let d be a metric compatible with the topology
of Y and with respect to which Y is complete. Let Y be the closure

of Y in X. For each integer n>o0, let Y, be the set of all xeY
which have an open neighbourhood U such that the diameter of UnY

(with respect to the metric d) is < 1/n. Clearly Y, is openin Y and
contains Y. Let xe nY,,; then reY, and the trace on Y of the
neighbourhood filter of rlx in X is a Cauchy filter (with respect to d);
hence this filter converges toa pointof Y, andthusx e Y. Hence Y=[Y,.
For each n, let H, be an open subset of X such that H,nY - Y.,
and let (U,) be a sequence of open subsets of X such that ¥ = n U,

m
(§ 2, no. 5, Proposition 7); then Y is the intersection of the countable
family of open sets (H, n U,,).

CororrarY 1. 4 space X is Polish if and only if it is homeomorphic to a
countable intersection of open sets in the cube IN, where 1 is the interval [o, 1]

o R.

The condition is clearly sufficient, and it is necessary because every metriz-
able space of countable type is homeomorphic to a subspace of IN
(§ 2, no. 8, Proposition 12).

CoroLLARY 2. Let X and Y be two Polish spaces and let f: X > Y

be a continuous mapping. If Z is a Polish subspace of Y, then :}’I(Z) is a
Polish subspace of X.

For Z = n Z,, where the Z, are open subsets of Y; hence
-1 -1
(@) =12,
n

and the sets ?(Zn) are open in X.

2. SOUSLIN SPACES

DEFINITIPN 2. A topological space X is said to be a Souslin space if it is metriz-
able and if there exists a Polish space P and a continuous mapping of P onto X.

4 subset A of a topological space X is called a Souslin set if the subspace A is a
Souslin space.
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Clearly every Polish space is Souslin, and the image of a Souslin space X
under a continuous mapping of X 1nto a metnzable space Y is a Soushn
space.

Provosrrion 4 Every Soushn space X 1s of countable type.

Let P be a Polish space and f a continuous mapping of P onto X.
Then the image under f of a countable dense subset of P is a countable
dense subsct of X.

Provostrion 5 Euery closed {resp. open) subspace of a Soushn space X 15
Souslin

Forif f 15 a contmuous mapping of 2 Polsh space P onto X, then
the merse 1mage under f of a closed (resp. open) subset of X 1s a
closed (resp. open) subset of P, hence is a Polish subspace of P (no 1,
Proposttions 1 and 2)

PropostTion 6 Let X be a Soushn space, let Y be a Hausdorff space and
let f XY bea continuous mapping  Then the inverse smage under f of
Sotistin subspace A of Y 15 a Souslin subspace of X.

Let P, Q be Polish spaces, let g be a conunuous mapping of P onto
X and let & be a continuous mapping of Q onto A. Let R be the
setofall (x,7) e P x Q suchthat f{g(x)) = #(3); R sclosedin P x Q
and 1s therefore a Polish subspace of P X Q (no. 1, Proposition 1).

¢ be the restriction to R of the projection pr;  Then the subspace f (A}
of X 1s the image of R under the continuous mapping go ¢ and s
therefore a Souslin space.

Provosivion 7. The product and the sum of a countable famly of Soushn spaces
are Souslin spaces

For each integer n, let X, be a metrizable space, P, a Polish space,
and £, a continuous mapping of P, onto X, The product {resp. sum)
of the spaces P, 1s Polish {no. 1, Proposition 1), and the jmage of this space
under the mapping which 1s the product of the f, (resp. thc mapping
which agrees with f, on P, for all n) 15 the product (resp. sum) of
the spaces X,, the latter 15 metrizable, and is therefore a Souslin space.

Propostrion 8. Let X be a metrizable space and let (A} be a sequence of

Soustin subspaces of X. Them the umon and the wtersection of the A, ore

Souslsn spaces.

These subspaces are certainly metrizable. The exstence of the canonical

map of the sum of the A, onto the subspace |J A, of X shows that the
5
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latter is a Souslin space; and [} A, is Souslin by virtue of Propositions 5
and 7 and Lemma 1 ofno. 1. 7

In general, even in a Polish space, the complement of a Souslin subspace
is not necessarily Souslin (cf. Exercise 6); see, however, no. 6, Theorem 2,
Corollary.

ProposiTioN g. Let X be a metrizable space, and let A be a relatively compact
Souslin subspace of X. Then there exists a compact metrizable space K, a
decreasing sequence (B,) of subsels of K, each of which is a countable union of

compact sets, and a continuous mapping f: K — X, such that A = f (n B,,) .
n

Replacing X by A if necessary, we may suppose that X is compact
and that A isdense in X. Since A is a Souslin space, there is a Polish
space P and a continuous mapping g: P =X such that g(P) = A.
By no. 1, Theorem 1, Corollary 1, we may assume that P is the intersection
of a decreasing sequence (U,) of open subsets of the cube IN. Let
K be the space IN x X, which is compact and metrizable (§ 2, no. 4,
Theorem 1, Corollary 2). Let GcP X X be the graph of g, let G
be the closure of G in K, andlet f denote the projectionof K = IN x X
onto X; then clearly we have f(G) = A. Since g is continuous, G is
closed in P x X (Chapter I, § 8, no. 1, Proposition 2, Corollary 2) and

G=0Gn (P x X); hence G =[)B,, where
n

B, = Gn (U, x X).

Since each U, is a countable union of closed sets in IN (§ 2, no. 5,
Proposition 7), each B, is a countable union of compact sets and the
proofis complete.

3. BOREL SETS

DeriNiTION 8. Lot X be a set and let X be a set of subsets of X. R is
said to be a ~algebra on X if the following conditions are satisfied :

a) The complement of every set of X belongs to X.

b) Euvery countable intersection of sets of X belongs to 3.

If ¥ is a c-algebra on X, every countable union of sets of % belongs to
(for the complement of this union is an intersection of sets of X).

. Theset P(X) ofallsubsets of X isclearlyac-algebra. Every intersec-
tion of ¢-algebras on X is a g-algebra on X. For any subset of $B(X),
there is therefore a smallest c-algebra containing §; it is called the
c-algebra generated by §.
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Derivmion 4. In a topological space X, the elements of the -algebra generated
by the set of all closed subsets of X are called Borel sels in X.

ProposmioN 10, Let f be a continuous mapping of a topologicel space X into
a topological space Y. ~Then the inverse image under f of every Borel set in Y
15 g Borel setan X,

Let T be theset of all subsets A of Y such that _—f'(A) is a Borel setin
X. TItfollowsimmediately that ¥ is a c-algebra which contains all the
closed subsets of Y; hence T contains all Borel setsin Y.

Proposrrion 11, Ina Souslin space X, every Borel set it a Souslin set.

Let X be theset of all subsets A of X such that both A and {A are
Souslin sets. By Proposition 8 of no, 2, ¥ is a c-algebra, Every closed
subset F of X belongs to &, for both F and [F are Souslin sets
{no. 2, Proposition 5}; hence ¥ contains all Borel scts of X (¢f. ro. 6,
Fheorem 2, Corollary).

Corovtary., Let f be a continuous mapping of a Sousln space X into a
metrizable space Y. If B 1s any Borel set1n X, then f(B) ir a Sousln set
m Y.

For B 1s a Souslin space, hence so is f(B) by the remark following
Definition 2 (no. 2).

Remarks. 1) Evenwhen X and Y are Polish spaces it s not in general
true that the 1mage of a Borel set in X under a continuous mapping of
X mto Y saBorelsetm Y (cf Exercise 6; and no. 7, Theorem 3
Corollary).

2) Let X be a topological space and let Y be a Borel subsct of X.
‘Then the Borel scts of the space Y are exactly the Borel sets of X which
are contained m Y. For (1) the Borel sets in X whch are contained n
Y form a s-algebra on Y which contains the closed setsin Y and hence
contains all Borel scts of ¥; (u) the subsets A of X such that AnY
is a Borel set of Y form a g-algebra on X which contains all the closed
sets of X and thercfore contains alt Borel sets of X.

4. ZERO-DIMENSIONAL SPACES AND LUSIN SPACES

Dervrion 5. A topologieal space is savd to be zero-dimensional of it is Hausdorfl
and if every point kas a fundamental system of neghbourhoods which are both open
and closed.

Every zero-dimensional space X is fofafly disconnected; for the component
of a point x 13 contained m all the sets containing x which are both open
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and closed (Chapter I, § 11, no. 5), and the intersection of these sets is
just {x} if X is zero-dimensional.

Conversely, a locally compact totally disconnected space is zero-dimensional
(Chapter II, § 4, no. 4, Proposition 6); but there exist totally disconnected
metrizable spaces which are not zero-dimensional [Exercise g b)]. -

Every subspace of a zero-dimensional space is zero-dimensional, and
topological sums and products of zero-dimensional spaces are zero-dimen-
sional.

DermverioN 6. A topological space X is a Lusin space if it is meirizable and
if there exists a zero-dimensional Polish space P and a continuous bijective mapping
of P onto X.

Every Lusin space is clearly a Souslin space.

ProposiTION 12, A meirizable space is a Lusin space if and only if it is the
image of a Polish space under a continuous bijective mapping.

The condition is clearly necessary; let us show that it is also sufficient.
If f is a continuous bijection of a Lusin space X onto a metrizable space
Y, it follows from Definition 6 that Y is a Lusin space. Hence we need
only show that a Polish space is a Lusin space.

Notice first that, if X is a Lusin space, every closed (resp. open)
subspace A of X is a Lusin space (cf. no. 7, Theorem 3); forif f isa
continuous bijection of a zero-dimensional Polish space P onto X, then

fl (A) is closed (resp. open) in P and is therefore a zero-dimensional
Polish subspace of P (no. 1, Propositions 1 and 2).

Every countable product of Lusin spaces is a Lusin space; this follows
from Proposition I of no. 1 and the fact that every product of zero-dimen-
sional spaces is zero-dimensional. Every countable intersection of Lusin
subspaces of a Hausdorff' topological space is a Lusin subspace; this

follows from the preceding remarks and from Lemma 1 of no. 1. Further-
more;

Lemma 2. If a metrizable space X is such that there exists a countable partition
(An) of X formed of Lusin subspaces, then X is a Lusin space.

For each n, let P, be a zero-dimensional Polish space and let f, be
a continuous bijection of P, onto A,. If P is the topological sum of
the P, then P is Polish (no. 1, Proposition 1) and zero-dimensional,
and the mapping f: P —X which agrees with f, on P, for each n
1s a continuous bijection of P onto X; hence the result.

Let us now show that the interval I = [o, 1] of R is a Lusin space.
Let J be thesubspace of I consistihg of all irrational numbers; then J
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is Polish (no. 1, Corollary to Proposition 3); also J is zero-dumensional,
forif x isany pont of J, the traceson J of intervals of R of the form
3r, s[, where r and s are rational and r< x<s, form a fundamental
system of open and closed neighbourhoods of x in J (becaus: the traces
on J of Ir,sf and [r,s] are thesame), Henee J is a Lusin subspace
of 1. Now ] and the subspaces of 1 which consist each of a single
rational point form a countable partition of I, and therefore I isa Lusin
space by Lemma 2.

Let P be an arhitrary Polish space, By Corollary 1 to Theorem 1
(no. 1), P 15 homeomorphic to a subspace of the cube IV which is a
countable intersccuion of open sets in 1N, Since I is a Lusin space, the
remarks at the beginning of the proof show that P is a Lusin space, and
the proof of Proposition 12 is therefore complete.

$. SIEVES

DerramioN 7 A stete is a sequence G = (Cyy pu)azo $uch that, for cach n,
C, 15 acountable set and p, 15 @ suppection of Cpyy onto C,.

For each parr of integers m, n such that o< m<n, let p,, denote
the 1dentity mapping of C, onto asellf sf m =1, and the surection
Pa® Pan© © pay Of G, onto Cp if m < n. Clearly oy =puus
whenever mgn< ¢, and we may therclore consider the inverse limt
L(C) of the family (C,) with respect to the family of mappings
(Pma) (Set Theory, Chapter 11, § 7). If cach C, is endowed with the
discrete topology, then L(C) 15 an inverse limit of topological spaces
(Chapter 1, § 4, no 4); as such, L{C) is called the topological space
assocsated with the sieve C. L(C) 15 a closed subspace of the topological
product [ C,, and it follows immediately that L(C) is a zero-dimensionel
Polish space (o, 4)

A sifting of a metnic space X consists of a sieve C = (C,, p,) and
for each integer n> 0 a mappmg ¢, of C, into the sct of mon-empty
closed subsets of X of dameter & 27*, such that:

) X 1 the union of the sets gofc) a3 ¢ runs through Co;

b) for each n and each ce&C,, ¢.{¢} 15 the union of the sets pan(c'),
-

where ¢ runs through a(e)

A sifng 1s said to be striet 1f 1n addition, for each n, the sets g,(¢),
as ¢ runs through C,, are mutually digant,

Lessia 3 Every metne space. X of countable ype possesses a sifting. If also
X 15 zero-dumensional, then X has a strict sifting
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SIEVES § 65

Note first that if Y is a metric space of countable type and if ¢ i§ a real
number > o, then there is a countable covering of Y by sets (?f dxar.neter
<¢ (§ 2, no. 8, Proposition 13). If, moreover, Y is zero-dimensional,
there is such a covering (V,) formed of sets which are both open and
closed; if W, is the intersection of V, and ﬂ (Y — V), we see that

k<n
the W, are closed, of diameter <, pairwise disjointand cover X. In

any case, the closures of the non-empty sets of the covering forrr'x a countable
covering of Y whose elements are non-empty closed sets of diameter <.

Let X be a metric space of countable type. Let G, be the set of
indices of a countable covering of X formed of non-empty closed sets of
diameter < 1, which are pairwise disjoint if X is zero-dimensional;
oo shall be the mapping which associates with each index c¢e G, the
éorresponding set of the covering. Suppose that we have already defined
the C; and the ¢; and the surjective mappings $;: Ciy; > C; for ig<n
in such a way that condition b) is satisfied for these indices. If ceC,,
the space o,(c) has a countable covering by non-empty closed sets of
diameter < 1/2°*1, which are mutually disjoint if X [and therefore
on(c)] is zero-dimensional; if I(c) denotes the index set of this covering,
we take ¢,4; to be the sum of the sets I{¢) as ¢ runs through C,; for
each ¢’ e C,yy, let p,(¢") denote the element ¢e G, such that ¢ (),
and let g,4,(c') denote the set with index ¢’ in the covering of ¢,(c)
under consideration. Clearly we thus define by induction a sifting of
X, and this sifting is strict if X is zero-dimensional; hence Lemma 3.

Now suppose that X is a complete metric space of countable type,
and consider a sifting of X by asieve C and mappings ¢, If v = (c,)
is a point of the space L(C) associated with G, the sequence (g,(c,))
is a decreasing sequence of closed sets in X whose diameters tend to o;
the intersection of this sequence of sets consists therefore of a single point,
which we denote by f(y). Thus we have defined a mapping f: L(C) — X.
If two points v, vy of L(C) have the same i-th coordinates for i < n,
it is clear that the distance between f(y) and f(y') is < 1/2" and
therefore f is continuous, by virtue of the definition of the topology of
L(C). For each xeX it follows from the definition of a sifting that
we can define by induction on 7 asequence v = (¢;) such that x e g,(c,)
foreach n >0, and ¢, = po(cpeq); hence x =f(y) and so f is surjec-
tive. Furthermore, if the sifting is strict, the sequence y = (¢,) such that

x=f(y) is unique, and so in this case f is bijective. [ is said to be the
mapping induced by the sifting considered.

ProrostTion 13, If X s any Lusin (vesp. Souslin) space, there exists a sieve
G and a continuous bijection (vesp. surjection) of L(C) onto X.

Referring to the definition of a Lusin space (no. 4, Definition 6) [resp.
a Souslin space (no. 2, Definition 2)], we reduce to the case where

203



6.
LUSIN SPACES AND BOREL SETS § 6.7

1t (A
and such that every Borel set containing f (q,.,(a,,)) meets f qun(cn))ci
Now the sequence f (gn(c,)) converges to a point a = _)” &) N ’S'anc
the sequence f'(gi(ch)) converges to a point a' =f (y)eA' mcf
AnA’'= @ and X is Hausdorff, there is a closed neighbourhood V o
@ which does not contain a', and thus for n suﬂiciex}tly large, V con-
tains f (ga(cs)) and does not meet f'(ga(cp)). This is 2 contradiction,
since V 1is a Borel set.

To prove Theorem 2, let Y, denote the union of the sets X, such
that i#n; then Y, is a Souslin subspace of X (no. 2, Proposition 8).
For each index n there exists a Borel set B; which contains X, and’
does not meet Y,, by Lemma 5. Let B, be the intersection of B,

and n (X —B!). Then the B, are Borel sets, are mutually disjoint
and alrz:nsuch that B, > X, forcach n.
CorROLLARY. If a countable pariition of a metrizable space is formed of Souslin

sets, then these sets are Borel sets. In particular, every Souslin set in a melrizable
space, whose complement is a Souslin set, is a Borel set.

7. LUSIN SPACES AND BOREL SETS
TreoreEM §. Let X be a Lusin space. Then a subspace of X is a Lusin
space if and only if it is a Borel set.

This theorem is a consequence of the following two lemmas ;

Lemma 6. In a Lusin space X, every Borel set is a Lusin subspace of X.

Let & be the set of all subsets A of X such that both A and {JA are
Lusin subspaces of X. Since every closed set and every open set in X
is a Lusin subspace of X (no. 4), ® contains all closed subsets of X,
and the lemma will therefore be proved if we can show that ¥ is a
¢-algebraon X. For this it is enough to show thatif (A,) is a sequence of

sets of ¥, then {}A, and {J A, are Lusin subspaces of X. Now we

n n
have seen in no. 4 that every countable intersection of Lusin subspaces is a
Lusin subspace. On the other hand, if B, is the intersection of A,

and [ [A;, it follows from the hypothesis and the preceding remark
i<n
that B, is a Lusin subspace; and since U A, = U B,, the subspace

U A, is a Lusin subspace by Lemma 2 of 1o, 4. "
n
Lesma 7. Every Lusin subspace A of @ meirizable space X is a Borel set in X.
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By Proposition 13 of no. 5 there exist a sieve C and a continuous bijection
f of L(C) onto A. With the notation of Lemma § of no. 6, for each
integer n and each ce Gy, let g,(d) denote the subspace f(g,(d) of
X; it is a Lusin subspace and therefore a Souslin subspace of X. As ¢
runs through C,, the sets g,(c) are pairwise disjoint, because f o
bijective; hence, by Theorem 2 of no. 6, there1sa family ¢ — gi{e} (= G,)
of Borel sets n X, pairwise digjoint and such that gi(c) > ga(e) for all
¢eC, Replacing gi(c) by its intersection with the closure z.(&) of
&6} in X if necessary, we may suppose that gi(c) €29, Let ¢,
Cn-1s - » ¢g denote the images of ¢ in Coy, Cagy ..., Gy, under the
surjecttons

Prrn = Prots Pz n = Lum2® Puets oo Poa =00 fro vee 0 puy
respectively; and let k.{c) denote the intersection of the sets

&) g1 (Gat)s - 5 £al60)-

Smce ¢(c)0g,(e) for o <i<n—1, k) contains g,(c); it s
clear also that £.(c) 15 a Borel set and is contained in g,{c), and lhat as
¢ runs through G, the h{¢) are mutually dijomt sets; finally,
construction, for each ¢ e€C,y we have Ay (') € h(p.(c")).
then B, be the union of the sets k() as ¢ runs through C,; B,, isa
Borel set, and B, cB,; also B, contains the union of the sets g,(¢)
(¢eC,), whichis A. Let B be the intersection of the decreasing
sequence of sets B,, B 15 a Borel set and contains A. We shall show
that B = A, and this wall complete the proof

Let x be a pomt of B. Then, for each integer n, there exists a
unique c¢eC, such that xek,(c); let us denote this ¢ by c(s). The
sequence  (c,(x))azg belongs to L(C). The decreasing sequence
{gn{ea(%))) converges by defimtion to a point aeA; the sequence of
closures of these sets also converges to a in X, hence a fortion so does the
sequence (ky(ca(x))). Now x belongs to all thesets Ay(ca(x)), therefore
x=aeA. Lemma 7is thus proved, and with it Theorem 3.

CoroLtary. If f 15 a continuous injective mapping of a Lusin space (or, tn
partwular, @ Polish space) X. wnto @ metnzable space Y, then f(X) is a Borel
setn X,

8, BOREL SECTIONS

Turorem 4 Let X be a Polish space and let R be an equivalence relation
on X, such that the equivalence classes mod R are closed in X “and the saturation
(wnth sespect to R) of each closed set in X ix a Borel set.  Then there 1s o Borel
setin X whech meets each equivalence class in exactly one point.
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Consider a metric on X compatible with its topology, and with- respect
to which X is complete. By Lemma g of no. 5, there exists a sifting of
X, defined by a sieve G = (C,, #,) and a sequence of mappings (q:.,,).
For each ¢eC,, let g,(¢c) be the saturation of the closed set on(c) with
respect to R; by hypothesis, g,(c) is a Borel setin X. )

Since each set C, is countable, we can linearly order each C, in
such a way that the set of elements smaller than a given element is finite.
For each ¢« C, we define a set #,(¢) by induction on =z, as follows.
In the first place, for ¢ e Gy, Ay(c) is the intersection of ¢y(c) and the sets
X —go(¢), where ¢eCy and ¢ <¢ For ceChy, Ay (6) is the
intersection of 44 (€), £,(P,(¢)) and thesets X — g,y (¢') for ' € Coyy,
£a(¢') = pale) and ¢' <¢. The k(c) are clearly Borel sets,

We shall prove the following assertion: for each integer n >0 and
each equivalence class H mod R, there is a unique element ceC,
such that %,(c) meets H, and we have

Hew) N H = g,(e) n H,

which is therefore a closed set. For n = o, consider the smallest element
¢e Gy such that gq(c) meets H; then g4(¢) n H does not meet any set
g(¢") for which ¢’ eC, and ¢’ <¢; hence it is contained in %y(c) n H
and consequently is equal to this set; moreover, we have Hcgy(c) and
therefore hy(c') n H is empty for ¢ e Gy and ¢’ >¢; thus the assertion
is proved for n = 0. We continue by induction on 7: if there exists
¢eCuy such that ki (c) meets H, then it follows from the relation
hya(¢) € ha(pn(c)) and the inductive hypothesis that p,(c) is the unique
element de G, such that k,(d) meets H. Observe that h,(d), which
is contained in g,(d), is contained in the union of the sets g,(c) for which

1
ce gl,,(d), by the definition of a sifting; there is therefore a smallest element
cepy(d) such that @,,(c) meets H. We have therefore

gnta(6) 0 Heg(d) nH=Fy(d) nH
by the inductive hypothesis. Hence
d.’n+1((") nHec ?n+1(€) n bn(d)ﬁ

and since bXI definition ¢,;;(c) n H meets none of the sets &nualc') for
which ¢'ep,(d) and ¢ <¢, it follows from the definition of boq(c)
that ¢,..(c) n H_1= hpiy(¢) n H. Moreover, we have He Zanale) and

therefore, if o € ,(d) is such that ¢ > ¢, hyyy(¢') nH is e
L / s fog mpty.
the assertion is pro)ved for all n. 1) Py.  Hence
For each integer n, let S, be the union of the sets (0)
2 ¢ a\€), where
runs through C,. The set S, is a Borel set, and we have S, ﬂcsc
e
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Let S be the intersection of the sets S,, which is also a Borel setin X;

we shall show that S meets each equxvalence class H mod R in cxacr.ly
one point. For each n, let :,(H) be the unique element ¢e G, such
that h,(c) meects H; then S§,nH = g,(c,(H)) nH, 2nd SnH is
the intersection of the sets ?_(:,.(H)) nH. Since the sequence (c,(H))
belongs to L(C), the decreasing sequence of closed sets gn{ca(H)), whose
diameter tends to 0, converges to a point r&X, since X is complete.
The mtersection of the closed sets ¢n{c,{H)) n H therefore consists of the
point % alone, and the proof of Theorem 4 is complete.

Remark. In particular a closed equivalence relation R satisfies the hypo-
theses of Theorem 4 When X 1s a compact metrizable space, Theorem 4
therefore applies to any Hausdorff equivalence relatton R, since a Hausdorff
equivalence relation on a compact space 15 closed (Chapter I, § 10, no. 4,
Proposition 8).

9. CAPACITABILITY OF SOUSLIN SETS

Dermverion 8. Lt X be a Hausdorff topological space. A capacity on X 15
amapping [ of the set (X)) of all subsels of X into the extended real line R,
satrsfying the followng conditions :

(CA) If AcB, then f(A)<S(B).

(CAy) I (As) ss any tncreastng sequence of subsets of X, then

s (U A,) =sup /(A
(CAm) If (K,) 5 any decreasing sequence of compact subsets of X, then
7N K=l f (K,)-

Examples * Let u bea positive measurc on a locally compact space X;
then the mncspond.mg outer measure p* 1s a capacity on

Tt can be shown that in Euchdean space R (n 3 3), the “Newtowan
outer capacity” 1s a capacity 1n the sense of Defiution 8. o

DEFNTION g Let f be a capacty on X, asubset A of X is sad to be
capacitable (unth respect to f) 1f f{A) -—sup F(K), where K runs through
the set of compact subsets of A.

* For example, if £ 15 an outer measure ¥, every open sct 1t capacitable;
the capacatable sets A such that u*{A) < + = are preciscly the pnte
grable sets
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PropostTiON 14. Let K be a compact space and let f be a capacity on K.
If A is the intersection of a decreasing sequence (A,) of subsets of K, each of
whick is a countable union of closed sets, then A is capacitable.

It is enough to show that, for each a < f(A), there is a closed set Gec A
such that f(C) >a. Let us first show that there exists a sequence
(B,)as1 oOf closed sets such that B,c A, and such that, if we define a
sequence (C,) inductively by the conditions C,= A, G, =C,4nB,
for n> 1, then f(C,) >a for each n>o0. Suppose the B; have
been defined for ¢ < n; by hypothesis we have C,;cAcA, and
f(Cyhyq) > a; since A, is the union of an increasing sequence of closed
sets Dj, it follows from (CAy) that

S (C‘n—l) = Sl.;.pf (C‘n—l nD j)'

Hence there is an index j such that f(C,;nD;) >a, and we may
take B, = D;.

Now let C= n C,. Since A = n A, and B,cA,, we have
C= n B,;

the set C is therefore compact and contained in A.

Let B, =B;nByn --- nB,; (B;) isa decreasing sequence of compact
subsets of K; as C,cC;cB; for i<n we also have C,cBj. By
(CAp), JS(C) =inff(B)), and since CcC,cB. we also have

n

S(C) = inff(C,) > a. This completes the proof.

Turorem 5. Let X be a metrizable space and let 'Y be a relatively compact

Souslin subspace of X. Then Y 1is capacitable with respect to every capacity
fon X,

We have seen (no. 2, Proposition g) that there exists a compact space K,
a decreasing sequence (A,) of subsets of K, each of which is a countable
union of compact sets, and a continuous mapping ¢ : K — X such that

Y=o ( O An). By Proposition 14, { ] A, is capacitable with respect to
i

every capacity on K. Theorem 5 is therefore a consequence of the
following proposition :

PropostTion 15.  Let o be a continuous mapping of a Hausdorff space K. into
a Hausdorff space X, and let f be a capacity on X. If for each subset A of
K we put g(A) =1 (9(A)), then g is a capacity on K; moreover, if A is
capacilable with respect to g, then o(A) is capacitable with respect to f.
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It is clear that g satisfies axioms (CA;) and (CAp). On the other
hand, let (C,) be a decreasing sequence of compact subsets of K, and

let Q=[)C,; the sets ¢(C) are compact, and their intersection is

»

¢(C); for this intersection certainly contans §(C), and if xe [1(oA}

for all n, then the sets J(x)nC, form a decreasing sequence of

non-empty compact subscts of K, and therefore their intersection

15 not cmpty. We have thercfore f(p(C)) =nf f (2(C,)), that is
..

£(C) =infg(Gy); thus g satisfiesaxiom (CAyy) and is therefore a capacity
on K.

Now let A be a subset of K which is capacitable with respect ta g;
if a<f(s(A)) = g(A), then there is a compact set GcA such that
2(C) > a; thus ¢(C) is a compact set contamned in ¢(A), and f (¢(C)) >a.
This shows that g(A) is capacitable with respect to f, and completes
the proof of Proposition 15 and hence of Theorem 5.

Remark. * 1 g 15 a positive measure on a locally compact metrizable
space X, then cvery Soushn subset A of X 15 p-measurable. Forif
K 15 any compact subset of X, KnA s a relatively compact Soushn
set, hence 1s capacitable with respect to w* and consequently g-integrable.
Note that the complement 1n X of a4 Souslin set, although not in general
2 Soushn set, 18 pmeasarable 4.



APPENDIX

INFINITE PRODUCTS
IN NORMED ALGEBRAS

1. MULTIPLIABLE SEQUENCES IN A NORMED ALGEBRA

Let A be a normed algebra over a non-discrete valued field K (Chapter
IX, § 3, no. 7, Definition g); we shall denote by [jx|| the norm of an ele-
ment xeA, and we shall assume that this norm satisfies the inequality
llxpl] < [1x]]-|lvll; also we shall assume that A has an identity element e,

et (X)aeN be an infinite sequence of points of A. Every fiite
subset J of N, linearly ordered by the ordering of N, defines a sequence
(xn)ney of points of A, and we define the product

PJ=Hxn

neJy

of this sequence; this product is called the finite partial product of the
sequence (X,),en, corresponding to the finite subset J of N (recall that-
if J=¢ weput Hx,,=e).

nel

DerINITION 1. The sequence (X,)pen 5 said to be multipliable in the normed

algebra A if the mapping J — py has a limit with respect to the filter of sections
of the set §(N) of finite subsets of N, ordered by the relation < ; this limit is

called the product of the sequence (x,)n,en, and is denoted by II x; (or simply
11 x,,) 3 the x, are called the factors of this product. neN

n

Deﬁpition I is equivalent to the following : the sequence (x,) is multipliable
and ils product is p if for each ¢ > 0 there exisis a finite subset Jo of N suc
that, for every finite subset J > Jo of N, we have ||p; —p|| < e.

Rgmarks. 1) When A is a commutative algebra, Definition 1 is identical
with that given in Chapter III, § 5, no. 1, Remark g; but when A is not
commutative, the order structure of the index set N is essentially involved 3
in Definition 1. If ¢ is an arbitrary permutation of N, we cannot in

general assert that the sequence (X)) is multipliable if the sequence S

s
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(x,) 15 multipliable; and 1f both sequences are multipliable, their products
il 1n general be different

2) Definition 1 can be rmmediatcly generalized to the case of a famiy
(x,).er whosemdex set I 1sasubsetof Z (linearly ordered by the order
snduced by that of Z). We Jeave it to the reader to extend to this case
the results below (cf. Exercises 1 and 2).

2. MULTIPLIABILITY CRITERIA
From now on we shall assume that the normed algebra A is complete,

Tueormm 1. Let (%,)aey be asequence of powntsin acomplete normed algebra A.
2) If (xa) is multipliable and if sts product is a umat of A, then for each &> o
there exasts a fimte subset Yo of N such that, for every finte subset L of N which
does not meet Jo, we have (le— pil] < e
b) Conversely, tf the sequence (x,) satisfies this condition, it is multipliohle.
Morevver, tf each x, 15 a unit, then || x, is aume.

neN

a) Let p be the product of the multipliable scquence (x,), and suppose
that p 1s a umt in A; then (Chapter IX, § 3, no, 7, Proposition 13)
there exist @ >0 and & > o such that, for all ye A for which we have

lly—pl<e

yisauntand [[y-Y| < e. By hypothests, forevery ¢ such that o <c<a,
there 15 a finite subset H, of N such that, for every fimte subset H of
N contaming H, we have |lpg—p||<ec. Let J,=[o, m] be an
interval of N which contans Hy; for each finite subset L of N which
does not meet J,, the integers belonging 1o L are all greater than those
belonging to Hg; hence, if H =H,uL, we have py = pyp. Now,
since [|pg, — pl| € ¢ € «, py, 15 a unt, and

lle —pi,pl) < sllpaipll < as;

suice [|pg,pr — pll e, we deduce
llp. — Pl < ellpR]ll < e,

and finally |le — p] < 22¢

b) Suppose that, for each ¢ >0, there exists a finite subset J, of N
such that, for every finite subset L of N which does not meet J,, we
have [le—pl|<c Let Ho=[o, #] be an interval of N whch
contams Jo; then every fimite subset H of N which contains H, can
be written 1n the form Hyu L, where the mtegers in L are all greater
than those m H,, hence we have pg = pg,py, and since L does not
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meet Jor l|g —Pull < ellomll, and consequently ||pgfl = (x + ¢)l1pa,]l
If py, =0, the sequence (x,) is evidently multipliable and its product

is 0; excluding this trivial case, there is an interval H,; =[o, 4] contain-
ing H, and such that, for every finite subset L of N which does not
meet H,, we have [le—py|| <ce (lpal))~ As above, it follows that,
for each finite subset H o Hj,

[lPr — pall < (1Pad) Pyl < e(1 + ).

Cauchy’s criterion therefore shows that J —p; has a limit in A with
respect to the directed set §(N).

If all the x, are units, then so are all the finite partial products pj;
hence for each finite subset H containing H, we have

lle — pu, pull <

and this shows that, in the multiplicative group G of units of A, the
image under the mapping J — p; of the section filter of F(N) is a
Cauchy filter base with respect to the left uniformity of G; but since G
is complete (Chapter IX, § 3, no. 7, Proposition 13), the limit of the mapping
J - p; belongs to G.

Remark. If (x,) is multipliable and its product is not a unit, the condition
of Theorem 1 is not necessarily satisfied : for example, if all the x, are
equal to the same element x, where {|x|| < 1, the sequence (x,) is
multipliable and its product is o, and for each non-empty finite subset H
of N, wehave [[pyll < [lxfl < 1 < [leil

CoroLLARY 1. If (x,) is a multipliable sequence whose product is a unit of
A, then limx, = e.

n>wx
CoroLLARY 2. If (x,) is a multipliable sequence whose product is a unit of

A, then every subsequence (xn)xex of (x,) [(n,) being a strictly increasing
sequence of integers] is multipliable.

This follows immediately from the criterion of Theorem 1.

TurOREM 2. Lot A be a complete normed algebra. If (u,) is an absolutely
convergent series of elements of A, then the sequence (e + u,) 1is multipliable in

A; and if all the elements e 4w, are units in A, then so is II (e 4~ u,).
neN

Let us apply the criterion of Theorem 1. For every finite subset L of
N, we have pp—e = H (e4-u) —e= D (H un), where M
L

ne M \neM
runs through the set of all non-empty subsets of L (linearly ordered by
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the induced ordering). Since ” I un < 1'[ llzdl, we may write

ttpe-—ell < S(TL ) = TL 1 + [ ~ .

Now since the series whose general term is |]u,‘|[ is convergent by hypoth-
esss, the sequence (1 + |jwf) is multipliable in R} (Chapter 1V,
§ 7, no 4, Theorem 4). Hence for each £>0 there exists a finite subset
Jo of N such that, for every finite subset L of N which does not meet
Jo» we have ‘H (t + [l — xig &5 hence the result,

CoROLLARY  If the series whose general term is w, 15 absolutely comvergent,
and if none of the elements € -+ u, is @ zero diwsor 1m A, then the product
I (e + #) isnot azero diwsorin A

rEN

There 15 only a finite number of integers n such that ||mf}> 1. Let
J=[o, m] be an interval of N contammng all these mntegers. The
product of the sequence (e + #,) is the product of p; and the element
11 (e+m,), alt of whose factors are units {Chapter IX, §3, no. 7, Coroll-

a>n
ary to Proposition 12), and 1s therefore 1tself a unit; since p; is the product
of a finite number of non-zero divisors, it is not a zero divisor, and hence
I (e + ) 1s not a zero dvisor.

weN

The suficent condition for multiphability given by Theorem 2 is not
in general necessary (cf. Exercisc 6). However, it is necessary in the
mportant case where A 1s an algebra of finite rank over the field R (i.c.,
A 1s finite-dimensional as a vector space over R}; in particular this is
the case if A 15 the division ring of quaternions H, or a matrix algebra
M.(R).

Prorosrion 1. Lel A beanormed algebra of firate rank over R, If (e + 1)
is a multipliable sequence tn A, whose product is @ umt of A, then the senes
whose general term 15w, 15 absolutely condergent.

From Chapter VII, § 3, no. 1, Proposition 2, there exsts a number ¢>o0
such that, for every finite fanuly (x),e; of points of A, we have

@ Al <o rp 22|
€ crllie

Let (a.),ex_be an arbutrary sequence of elements of A. For cach finite
subset I of N, put

=He+a), 5= Zon a=3lal
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Lemma 1. For each finite subset I of N, let o(I) = sup |lps —ell. Then
Jor each subset J of 1 we have

(2) oy — e — sf} < o(T)oye

The lemma is obvious if J is empty; we shall prove it by induction on
the number of elements in J. Let J=Ku { 7 } , where { i } is strictly
larger than every ieK. Then p; = pg(e + a;) and

Sy =SK+ aj,
so that
P;—e—S; = pg — e — g -+ (px — e)a;,

and by the inductive hypothesis and the definition of ¢(I), we have
lpy — e — 54l < 9(Dox + o(Dlajf] = ¢(Dsy,
which proves the lemma.
Lemma o. If 1 is a finite subset of W such that o(I) < 1je, then
or < ep(D)/(x — eg(I)).

For since 6y € op for every subset J of I, we have from (2)

lissll < ¢(Dox + [Ipy —ell < (1 + ap)e(D);

and since also o; <c. sup llssll, from (1}, it follows that

% C?(I) (I + ‘71)’
which leads to the result.

Now let (e 4 ;) be a multipliable sequence in A, whose product
is a unit; by Theorem 1 there exists a finite subset J, of N such that,
for each finite subset H of N which does not meet J,, we have

e+ u)—e

i€H

Is I/2e,

By Lemma 2, it follows that 2 llf] — © for every finite subset H of

N which does not meet J,, and hence (Chapter IV, § 7, no. 1, Theorem 1)
the family (||u,|]) is summable in R.

3. INFINITE PRODUCTS

To each sequence (x,) of points in a normed algebra A, let us make
n

correspond the sequence of partial products p, = ]1 x;; then the pair of
=0
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sequences {x,) and (p,) is called the infimte product whose general factor
15 X, The infinite product with gcncra] factor x, 13 said to be convergent
if the sequence (p,) 15 convergent in A; the limit of this sequ:nce 15

then called the product of the sequence (x,) and is denoted by P E
o

ProPoSITION 2. Let (x,) be a sequence of points in o complete normed algebra A

2) If the wnfinste product whose general factor 15 x, 15 convergent and if P x,
waumtn A, thenfor each ¢ > 0 there exists antnteger ny suchthat =0

—ejl<e

whenever my<m<n

b) Contersely, of the sequence (x,) satfies this condstion, the nfimte product
with general factor X, 1 convergent, and if each of the X, s aumtn A, then

Px, saumt

L

The proof of this praposition follows step by step the proof of Theorem 1,
and 1s left to the reader (the finite subsets L of N in the proof of
Theorem 1 are to be replaced by intervals).

COROLLARY 1. If the wnfinste product wnth general factor x, ts contergenl

andif P x, tsaume, then imx, =e.
a0 e

COROLLARY 2 If the snfimtc product with general factor x, 15 comvergent,
andif [P x, 15 aumt, then the snfinste product unth general factor
na

Yn =X (n20)
15 convergent

The product of the sequence {,) 15 denoted by |P x,, and 1s also called
the resdue of index & of the infinite product with general factor .
Still under the assumption that P x, is a unat, it follows from Proposi-

=
tion 2 that 1f (z,} is 2 sequence such that g, = x, for all but a fimte
number of indaces, then the product with general factor z, 15 convergent.

Provosrrion 3 Let (k) be a sinatly woreasing sequence of integers 0,
il&!“‘ = 0; f the infinite product unth general factor x, conerges, and



INFINITE PRODUCTS § A3

if we put

kney—1

u, = H Xps
P=k,

then the infinite product whose general factor is m, is convergent and we have
P u, = P Xn-
n=o0 n=o

For the sequence of partial products of the sequence (u,) is a subsequence
of the sequence of partial products of the sequence (x,).

Finally, the same argument as was used for abelian groups (Chapter III,
§ 5, no. 7) shows that if a sequence (x,) in a normed algebra A is multi-
pliable, then the product whose general factor is x, is convergent, and

-]

P Xy = H Xn
nelN

n=o0

]

which is also written as Hxn>; the converse is of course not true
n=o

(cf. Exercise 7).
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4) Let X be a non-Hausdorff uniformizable space and let R be the

relation “ye { x § *> between two points x, ¥ of X.

a) Show that R is an equivalence relation on X, that every continuous
mapping of X into a Hausdorff space is compatible with the relation R
(Set Theory, R, § 5, no. 7), and that the quotient space X/R is completely

regular.

) If U is any uniformity compatible with the topology of X, then
the Hausdorff uniformity associated with AU (Chapter II, § 3, no. g) is
defined on the quotient space X/R and is compatible with the topology
of X/R. The topological space X/R is called the completely regular
space associated with the uniformizable space X.

5) Let X be a uniformizable space. Show that the family of all pseudo-
metrics on X which are continuous on X X X defines a uniformityon X
compatible with the topology of X. This uniformity U, is called
the universal uniformity on X; it is the finest of all uniformities compatible
with the topology of X. If Y is any uniform space and if f: X =Y
is a continuous mapping, then f is uniformly continuous with respect
to the universal uniformity on X; thisis not the case for any other uniform-
ity on X compatible with its topology. If there exists a uniformity
U on X, compatible with its topology and such that X, endowed with
this uniformity, is a complete space, then X is also a complete space with
respect to any uniformity U’ which is finer than 4 and coarser than
Uy (Observe that the Cauchy filters are the same for U’ as for U,.)

§ 6) a) Let X be a completely regular space and let Al be a uniformity
compatible with the topology of X. Let U* be the coarsest uniformity
on X which makes uniformly continuous all the mappings of X into
[o, 1] which are uniformly continuous with respect to 9l. Show that
the uniformity U* is Hausdorff and compatible with the topology of X,
and that X is precompact with respect to U*.

8) Let K be a compact space. Show that every mapping f: X - K
which is uniformly continuous with respect to U is also uniformly contin-
uous with respect to U* (note that the unique uniformity on K is
the coarsest for which all the continuous mappings of K into the interval
[o, 1] are uniformly continuocus). Hence show that U* is the finest
of the uniformities on X which are coarser than U and with respect to
which X is precompact.

q 7) cht X be a completely regular space. If 4, denotes the universal
uniformity on X (Exercise 5), then U¥ (Exercise 6) is the coarsest
umforrfuty on X for which all continuous mappings of X into [o, 1]
are uniformly continuous. Let X denote the compact space obtained
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the definitions of a' completely regular filter and of the neighbourhood
filter of a point in  #X).

g) a) Let X bea topological space, let © be its topology and let (f),a
be a family of mappings of X into K == [0, 1] which are continuous in
the topology ©. Let ©, be the coarsest topology on X for which all
the f, are continuous. Show that %, = ® provided that the family

of sets _j‘:([o, a[), where 1el and ae]o, 1, isasubbascof & (ChapterI,
§ 2, no. 3). The space X is then uniformizable, and if it is Hausdorff
it is homeomorphic to a subspace of the cube KI.

b) Suppose that the family (f,) is the family of all continuous mappings
of X into K (with respect to ). Show that, if Y is any compact
space, every mapping of X into Y which is continuous with respect
to © is continuous with respect to %, (embed Y in a cube). The
topology © is uniformizable if and only if G = ©.

10) Let X be a completely regular space, let K be a compact subset
of X, andlet V be a neighbourhood of K in X.

a) Show that there is a continuous mapping of X into {o, 1] which is
equalto 1 on K and equalto o on [}V [use (Op), covering K bya
finite number of suitably chosen neighbourhoods].

b) Let X' be the quotient space of X obtained by identifying all the
points of K. Show that X' is completely regular.

S] 11) Let X be a completely regular space. Two closed sets A, B
in X are said to be completely separated if there exists a continuous mapping
S of X into [o, 1] such that f(x) =0 on A and f(x) =1 on B.

g) Let pX be the Stone-Cech compactification of X. Show that two
closed sets A and B in X are completely separated if and only if their
closures in $X do not intersect [use Exercises 7 @) and 1o a}].

b) Let & be a homeomorphism of X onto a dense subset X’ of a com-

pact space K, and let % be the continuous mapping gX — K which
extends . Suppose that, for each pair of completely separated closed
subsets A, B of X, the closures of 4(A) and A(B) in K do not inter-

sect. 'Show that % is a homeomorphism of $X onto K. (Show that
h s injective : if a, b are distinct points of X such that k(a) = Z(b),
consider a continuous mapping f: X —[o, 1] such that f(a) = o,
S(6) =1, and consider the sets X n 3’1[0, t/3] and Xn ?[2/3, }.)

SVI 12) Let X be a completely regular space and let 8X be its Stone-
Cech compactification.
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4} Let f be a finite continuous real-valued function on_£X, such that
fx) >0 forall xeX, and such that the set A=f(0)cpX—X
is not empty. ‘Then there 1s a sequence (a,) of points of X such that
the sequence of numbers %, = f(a,) > 0 is strictly decreasing and such
that hm % =o0. For :a:h integer »>o, let I, be an open interval

with dentre % mm RY, such that the closed intervals T, are mutually

disjoint, and let M, =f(L)nX. For each subset H of N, let M,
be the umon of the M, for which neH; for each filter § on N which
1s finer than the Fréchet filter, let §' denate the filter on X which has
the Mg(HeB) asa base Show that § is a completely regular filter
(Exercise 8), and that 1f §,, §, are two distinct ultrafilters on N, each
of which is finer than the Fréchet filter, then there s no filter on X_which
1s finer than each of &, §. Deduce that Card {A) > 22%"® [ue
Exercise 8 d) and Chapter 1, § 4, Exercisc 5].

5} Suppose that X 1s infinite and disoetz. Show that the uniformity
induced on X by that of gX is the uniformity of finite partitions (Chap-
ter I, § 2, no 2 and § 4, Exercise 12) [use Exercise 11 5)].  Hence show
that Card (8X) = 2*®"™ (cf Chapter 1, § 4, Exerase 5).  Show that
there 15 a continuous real-valued I‘uncuon f 20 on X such that j (0}
15 not empty and 1s contamed n BX —

) Under the same hypotheses as m ), show thataf A is an infinite closed
subset of X, then Card (A) 222%™, [Show first that there exists
an mfinite sequence (a,) of pomts of A, and for each n a neighbourhood
V. of @, m 8X, the V, being mutually disjoint; deduce that every
bounded real-valued function f defined on theset D of the o, can be
extended to 2 continuous function on 3X; for thus, consider a real-valued
function ¢ defined on X and equal to f(a,) at each point of X V.
Hence conclude that D A 1s homeomorphic to the Stone-Gech compacti-
fication of D (cf. § 4, Exerause 17).]

13) Let G be a locally compact, non-compact topological group, Show
that the umformuty induced on the product space H=G x G by the
uniformity of its Stone-Cech compacufication £H 1s strictly finer than
the uniformity induced by that of (3G) X (3G). [Assummg the result
false, show, by applying Exercise 74) to the mapping (x, ) > o2 of
H into G, that G would be isomorphic to a subgroup of a compact
group; now apply Chapter 111, § 3, no. 3, Proposition 4, Corollary 1.]

14) 1fa topological space X is such that every point of X has a clsed
d which is a ble subspace of X, show that X is
uniformizable,
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€ 15) a) Let X be a locally compact space and let ® be the set of
all continuous mappings g: X —[o, 1] which are zero on the complement
of some compact set (depending on g). Let Al; be the coarsest uniformity
on X for which all the mappings ge® are uniformly continuous.
Show that Ql; is compatible with the topology of X, that the completion
X of X with respect to U, is compact, and that X —X consists of
at most one point (show that if X is not compact, the filter of complements
of relatively compact subsets of X is a Cauchy filter with respect
to ).

b) Show that 4l, is the coarsest uniformity compatible with the topology
of X.

¢) Conversely, let X be a completely regular space such that the set of
uniformities compatible with the topology of X has a coarsest element
l,. Show that X is locally compact. (Using Exercise 6, show that
X is precompact with respect to 1l,; then show that the complement
of X in its completion with respect to 9, cannot have more than one
point.)

d) Suppose that X is locally compact and g-compact, and therefore the
union of an increasing sequence (U,) of relatively compact open sets
such that U, c U, (Chapter I, § 9, no. g, Proposition 15). Show that
there exists a continuous real-valued function f on X, such that
f&) <n for xeU, and f(¥) > n for xe(U, [cf. Exercise 10 g)].
Let U, be the coarsest uniformity on X for which f and all the functions
ge® are uniformly continuous. Show that 4L, is compatible with the
topology of X and that there is an entourage V of l, such that V(x)
is relatively compact in X for all xe X (cf. Chapter II, § 4, Exercise g).

9 16) Let X be a complete Hausdorff uniform space, and let U be
the uniformity of X.

a) Let A be a subset of X which is the union of a sequence (F,) of
closed sets, and let xe& A. Show that there is 2 continuous finite real-
valued function f> o0 on X, such that f(x) =o and f(y) > o
forall ye A. (If g, isa continuous mapping of X into [o, 1] such that
&(*) =0 and g,(») =1 forall yeF,, consider the function

76 =3 a9,

) Let >0 be a continuous real-valued function on X, and let V
-1
be the open set £ (Jo, 4+ o[). Let 9’ be the uniformity on 'V which
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is the least upper bound of the uniformity induced by Al and the
uniformity defined by the pscudometric

r{xy) =

_t _J_I .
A(x)  A(5)
Show that V is complete with respect to ("

¢) Let B be a subset of X which is the intersection of a family of sets
(Ay), cach of which is the wmon of a countable family of closed sets.
Show that there exists a uniformity on B which is compatible with the
topology mducedon B by the topology of X, andsuchthat B iscomplete
with respect to this uniformity [use )].

17) Let X bea topological space such that each x e X hasa fundamental
system of neighbourhoods which are both open and closed.  Show that X
15 uniformizable.

18) Let X be a countable completely regular space. Show that, for each
xe }s the nexghbourhoods of x which arc both open and closed form a
1 system of ds of x {cf. § 6, no. 4)

19) Let X be alocally compact space. Show that exery function f > o
which 1s lower semi-continuous on X 15 the upper envelope of a family
of continuous functions > o, ¢ach of which 1s zero on the complement
of a compact set

20) ) Let X be a completely regular space, and let 2 be a point of
X' Then there exists a continuous function f>0 on X such that
f{a) =0 and f(x) >0 whenever xte, 1f and only if there is a
sequence (V,) of neighbourhoods of @ in X such that nv = {a}
[cf. Exercise 16 ¢)].

£ Let X be a completely regular space, each polnt of which bas a

bl system of Show that, in the
Stone-Cech compacuﬁcauon a\ theset X 18 equzl to !he se: of poum
which have a 1 system of [
[use ¢) and Exercise 12]. Let X' be another completely rtg\ﬂar space,
each pomt of which has a fund 1 system of: d
Show that if the Stone-Cech compactifications X and §X' are homeo-
morphic, then X and X’ are homeomorphic.

€ 21) a) Let X be a topological space. Show that the following two
Ppropertics are qr - &) every finite d function
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on X is bounded; g) every bounded continuous real-valued function on X
attains its bounds. X is said to be pseudo-compact if it has these properties.
If X is pseudo-compact and if f is any continuous mapping of X into a
topological space X', then f(X) is pseudo-compact.

b) Consider the following two properties of a topological space X:
v) if (U,) is any countable open covering of X, then X is the union

of a finite number of the closures U,; 3) every countable filter base on X
which is formed of open sets has at least one cluster point. Show that ¥)
and 3) are equivalent and that they imply that X is pseudo-compact.
In particular, every absolutely closed topological space (Chapter I, § 9,
Exercise 19g) is pseudo-compact. If X has properties y) and §), then so
does every subspace of X which is the closure of an open set of X [cf.
§ 4, Exercise 26 b)].

¢) Consider the following property of a topological space X: () every
locally finite open covering of X isfinite. Show that {)=3v). [If (U,)
is an increasing sequence of open subsets of X which cover X and are

such that U, ¢ U,, consider the covering formed by the sets U4y n (T,
and the complement of a sequence (a,) such that

G4y € Upyy N Bﬁn']

If X is regular, show that y) =>1¢). [Let (U,) be an infinite,
locally finite, open covering of X. Define by induction a sequence (a,)
of indices, a sequence (x,) of points of X, and for each x, two open

neighbourhoods V, and W, of x, such that: (i) we have V,cW,,
W,cU,,, and W, meets only a finite number of sets U,y (i) U,,
meets none of the W, with indices £ < n. Now consider the covering

formed by the W, and the complement of the union of the V,.]

d) In a completely regular space X the properties o), 8), ¥), 8) and )
are all equivalent, and are equivalent to the following property: §) X is
precompact in any uniformity compatible with its topology. [Toshow
that ) ==~ ), note that if (U,) is a countably infinite, locally finite,
open .covering of X andif ¢, U,, then there is a continuous real-valued
function f on X such that f(a,) =n for each n [use (Op)]. To
show that §) —- a), use Exercise 5 and observe that in a precompact
space every uniformly continuous real-valued function is bounded. To
show that vy) =~6), note that if X is not precompact with respect
to a uniformity U, then there is a symmetric entourage V of 4, and a

sequiance (%,) of points of X such that no two of the sets V(x,) inter-
sect, :
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&) If X is a completely regular pseudo-compact space which is complete
with respect to some uniformity compatible with its topology, then X is
compact.

f) Ona )t regular pseuds ppact space X, the universat
uniformity (Exercise 5) is induced by the umiformity of the Stone-Cech
compactification of X, and is the unique uniformity, compatible with
the topology of X, for which all the continuous mappings of X into
[0, 1] are uniformly continuous.

6 22) Let X be a Hausdorff uniform space, let Y be a closed subset
of X, andlet f bea bounded, uniformly continuous, real-valued function
on Y. Show that f has an extension 7 to X which is bounded and
uniformly continuots on X. [We may assume that f(Y)c[o, 1].
For each dyadic number r=kf2"e[o, 1], let A(r) be the set of all
xeY such that f(x) <r, and let B(r) = A(r)u (X —Y}. Define
by induction * (as in the proof of Theorem 1 of § 4, 1o. 1) 4 an open set
U(r) for cach dyadic number 7 fo, 1] such that, whenever 7 and #*
are two dyadic numbers and r < ¢/, thereis an entourage V' of the um-
formty for X for which

VA®)eUr), VUM<UF),  VUF)<B{).

Then define f(x) to be the greatest lower bound of the dyadic numbers
7 such that e U(r).]

§2

1) Let X be a Hausdorff uniform space and let (f) be a family DI

pscudometrics on X which define the uniformity of X. Let X,

the metric space associated with the uniform space obtained by endowmg X

with the structure defined by the single pseudometnie f, (no. 1), Show

that X 1s isomorphic to a subspace of the product umiform space || X,
¢

2} In a connected metnic space X for which the metric is not bounded
on X x X, show that a sphere cannot be empty.

§ 3) a) Let X be a compact metric space. If the closure in X of
every apen ball ts the closed ball of the same centre and radius, then every
balim X 15 a connected set if ¥ and y are two points of X, andf S
is the closed ball with centre x and radius d(x, 3), show that for each
s3>0 theset A, ofpointsof S which can bejomedto y bya V-chain
contained 1n S (Chapter II, § 4, no. 4) contams points 2 such that
d(x, 2) < d{x, y)). Deduce that xeAy, for all ¢>o0, arguing by
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contradiction and using Welerstrass’s theorem (Chapter IV, § 6, no. 1,
Theorem 1).
b) In the space Y = R* with the metric

d(x, ») = max (Jx; —n|, |v2—2l);

let X be the compact subspace consisting of all points (x;, x;) such that
cither x, =0 and 0<% <1I, or 0<x <1 and x, =o0. Show
that every ball in X is connected but that the closure of an open ball is not
necessarily the closed ball with the same centre and radius.

4) A metric space X is said to be an ultrametric space if its metric d satis-
fies the inequality

d(x, ») < sup (d(x, 2), d(», 2))

for all #,9,z in X (which implies the triangle inequality) (cf. § 6,
Exercise 2).

a) If d(x, 2) 7 d(, 2), show that d(x, y) = sup (d(x, 2), d(, 2))-

b) Let V.(x) be the open ball with centre x and radius r. Show
that V,.(x) is both open and closed in X (and hence that X is totally
disconnected) and that for each » e V.(x) we have V,.(y) = V,(x).

¢) Show that the closed ball W(x) with centre x and radius r is both
open and closed in X, and that for each ye W,(x) we have

Wi(9) = Wi(x).

The distinct open balls of radius r contained in W,.(x) form a partition
of W,(x), and the distance between any pair of these balls is equal to 7.

d) If two balls (open or closed) of X intersect, then one is contained in
the other.

¢) A sequence (x,) of points of X is a Cauchy sequence if and only if
d(xy, %z44) tendsto o as n tends to infinity.

JS) If X is compact, show that for each x,& X the set of values of d(xg, x)
in X is a (finite or infinite) countable subset of [0, 4 ], of which all
the points, with the possible exception of o, are ésolated [for each value r
taken by d(x, x), consider the least upper bound of d(x,, ) on the set of
points where d(xg, ¥) <7, and its greatest lower bound on the set of
points where d(x,, x) > r].

5).Let X be a metric space, d its metric. For each pair (x, y) of
points of X, let dy(x, y) denote the greatest lower bound of the real
numbers « > o such that x and y can be joined by a V,-chain (Chap-
ter I, § 4, no. 4). Show that d, is a pseudometric on X, and that the
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metric space associated with the uniform space defined by the pseudometric
dy on X (no. 1) is an ultrametric space (Exercise 4).

6) Let X be a metric space. If A and B are two non-empty
subsets of X, put

p(A,B):sugd(x,B) and  ofA,B) = sup (p(A,B), o(B,A));

also put o(@, &) = 0, a(@, A) = a(A, @) = + @ for any non-empty
subset A of X. Show that o 1s a pseudometric on the set B(X) of all
subsets of X, and that the uniformity defined by & coincides with the
uniformity constructed from that of X by the procedure of Chapter II,
§ 1, Exercise 5.

Suppose that X 1s bounded. Then o is a meinc on the set §(X) of
non-empty closed subsets of X. 1If, moreover, X is complele, show that
§(X) is a complete metric space [let & be a Cauchy filter on §(X);
for each set Xe®, let S(¥) be the union of the subsets A of X which
belong to ¥; show that the sets S{¥) form a filter base on X as
runs through &, that this filter base has a non-empty set G of cluster
pomnts, and that & converges to CJ.

€ 7) Let X be an infinite discrete space, Show that the uniformity
of fiite partitions (Chapter II, § 2, no. 2) on X, which is compatible
with the topolegy of X, 15 not metrizable (otherwise there exists a sequence
(§,) of fimte partiions of X such that every finite partition of X is
formed of sets, each of which 1s a union of sets belonging to one of the parti-
tions §,; from this it would follow that the set of fimite partitions of X
15 countable),

8) Let (X)) bean ble farmily of Hausdorff topological spaces,
each of which has at least two dustinct points  Show that, in the product
space [] X, no pomt has 2 I system of neight
hoods. '

o) Let X be a topological space, each point of which has a countable
fund; 1 system of neighbourhoods.

@) X is Hausdorff provided that every convergent sequence in X has
only ene limt

8} If a 15 a cluster pomnt of an finite sequence (x,) of pownts of X,
then there 15 an infinite subsequence of (x,) which converges to a.

¢) Let A be a non-empty subset of X, let x, be a pownt of A, andlet
f be a mapping of A mto a Hausdorff topological space X'. Then a
pont aeX’ 1sa hmut of f at the point x,, relative to A, prowded
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that, for every sequence (x,) of points of A which converges to #o,
the sequence (f (x,)) convergesto a.

d) With the notation of ¢), suppose also that every point of X' has a
countable fundamental system of neighbourhoods. If ae X' is a cluster
point of f at x, relative to A, then there is a sequence (x,) of points
of A which converges to x, and is such that the sequence (f(x,))
converges to a.

10) Let X be a compact space. If there exists a continuous real-
valued function f on X XX such that the relation f(x, y) = o isequiv-
alent to x =y, then X is metrizable. (Show thatif V runs through

a fundamental system of neighbourhoods of o in R, the sets ?(V)
form a fundamental system of neighbourhoods of the diagonal A in
XxX.)

9 11) Let X be a compact metric space, with metric d. Show that
if f is a mapping of X into X such that, for each pair #, » of points
of X, wehave d(f(x), £(»)) = d(x,»), then f isan isometry of X onio
itself. [Let a, & be any two points of X, and put f*=jf"1o f
a, = f"a), b, =f"(b); show that, for each ¢ >o0, there exists an
index £ such that d(a, ¢) < e and d(b, b;) <&, by choosing suitable
subsequences of (a,) and (4,); hence show that d(a;, &,) =d(a, b)
and that f(X) is dense in X.]

€ 12) Let X be a compact metrizable space.

a) Show that there is a continuous mapping of Cantor’s triadic set K
(Chapter IV, § 2, no. 5) onto X (cf. Chapter 1V, § 8, Exercise 11).

b) If in addition X is totally disconnected and has no isolated points,
then X is homeomorphic to K. [Argue as in Chapter IV, § 8, Exer-
cise 12, using the fact that every neighbourhood of 2 point x e X contains
a neighbourhood of x which is both open and closed (Chapter 11, § 4,
no. 4, Corollary to Proposition 6)].

%) 13) a) Ontheset R of real numbers, consider the topology © defined
as follows: for each y > o, U,(x) denotes the union of the intervals
[¥, x+ 5[ and ]—x—y, —2[; G is the topology for which the U,(x)
form a fundamental system of neighbourhoods of x as » runs through
tl}lle set of real numbers > 0. Let X be the space obtained by endowing
;(e_mterval [—1, + 1] with the topology induced by ©. Show that
* 1s compact. (Consider a filter § on X; if xeX is a cluster point of
§ withr espect to the topology of the real line, show that either x or —#
1s a cluster point of § with respect to ©.)
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bl 1

) Every point of X hasa I system of neighb
hoods, and X has a countable dense subset, but X is not metrizable
(show that its topology has no countable base).

¢} Let A be an open subsct of X. Show that A is the union of a
countable family (I,) of open mntervals contained in {o, 1], the intervaly
—1I,, a subset of the set of left-hand points of the intervals I, and —1I,,
and ‘possibly the pomt -+ 1. Hence show that A is the union of a coune
table family of closed subsets of X.

d) Let Y be theset Ix {1, 2}, where I is the interval [0, 1] of
R; let X, denote IX {2} s=1,2) andlet f denote the brjection
(% 1) = (¥, 2) of X; onto X, Foreach xel, let B((x 2)) denote
the set of subsets consisting only of {(x, 2)}, and let B((x, 1)) denote
theset of subsets of the formm Vv (f (Vi) — { x,n]), where Vi =V x {1}
and V runs through a . 1 system of ds of x in
I Show thatfor cach y& Y, B(5) is a fundamental system of neighbour-
hoods of y for a topology on Y. Endowed with this topology, Y is
compact and every pomnt of Y has a countable fundamental system
of neighbourhoods, but ¥ has no countable dense subset, Every closed
subset of Y contamed m }x, 15 ﬁm:e, hcm:: show that rhe compact
subset X, of Y hasno 1 system of nei

If R 15 the equivalence relation on Y whose classes are the set X, and
the points of Y —X;, R is closed and every equivalence class mad R
1s compact, but there1sa pomntin Y/R which has no countable fundamen-
tal system of nexghbourhoods [cf § 4, Exercise 24 )].

14) @) Let X be an accessible topological space (Chapter I, §8, Exercise 1),
Show that the following properties are equivalent :
) Every sequence of pomnts of X has a cluster point.
) No infimte discrete subspace of X 1s closed.
) Every countable open covering of X contains a finite open covering X.
3) Given any nfiute open covening R of X, there exists an open
covering G R of X, distinct from 8.

A topological space X 15 sad to be countably compact if it is Hausdorfl
and has the above properties,

5) A sequence of points 1n a countably compact space 1s convergent if

and only if 1t has a umque cluster pont.

¢) Every closed subspace of a countably compact space is countably

compact. Convcrscly, if X 1s Hausdorff and if every point of X hasa
system of ds, then every countably

compact subspace of X 1s closed in X.
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d) Let f be a continuous mapping of a countably compact space X intoa
Hausdorff space X'. Then f(X) is a countably compact subspace of
X'

¢) Let X be a countably compact space, every point of which has a
countable fundamental system of neighbourhoods. Then every sequence
of points of X has a convergent subsequence.

f) Let (X,) be a countable sequence of topological spaces, in each
of which every point has a countable fundamental system of neighbourhoods.

The product space H X, is then countably compact if and only if each
=1

of the spaces X, is gountably compact. [Use ¢) and Chapter I, § 6, Exercise

16.]

£) A countably compact space in which every point has a countable
fundamental system of neighbourhoods is regular.

k) If a countably compact space has a countable base of open sets, it is
compact and therefore metrizable.

i} Every lower semi-continuous real-valued function on a countably
compact space attains its greatest lower bound. In particular, every
countably compact space is pseudo-compact (§ 1, Exercise 21) [cf. § 4,
Exercise 26 5)].

J) Show that the property 8) of @) implies the following :

{) Every point-finite (§ 4, no. 3) open covering of X contains a finite
open covering of X. (Argue by contradiction.) Conversely, a regular
space which satisfies {) is countably compact [show that ) then implies g)].

€ 15) Let X = [a, [ be the locally compact space defined in Chapter I,
§ g, Exercise 12.

a) Asubset of X is relatively compact if and only if it is bounded. Hence
show. that X is countably compact and therefore (Proposition 15) non-
metrizable (observe that every countable subset of X is bounded).

b) Show that every point of X has a metrizable neighbourhood (use
Proposition 16).

_c) If A and B are two non-compact closed sets in X, their intersection
1s not empty (form an increasing sequence in which the even-numbered
terms are points of A and the odd-numbered terms are points of B).
Deduce that every neighbourhood of a non-compact closed set is the
complement of a relatively compact set. If A is the set of non-isolated

points of X, _show that A is closed and is not the intersection of any
countable family of open sets,

d) Let X' denote the interval [a, 5] endowed with the following topo-
logy: for each xeX the intervals ]y, %], where » runs through the set
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4 sohbourh

of :lcments < form a fi 1 system of

1 system of neighbourhoods of 4 1 formed by d:e sm V
where, for exch. xa X, V. denotes the uaion of {6] and the set of
points of [x, 6] which have a predecessor (Le., which are solated in X).
Show that X' 15 countably compact but nof Tegular [cf, Exercise 14.)]
and that the subspace X. of X' is countably compact but not elosed [cf,
Exercise 146)]-

16) Let X and Y be two countably compact spaces Show that the
product X x Y 15 countably compact 1n each of the following two cases
@) one of X ¥ s compact, () one of X, Y 15 such that each point has

1 systern of nei [In case (i), suppos-
mg that Y 1s compact, consider an increasing sequence (G,) of open
sets whose umon is X X Y; for each n, let H, be the set of all xeX
such that {x] x Y<G,, show that H, 1s open and that X = JH,]

0

€ 17) Let BN be the Stonc-Cech compactification of the discrete space
N (§ 1, Exeresse 7).
a) Show that therc are two countably compact subspaces A, B of gN
such that AnB=N and AuB=@N. [Let 8, =2""®; 1}y
virtue of § 1, Exercise 12 ), there is a bijection £ —S¢ of the ordmal
(Set Theory, Chapter 11, § 6, Exercise 10) onto the set of countably infinite
subsets of X By transfinite mduction, define two mjective mappings
§—>x, B>y of w, into EN—N such that xeSg y Sy for each
E, and such thatif P (resp. Q) 1s the set of the g {resp yy) we bave
PnQ =g, PuQ=pgN—N; for ths, make use of § 1, Exercise 12 5)
and ¢  Then show that A =PuN and B=QuN satisfy the condi-
tions of the question }

) Show that the product space A X B 1s not countably compact (note
that the intersection of A x B with the diagonal of gN X AN is an
infinite discrete closed subspace of A X B).

€ 18) Let X be a metric space such that, for each xeX, there is
an open ball with centre x which, when considered as a subspace of
X, has a countable base. Let 7, be the least upper bound of the radii of
balls with centre » which have this property.
) Show, using Zorn's lemma, that there is a maoxmal famly (B) of
open balls m X which are pairwise disjont and such that, if #, is the
centrc of B,, the radis of B, 1s <7, Show that the umon of the
B, 1sdensein X, and hence that there 15 a dense subset M of X such
that every open ball with centre at an arbitrary pomt xeX and radws
< 5 contams only a countable 1nfinity of pomis of M ({note that such
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a ball can meet only a countable infinity of pairwise disjoint open sets,
and use Proposition 12).

%) For each point xeM, let S, denote the open ball with centre x
and radius 17, Show thatthe S, cover X, and that an arbitrary
point of X belongs only to a countable infinity of the S, [note that if
yeS,, wehave d(x, ) <37yl

¢) Let R be the following equivalence relation between points x, y of
X : there exists a sequence (2;);<ign ©Of points of M such that xeS_,
yeS, and S; meets S, ~for 1<iSn—r Show that the equiv-
alence classes (mod R) are subspaces of X which are both open and
closed in X and which have a countable base; in other words, X is the
topological sum of metric spaces with countable bases (Chapter I, § 2, no. 4).

§ 19) In a metric space every relatively compact set is bounded. If
X is a topological space, show that the following conditions on X are
equivalent : o) there exists a metric on X, compatible with its topology,
such that every bounded subset of X (with respect to this metric) is
relatively compact; ) X is locally compact and has a countable base.
[To show that «)==-@), show that if every bounded set is relatively
compact, then X is locally compact and ¢-compact. To show that
) = a), note that X is metrizable by the corollary to Proposition
12; if d is a metric on X compatible with the topology of X, and if
S is the function defined in § 1, Exercise 15 d), take the uniformity on X
defined by the two pseudometrics d(x, ) and |f(x) —f(»)|]

§ 20) @) Give an example of a closed equivalence relation R on a
metrizable locally compact space X which has a countable base such
that X/R is paracompact but such that there exists a point of X/R which
has no countable fundamental system of neighbourhoods [cf. Chapter I,
§ 10, Exercise 17 and Chapter IX, § 4, Exercise 24 a)].

b) Let X bea metrizable space andlet R be a closed equivalence relation
on X. Show that if every point of X/R has a countable fundamental
system of neighbourhoods, then each equivalence class (mod R) has a
compact frontier in X. (Show that if the result were false there would
exist a sequence in X, all of whose points were distinct, which had no
cluster point, and whose image in X/R was a sequence which converged
to a point dlStll’l.Ct from all the points of the sequence.) For each ze X/R,
let G, be the Inverse image of z in X, andlet F, be the frontier of
C, if this frontier is not empty; if C, is both open and closed, let less F,
be any subset of C; consisting of a single point. Let Y be the unjon of

thesets F, as z runs through XJR ; -
phic to X/R. gh X/R. Show that Y/R, is homeomor
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€ 21) a) Let X be a metnzable space, let d be a bounded metnc
compatible with the topology of X, let ¢ be the metric corresponding to
d on the set §(X} of non-empty closed subsets of X (Exercise 6); and
let R be an open and closed equivalence relation on X, Show that the
Testriction of ¢ to X/R is a metric compatible with the quotient topology,
[Use Exercise 20 5) to show that every class mod R is open and compact,
Then prove that if a sequence (2,) 1n X/R tends to a point a and
if ¢:X —>X/R is the canonical mapping, we have o(3(a), 3(,)) —0;
argue by contradiction, using the fact that R is open.]

3) On the compact interval I =[o, 1] of R, let R be the equivalence
relation whose classes are the points of the Cantor sct K (Chapter VI,
§ 2, no. 5), other than the end-points of the intervals contiguous to K,
and the closures of the intervals contiguous to K. Show that the quotient
space I/R is homeomorphic to I [Chapter 1V, § 8, Exercise 164)]
but that the metric ¢ 15 not compatible with the topology of I/R.

€ 22) Let X be a Hausdorfl topological space with a countable base
{U,), andlet R be a Hausdorfl equivalence relation on X such that
every pownt of X/R has a d I system of neighb
hoods. Show that the topology of X/R has a countable base. [Let
9: X > X/R be the canonical mapping, and show that the interiors
of fimte unions of sets ¢(U,) form a base of the topology of X/R: if
V s a neighbourhood of a pomt zeX/R, and (W,) is a sequence of
sets belonging to the base (U,), contained in (V) and covering
$(2), show that there is a finite number of indices % such that the union
of the 3(W,) 15 a neighbourhood of 2. Argue by contradiction: if thus
statement were false we could construct a sequence () of distinet
pomts of X/R, tending to z and such that y, did not belong to the
union of the §(W;) for & < n; then show that the union of the §'(7)
would be closed . X ]

Show that the same conclusion 1s valid if R is assumed to be closed
and every equivalence class mod R is compact (similar method).

¥ 23) A topalogical space is said to be submetnzable if its topology is
finer than the topology of a metrizable space. A submetrizable space is
Hausdorff but not necessanly regular (Chapter I, § 8, Exercise z0).

4) A completely regular space X is submetnzable if and only if there
exists 2 uniformity on X, compatible with the tapology of X and defined
by 2 family & of pseudometrnics which contains at least one metric d
(cf. § 1, Exercise 3). Let X be the completion of X with respect to
this uniformity; the metric d extends to a pseudometne 4 on X; show
that foreach xeX theres at most one point y e X such that Z(x,) = 0.
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b) Show that if X is a completely regular submetrizable space, there
exists a uniformity, compatible with the topology of X, and with respect
to which X 1is complete [use @) and § 1, Exercise 16¢)]. Hence show
that if in addition X is pseudo-compact (§ 1, Exercise 21), then X is
compact.

¢) Show that a locally compact, paracompact, submetrizable space X
is metrizable (reduce to the case where X is g-compact by using Chapter I,
§ 9, no. 10, Theorem 5; then use the Corollary to Proposition 16) [cf. § 5,
Exercise 15},

€ 24) a) Let X be a complete metric space, and let A be a subset of
X which is the intersection of a countable family of open sets. Show that
there exists a metric on A with respect to which A is a complete metric
space, and which defines on A the topology induced by that of X and
also defines a uniformity finer than that induced by the uniformity of
X [cf. § 1, Exercise 16 4) and ¢)].

&) Conversely, let X be a metrizable space and let A be a subset of
X such that there exists a metric d on A which is compatible with the
topology induced by that of X and for which A is a complete metric
space. Show that A is a countable intersection of open sets in X. [For

each integer n >0, consider the set G, of points xeA which have
an open neighbourhood U such that the diameter of A n U (with respect
to d) is € 1/n.]

€l 25) Let X be a metrizable space, let 8X be its Stone-Cech compacti-
fication (§ 1, Exercise 7) and let d be a bounded metric compatible with
the topology of X. For each xeX, let £.(y) denote the real-valued
function obtained by extending y — d(x, ») by continuity to BX.

a) Show that fi(z) + f,(z) > d(x, y) whenever x and y are in X
and z isin BX. Foreach y e X other than x € X, show that f,( y) > o.

&) Show that if X is complete with respect to the metric d, then X
is the intersection of a sequence of open sets in BX. [Consider the set
G, ofall yeBX such that f;(y) < 1fn for at least one point x e oX,
and show by using @) that X = [} G,.]

n

¢) Conversely, show that if X is the intersection of a sequence of open
sets G, in BX, there exists a2 metric 4' on X which is compatible
with the topology of X, and with respect to which X is complete.
[Considering only the case in which X s 8X, note that pX —X
is the union of a family of compact sets F, = X — G,; for each n,
let g.(x) = in}f J=(»), and show by wusing @) that g,(x) >0 for

all xeX, and that gn is continuous on X. Finish the proof asin
Exercise 16 5) of § 1.]
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§3

1) A pseudometric f on a group G (written multiplicatively) is said

to be liftamariant (sesp nght-invariont) i f(zn ) =f(x ) [rep

Flaz,32) =f(%3)] forall x5,z in G.

@) If f i & lef-mvanant pseudomctric, the realvalued function

g(x) =f(e,x) on G (¢ being the identity element of G) satisfies the

following conditions :

(i) g(x) = o for all x€ G, and g(e) = 0;

() 2 = g(0);

(i) glw) < gx) + (-

Conversely, if g is any real-valued function on G satisfying these condi-

tions, then f (s, 7) = g(x13) 1s a left-invariant pseudometric on G.

5) ‘The topology © defined by a saturated family (f)) of left-unvariant

pseudometrics on a group G is compatible wath the group structure of

G if and only if, for each aeG, each index « and each real number

a >0, there exists an mmdex » and a real number § > o such that the

relation fyle, ¥) <@ implics fife, axa™l) € @ If this condition 15

satisfied, the umformuity on G defined by the family £, 1s the same as

the left uniformty of the topological group obtained by endowing G with

the topology ©.

¢) On every topological group G thcrc exists a family of leftsinvarant
such that the defined by this famly is the same

as the left umform)ly of G

2) Let G bea topological group whose left and right uniformities coincide.
Show that this unique umformuty can be defined by a famly of pseudo-
metrics which are simul ly lefi-and night-i using Exercise 3
of Chapter II, § 3, show that if V is any neighbourhood of the identity
clement ¢ of G, then Vo= n #Vx1 15 a neighbourhood of ).

3) Let G be a topological group, let (f) be a saturated family of
left-nvariant pscudometrics on G which define the left umformity of
G, and let g,(x) =f(e, ) Let H be a normal closed subgroup of
G, and for cach coset v GfH let k(%) = mf g(x); show that, f
filx, §) = B(#71 3), the f, forma family of lcn mvanant psendometrics
JH which define the left umformity of G/H (argue asin Remark2
ofno 1).
4) Show that the topology of a valued dwision ring 1s locally retrobounded
{Chapter 1II, § 6, Exercise 22)
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* S[ 5) Let o bean absolute value on the field Q of rational numbers.
g) Show that » is uniquely determined by its values at the prime numbers.
b) Ifthere is a prime number  such that w(p) < 1, showthat w{g) <1
for every other prime number ¢ f[find an upper bound for w(g") by
writing ¢" in the scale of p, andlet n— oo].

¢) If there exists a prime number p such that w(p) <1, show that
w(g) =1 for every other prime number ¢ [show that we cannot have
(g) < 1, by using the fact that for each integer 2 > o there exist two
rational integers r and s such that 1 =17p" 4 s¢"]. Hence show that
w is then an absolute value equivalent to the p-adic absolute value on Q.

d) If w(p) > 1 for every prime number p, show thatif 4 and ¢ are
any two prime numbers, then

log w(p) __ log w(g)
log p log ¢

[same method as in 4)]. Hence show that in this case w(x) = |«
forsome p<< 1.,

6) Let E be a left vector space over a division ring K, with a countable
base (4;). Let (r,) be a decreasing sequence of numbers > o, tending

to o. For each x= ), t,a, %0 of E, put ||x]| =7, where & is

the smallest of the indicesk k such that ¢, o, and put [[o|| = 0. Show
that [jx —y|| is an invariant metric on the additive group E, and that
the topology it defines on E is independent of the sequence (r,) (decreas-
ing and tending to o) chosen. Hence show that if the definitions of a
norm and a normed space (Definitions 5 and 6) are extended to the case
where the absolute value on the scalars is improper, Proposition 7 and
Theorem 1 are no longer valid.

7) Let E be a normed space over a valued division ring. Show that
}f every absolutely summable family in E is summable in E, then E
1s complete. [Let (x,) be a Cauchy sequence in E, and consider a
subsequence (xnk) of (x;) such that the series whose general term is
¥n,,, ~%a is absolutely convergent.]

8) Give an example of a family which is summable but not absolutely
summable in the field Q, of p-adic numbers. [Show that a family
().e; of points of Q, issummable if and only if lim x, = o with respect
to the filter of complements of finite subsets of I1.]

9) A I,“%PPi‘}g w of a ring A into R, is called a semi-absolute value
on A ifit satisfies the conditions : (i) w(o) = o; (ii) w(x—y) Sw(x) + w(»);
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(m) w(z) < w(xw(s). The semx-absolute value w is said to be Hausdorf?
if w(x) =0 wmplies x==0, If w is a Hausdorff semi-absolute value
on A, then wix—y) is an invatiant enetric on the addinve group of &,
and hence defines a topolagy compatible with the additive group structure
of A. Generalize the principal properties of normed algebras, notably
Proposition 13, to rings endowed with a semi-absolute value.

If w 15 a non-Hausdorff semi-absolute value on A, the set w/(o)
1s & two-sided 1deal a in A; if weendow A with the topelogy defined
by the pseudometric w(x —3), thus topology is compatible with the ring
structure of A, and the Hausdorfl space associated with A is the quotient
ring Afa, on which the function #%(%), which for cach ¥ mod 4 is
equal to the common value of w(x) for all xe%, 15 a Hausdorff serm.
absolute value said to be associated with w; the topology defined by @
is the quotient by ¢ of the topology of A.

4 10} g} Two semr-absolute values 0, w, on a ring A are said to be
equualent 1f the pseudometrics wy(s —3), wy(x—y) are eqmvalcnt.
Show that, if w is a semi-absolute value on A, then aw and wtl
semi-absolute values equivalent to w for every real number a2 1.

) If w, (1 $1<n) are semi-absolute values on a ring A, the functions
w= 3w and ' =supw, arc two equivalent semi-absolute values
:
on A If !
o
W) and a=w (o),

a
then = na‘. If A, denotes the completion of the quotient ring

AJs, endowed with the Hausdorff semi-absolute value associated with 1,
show that Aja endowed with the Hausdorff semi-absolute valuc
associated with 15 1somorphic to a subring of the product ring 1] A

0
show that (assuming that A has an identity clement 1) this ring is dense
in J]A, if and only if the w, satsfy the following condition: for

cach ¢ >0 and for each index t, there 1s an clement zeA such
that w(t —=x) <e and wy(x) ¢ for each index k4.

11) Let A be a ring endowed with 2 Hausdorff semi-absolute value,
and suppose that A has an 1dentity element and 13 complete with respect
to the topology defined by the semi-absolute value. Show that every
maximal ideal of A 1s closed (use Proposition 13},

§i12) Let K bea d Hausdorff, logical duvision Ting,
andlet ¢ K~»R, beamappig such that ¢(0) = o, o) = o(x)e(3)
and such that +f V, denotcs the set of all xeK such that o(x) < tjn,
the sets V,, form a fi 1 system of nexghbourhoods of o in K.
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a) Show that there exists a real number a > o such that, for all xeK,
o(1 + %) < a1 + o))

[if not, there would exist a sequence (x,) of points of K such that
both (1 + #,)~' and x,(r 4 x,)~! tended to zero]. Hence show that
if §(x) = (¢(x))* we have

Y(x + ) < 2 sup (U(x), ¥())

for « sufficiently small. n

b) Show that if n = 2P we have q;( > x,-> < nsup (¢(x;)), and deduce
i=1

that for every integer m > 0 we have ¢(m) < 2m.

¢) Deduce from b) that for every n = 2P and every xeK we have

Y((1 + 2)"1) < 2n(1 4 $(x))*Y, and hence that ¢ is an absolute value

on K which defines the topology of K.

§ 13) Let K be a non-discrete Hausdorff topological division ring.
Let R be the set of all x& X such that lims" = o, and let N be the

nsw
complement of the set R uR™%. Show that there exists an absolute
value on K which defines the topology of K if and only if (i) R is
open in K; (i) for each neighbourhood V of o in K, there is a
neighbourhood U of o in K such that RUcV; and (ili) if xeR
and yeRUN, then yxeR.
To show that these conditions are sufficient, prove successively that:

a) N is a normal subgroup of the multiplicative group K* of non-zero
elements of K.

b) In the quotient group K*/N, put £ < y if there exist xes and
y& 3 such that yx—! € R u N; show that this relation is an ordering compat-
ible with the group structure of K*/N, and that the ordered group so
defined is isomorphic to a subgroup of the additive group R (use Exercise 1
of Chapter V, § 3).
¢) Complete the proof with the help of Exercise 12.

In particular, the topology of a non-discrete locally compact topol-
ogical field can be defined by an absolute value.

§ 4

1) _a) Construct a topological space consisting of four points which satisfies
axiom (Oy) but not axiom (Opy).

b) A topological space X which satisfies axiom (Oy) also satisfies
axiom (Opy) if and only if it has the following property : every closed
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subset of X 1s the intersection of its neighbourhoods. X is then uni.
formuzable and the completely regular space assoctated with X {§ 1,
Exercise 4) is normal

) If a topological space satisfies axioms (C) and (Ogy), it satisfies
{0,), and the associated completely regular space is compact.

2) Let X be a topological space which satisfies axiom (Oy).

a) Show that the relation R: {x; o J} # @ Dbetween two points
5,7 of X 1s cqunalent to the relation R’: “f(x} =7() for every
real-valued continuous function f on X *'; hence show that R isan
equivalence relation on X.

4) Show that the quotient space Y = X/R is normal and that, if ¢t
X —»Y 15 the canomcal mapping, every contiuous real-valued function
J on X can be written in the form f= g o ¢, where g isa contmuous
real-valued function on Y,

3) If X is a topological space, the following conditions arc equivalent:

) Every subspace of X satisfies axiom (O4).

5) Every open subspace of X satisfies axiom (Oq).

¢) Givenany twosubsets A and B of X suchthat AnE=BnA=o0,

there exist two disjomnt open sets U, V such that AcU and BeV.
A topological space X 15 said to be completely normal iF it 15 Hausdorfl

and satisfies these Every le space 1s il

normal A compact space need not be completely normal.

4) Every linearly ordered set X endawed with exther of the topologies
€,(X), 5.(X) (Chapter I, § 2, Exercise 5) 15 completely normal (If
A and B are two subsets of X such that AnB = BnA = g5, define
a neighbourhood V, of x for each xe A, and a neighbourhood W, of
» foreach yaB, suchthac VonW, = & forall <A andall y2B)

€ 5) Every Linearly ordered set X, endawed with the topology To(X)
{Chapter 1, § 2, Exercise 5), 15 completely normal  [Consider first the
case where X is compact, show with the help of Chapter IV, § 2,
Exercise 6 that every open set in X 1s the unton of mutually digjomnt
open ntervals; use this result to prove the proposition, by considenng (in
the notation of Exercise 3) the complement of the closed set AnB, and
then the complement of B, to pass to the general case, in which X s
arbitrary, use Chapter 1V, § 4, Exercise 7.]

¥ 6) Show that, in a normal space X, every subspace Y of X which
s a countable union of closed sets 15 normal. [Let A, B be two disjomt
closed subsets of Y, and suppose that Y is the wuon of an ascending

240



EXERCISES

sequence (Y,) of closed subsets of X. Define by induction two sequences
(U,), (V) of open subsets of X such that: (i) U,nY, and V,nY,
do not intersect; (i) U,nY, contains AnY, and all the sets U;nY;
for 1 <i<n; and V,nY, contains BnY, and all V;nY;, 1<i< n]

7) A topological space X is said to he perfectly normal if it is normal and
if each closed subset of X is a countable intersection of open sets (or,
equivalently, if each open subset of X is a countable union of closed
sets).

@) A Hausdorff space X is perfectly normal if and only if, given any
closed subset A of X, there exists a real-valued continuous function

f on X such that _71(0) = A [use the method of Exercise 16 a) of § 1].

b) Show that every perfectly normal space X is completely normal and
that every subspace of X is perfectly normal fuse Exercises g ) and 6].

¢) Every lower semi-continuous real-valued function on a perfectly normal
space is the upper envelope of a sequence of continuous functions (use the
method of § 2, no. 7, Proposition 11).

d) The compact space X obtained by adjoining a point at infinity to
an uncountable discrete space is completely normal but not perfectly
normal, and every subspace of X is paracompact.

@ 8) Show that the non-metrizable compact space X defined in Exercise
13 a) of § 2 is perfectly normal, and that the non-metrizable compact
space Y defined in Exercise 13 d) of § 2 is completely normal but not
perfectly normal.

9 9) a) Let X be a paracompact space in which every point has a
countable fundamental system of neighbourhoods, and let Y be a count-
ably compact normal space (§ 2, Exercise 14). Show that X XY is
normal. [Let A, B be two disjoint closed subsets of X X Y; for each
xeX, show that there is a neighbourhood U, of x in X and two
open sets V., W, in Y such that V,nW, =@ and such that for
each zeU, we have A(z)cV, and B(z) cW,; to prove this, argue
by contradiction. Let (T});er be a locally finite open covering of X,
finer than the covering (U,)sex, and let (/) be a partition of unity
subordinate to (T)); for each Xel, let x, be such that Tye U,
and let g, be a continuous mapping of Y into [o, 1] which is equal to

0 on V, and to 1 on W,; consider the function ) £(x) g1(J)
on X x Y.j )

5 Let Y =[a, [ be the locally compact space defined in Chapter I,
§ 9 .E§erc1sc 12, and let X = [q, b] be the compact space obtained by
adjoining a point at infinity to Y. Y is normal (Exercise 4) and count-
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ably compact (§ 2, Excrcise 1 5), but the product XXY is not normal
(use Chapter I, § 4, Exercise 4).

€ 10) Let L be an uncountable set and let X denote the completely
r:gular space NY (N carrying the discrete topology). Let A (resp. B)
be the set of all x = (x(\))er m X such that, for each integer k+£o
(resp. k# 1) thesctof AeL suchthat x(1) =k hasatmostone element,
a) Show that A and B are disjoint closed subsets of X.
5) Let U, V be two open subsets of X such that AcU and BeV,
Let & denote the st of all elementary scis in X (Chapter 1, § 4, no. 1)
whose projections which are distinct from N consist of a single element,
for cack Wed, let H(W) be the setof all AeL such that pr(W)
consists of a single element.  Show that there is a sequence (x,) of pomts
of A, asequence (U,) ofsetsof &, asequence (h,) ofdistinct elements
of L and a strictly increasing sequence (m(n))aex Of integers with the
following propertics: (1) U,cU is a neighbourhood of x,; (i) H(U,)
is the set of all %, such that k < m{n); (i) #(2) =0 for each rel,
and for cach n > 6, x,(\) = & if k<man—1) and x,0) =0 for all
other deL.
¢) Let yeB be the point such that 3(0;) =& for each integer k and
() =1 forall AeL other than the X, Let VooV beaset of ¢
‘which contains y, and let n be an nteger such that e L—H{V;)
forall k> m(n). Show that U, n Ve 0, and deduce that X 15 not
normal,

11) Deduce from Exercise 10 that:

a) If a product [] X, of non-cmpty HausdorfT spaces is normal, then
X, s couniably csx:'npzu:t (§ 2, Exercise 14) for all save a countable set of
indices,

) Aproduct J X, of non-empty metrizable spaces is normalsf and only
of X, is compact for all but a countable set of indices; and the product
space J] X, 1s then paracompact.

\ex

12) Let X, Y be two Hausdorff spaces.

a) Suppose that there 1s a closed set A in X which is not a countable
intersection of open sets, and that there 15 a countably infinite subset B
of Y which 1s not closed Let 6<B-~—B, and consider the subsets
C=AxB, D=(X—A)x ,bf m XXY. Showthat CnD=CnD=¢,
but that there 1s no paxr U, V of open subsets of XX Y such that Cc U,
DcVand UnV =
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b) If XXY is completely normal then either (i) one of the spaces X, Y
is perfectly normal, or (ii) one of the spaces X, Y has the property that
every countably infinite subset is closed (cf. § 5, Exercise 16).

¢) Let X =[a, 5] be an uncountable well-ordered set such that [q, &
is countable for each x < b. Endow X with the topology in which

x} is open for each x< b and the intervals {x, §] (x<?¥) form a
fundamental system of neighbourhoods of 5. Show that XXX is
completely normal but that X is not perfectly normal.

d) Show that if X is a compact space such that X XX XX is completely
normal, then X is metrizable (use Theorem 1 of § 2, no. 4).

€ 13) Let (X\),ex be an uncountable family of Hausdorff topological
spaces, each containing more than one point. Foreach ve1, let g, and

b, be two distinct points of X,. Let X be the product space II X

tEX
and let Y be the subspace of X consisting of these points (x,),g such
that x, = g, for all but a countable set of indices ; andlet & be the point
b, of X.

" In the product space X XY, let A be the diagonal of Y XY and let
B be the set {b; X Y. Show that A and B are closed sets and that
there is no pair of open sets U, V in X XY such that AcU, BeV,
and UnV =g. [Let U, V be two open sets such that AcU and
BcV; show that there is an increasing sequence (H,) of countable
subsets of I, such thatif x, denotes the point of Y for which each coor-
dinate with index e H, is equal to §,, and each coordinate with index
1& H, is equal to a,, then the point (x,4, %,) belongs to V for each
integer n; prove that the sequence (#p4, ;) tends to a point of A,
and deduce that UnV # @.]

Hence construct an example of a connected topological ring which
is not normal.

Deduce also that the product of an uncountable family of Hausdorff
topological spaces, each of which has at least two distinct points, cannot be

completely normal (use the result above when each X, is a discrete space
of two points).

14) Let X be a non-normal Hausdorff space, andlet A, B be two disjoint
closed subsets of X such that there is no pair of disjoint open sets U, V
in X satisfying the relations AcU and BcV. Let R be the equiva-
lence relation on X whose equivalence classes are the set A, theset B,
and the sets {x} where xe(j(AuB). Show that the graph of R is
closed in X xX ‘and that the relation R is closed, but that the quotient
space X/R is not Hausdorff (cf. Chapter I, § 8, no. 3, Proposition 8).
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15) @) Let X bea normal spaceandlet R bea closed equivalence relation
on X. Show that the quotient space X/R is normal (use Proposition 10
of Chapter I, § 5, no. 4).

5) Let X be a lacally compact e-compact space, and let R be an equiv-
alence relation on X whose graph s closed in XXX. Show that
X/R 1 normal (cf. Chapter I, § 10, Exercise 19).

¢) Let X be the complement in R of the set of pomnts of the form 1fn,
where 7 1s any nteger except 0 or 1. Consider the equivalence
relaton R on the metrizable space X for which the equivalence class
of each xe X, which 1s not an integer, consists of the pomts x and 1fx,
and the equivalence class of each integer consists of that integer alone.
Show that R 1s open and that the graph of R 1s closed in XXX, but
that X/R 1s not regular.

16) For each covering $ of a topological space X, let Vg denote the
union of all the sets U X U such that Uefl. A covering R of X
1s said to be even of there 1s a neighbourhood W of the diagonal A of
XxX such that the covering {(W(x))sex is finer than & 8¢ is sard to be
Y

dinsible of there 15 a neighbourhood W of A in XXX such that W e Vg,
) Show that every even open covering of X 1s dwisible [ef. Exercise
19 8)].

5) Let ® be an open coverng of X such that there exists a locally
firute closed covering & of X which 1s finer than R.  Show that & s
even (For every sct Ae@, let U, bea sct of R which contams A,
andlet V, betheumonn XxX of UyxU, and (X —A)x (X —A);
consider the set W = n Vi)

1. 17) a) I cvery finite open covering of a topological space X s divisble
{Exerasse 16), then X satisfies Axiom (O%)  (consider a binary open
covering of X, 1¢, one formed by two subsets of X). Conversely, if
X sausfies (Of), then every fimte open covering of X is even {wse
Theorem g of no 3, which 15 vahd provided that X satisfies (O}),
1o reduce to the case of a binary covering, and then again to deal with this
casc] As R runs through the set of finite open coverings of X, (he
sets Vg form a fi 1 system of of a

X, compatible with the topology c\f X, this umformuty is called the
“ uniformaty of fimte open coverings

) Suppose that X 1s normal. Show that the uniformuty U of fimte
open coverings 1s the same as the coarsest uniformity U’ for which all
continuous mappmgs of X into [o, 1] are umformly continuous [re.
the uniformity 1nduced on X by that of its Stone-Cech compactification
(§ 1, Exeraise 7)) [To show that 9L 1s coarser than 41/, use Theorem 3
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of no. 3 and Axiom (Oy) in order to construct a finite family of pseudo-
metrics on X of the form (x, ») = | f(¥) —f ()], in such a way that
an entourage of the uniformity defined by these pseudometrics is contained
in an entourage of the uniformity U]J.

¢) Let X be a normal space and let X beits Stone-Cech compactifica-
tion. For each closed subset Y of X, let Y be the closure of Y in
X. Show that the continuous mapping of BY into Y which extends
the identity mapping of Y (BY being the Stone-Cech compactification
of Y) is a homeomorphism [either use 4) or else Theorem 2 and the
universal property of 8Y]. If Y and Z are two closed subsets of X,
show that YnZ=YnZ in X (if ¥,¢YnZ and x,eY, consider
a closed neighbourhood V of x, in fX, such that VnY and Z are
disjoint closed subsets of X).

§ 18) A family (A,) of subsets of a topological space X is said to be
discrete if, for each xe X, there is a neighbourhood of x which meets
at most one set A, of the family. A Hausdorff space X is said to be
collectively normal if, for each discrete family (A,) of closed subsets of
X, there is a family (U,) of mutually disjoint open subsets of X such
that A,cU, for each index «. Every collectively normal space is
normal.

a) Bvery open covering of a completely regular space X 1is divisible
(Exercise 16) if and only if the set of neighbourhoods of the diagonal A
in XXX is the filter of entourages of the universal uniformity of X (§ 1,
Exercise 5). Show that if this condition is satisfied, then X is collectively
normal [if (A,) is a discrete family of closed subsets of X, consider the

open covering (V,), where V, =X — U Ag for each «].
0.

b) Let Y = [a, b[ be the locally compact space defined in Chapter I,
§ 9, Exercise 12; let Y, be theset Y endowed with the discrete topology,
andlet Z be theset Y, u { b}, where the points of Y, are open sets, and
the sets ]x, 5[, where x runs through Y,, from a fondamental system of
neighbourhoods of 4. Show that the space X = Y X Z is collectively
normal (recall that no infinite family of subsets of Y can be discrete,
and use Exercise 4). Let $t be the open covering of X consisting
of Y X Y, and the products [a, x] X ]x, 5] (where x < b); show
that $ is not divisible and that consequently the set of neighbourhoods
of the diagonal A in X x X is not the filter of entourages of a uni-
formity on X [use Exercise 12 a) of Chapter 1, § g].

q 19) a) A regular space X is paracompact if and only if every open
covering of X is even (Exercise 16). [To prove necessity, use Lemma 5
and Exercise 16 4); for sufficiency, use Exercise 16 a) of § 4, Proposition 2
of§ 1, no. 4, and Theorem 4 of § 4, no. 5].
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5) Give an example of a diisible non-even covering of a collectively nor-
mal, non-paracompact space [use ) and Chapter I1, § 4, Exercise 4}.

¢) Show that a paracompact space X is complete with respect to its
universal uniformity (§ 1, Excrcise 5). [Ifa Cauchy filter § with respect
to this uniformity has no cluster point, then every point xeX has an
open neighbourhood 'V, which does not meet at Jeast one sct of §; use
4) and Exercisc 18 a).]

20) @) A regular space X is paracompact if, for each open covering
R of X, there s a sequence {S,) such that & = |J &, isan open cover-

ing of X which refines & and such that each &, s a locally finite
farmly (cf. Lemmas 4, 5 and 6).

5) Deduce from ) that in a space every union
of closed sets 15 a paracompact subspace (cf. § 5, Exercise 15).

) In a regular space X, let § be a locally finite famuly of closed sets
each of which 1s a paracompact subspace of X. Show that the union of
the sets of § 1s a paracompact subspace of X (use Lemma 6 of no. 5;
of. § 5, Exercise 15).

d) Show that 1f X 1s a paracompact space and Y is a regular space
which 15 a countable union of compact sets, then X X Y is paracorapact
[embed Y mats Stone-Cech compactification and use 4); cf. § 5, Exercise
16}

€ 21) ) Let X be a paracompact space and let R be a closed equiva«
lence relation on X such that every equivalence class with respect to R
15 compact. Show that X/R s paracompact [use Exercise 154},
‘Theorem § of no 3, and Lemma 6 of no 5, cf. Exercise 15¢)]

5) Let X be a Hausdorff space and let R be a closed equivalence rela-
tionon X such that every equivalence class with respect to R is compact.
Show that »f X/R 15 paracompact, then so 13 X (use the argument of
Chapter 1, § 5, no. 10, Proposition 17)

¢} Let Y be alocally compact but not paracompact space (cf. Chapter I,
§ 9, Exercise 12), and let Y, be the one-point compactficationof ¥  Let
X be the topological sum of Y and Y, andlet R be the equivalence
relation on X which identifies each pomt of Y with its canomical image
m Y, Therelation R 1s open, cvery equivalence class mod R containy
at most two points, and X/R 1s homeomorphic to ¥,, hence is compact.

§ 22) Aregularspace X 1s metrizable ifand only if there exists a sequence
(8. of locally fiite families of open subsets of X such that B =J®8,

15 a base of the topology of X. [To show that the candition is necessary,
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use Lemma 3 of no. 5. To show that it is sufficient, show first that X is
paracompact by using Lemmas 4, 5 and 6. For each pair of integers
m, n and each UeB,, let U’ be the union of the sets V B, such that

VcU. Show that U'cU. Let fy: X—>[o, 1] be a continuous
mapping which is equal to 0 on X—TU and to 1 on U, and let

Ao, ) teZs‘B | fo(®) —fu(»)|; show that the pseudometrics dp,

define the topolog';r of X.] (“ Theorem of Nagata-Smirnov.””) In particular,
every regular space with a countable base is metrizable.

23) a) Every regular Lindeldf space (Chapter I, § 9, Exercise 15) is
paracompact [use Exercise 20 a4)].

b) The product of a Lindeldf space and a compact space is a Lindelof
space (argue as in the proof of Proposition 17 of Chapter I, § 9, no. 10;
cf. § 5, Exercise 16).

Y 24) a) Let X be a metrizable space and let R be a closed equivalence
relation on X, all of whose equivalence classes are compact. Show
that X/R is metrizable. [Apply the Nagata-Smirnov theorem (Exer-
cise 22) by proving the analogue of Lemma 3 of no. 5 for open coverings
of X formed of sets which are saturated with respect to R; let ¥,, denote
the largest saturated open set contained in the set of all xe X such that
dx, X—TU,) > 2™, let F,, denote the saturation of the set of all
xeX such that d(x, X — U,) > 2™ and let G,, denote the set of all
xeF,, suchthat x¢Fyyy g forall g <]

b) Extend the result of a) to the case in which the relation R is closed
and every point of X/R has a countable fundamental system of neighbour-
hoods {use Exercise 20 b) of § 2].

¢) Le't X be a topological space and let (F,) be a locally finite closed
covering of X, Show that if each of the subspaces F, is metrizable

then X is metrizable (consider X as a quotient space of the topological
sum of the F,).

d) A paracompact space, in which every point has a metrizable neighbour-
hood, is metrizable [apply ¢); cf. Chapter I, § 9, Exercise 12 ), also Chapter
IX, § 4, Exercise 25 d), § 2, Exercise 15 and § 5, Exercise 1 5]

25) A Hausdorff space X is said to be metacompact if, given any open

covering R of X, there is a point-finite open covering of X which
refines R.

a) Show .that every closed subspace of 2 metacompact space is metacompact,
and that if every open subspace of 2 metacompact space X is metacompact,
then every subspace of X is metacompact.
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5) Let X be a HausdorfT space and Iet R be a closed equivalence rela
tion on X, all of whose equivalence classes are compact. Show that 1f
X/R 15 then X 1s fargue as m Exercise 21 8)].

¢) Show that a topological space which is both metacompact and counta-
bly compact (§ 2, Exercise 14) is compact. [Use Zorn's lemma to show
that every point-finite open covering contains a minimal open covering,
and use § 2, Exercise 14 a) ]

d) The locally compact, completely normal space X = [4, 8 defined
in Chapter I, § g, Exercise 12 15 not metacompact ().

¢) Let ¥ be a metrizable space and let A be a subset of Y such that
both A and its complement are dense 1n Y. Let X denote the non-
regular space obtained by endowing Y with the topology generated by
the open sets of Y and the set A. Show that X 15 metacompact.
(For cach xeX, consider a neigh 4 V. of x na
set of a given open covering % of X, such that V,cA if xeA, and
such that V. 1s a neighbourhood of # 1 Y if xeA. Note that the
subspace A of X 15 paracompact, and that the union of the V, for
x& A is also paracompact.)

26) o) Show that every pseudo-compact normal space X (§ 1, Exercisc 22)
is countably compact (§ 2, Exercise 14). [Show thataf (x,) 15a sequence
of distinet pomnts of X with no cluster point, then there is a continuous
finite teal-valued function f on X such that £ (x,) = n forall n.]

8) Let ¥ =[a, b be the locally compact space defined in Chapter I,
§ 9, Exercise 12, and let Y, be the compact space obtained by adjoining
t Y a pomnt at mfimty (which may be identificd with ). Let ¢ be
the smallest element of Y such that {q, <[ 1s infinite, and let Z be the
compact subspace [, ¢} of ¥ Let X be the complement of the point
(5, ¢) m the compact product space Y, X Z Show that X 1 locally
compact but not normal [cf Exercise 12 )], that X 1s pseudo-compact
but not countably compact Gave an example of a closed subspace of X
which 1s not pseudo-compact  Also, give an example of a lower semi-
continuous functien on X which does not attain its greatest lower
bound [cf § 2, Exercise 142)]

27) A topological space X 1s saxd t0 be mmy paracompact if every point
of X has a closed d which s subspace of X.

(*) There are spaces which are perfectly normal and collectsvely normal but
not metacompact, and spaces which are perfectly normal and meracompact but
ot callectvely normal (and therefore not paracompact), cf. E Micuaex, Can.
Journ. of Math 7 (1955), Pp. 275-279
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a) Show that a locally paracompact space is completely regular.

§) In the compact space Y, X Z defined in Exercise 26 5), let H be
the complement of the set of points (b, y) where » <¢. Show that H
is normal but not locally paracompact [cf. Chapter I, § 9, Exercise 12 5)].

¢) Let X be a topological space and let ® be a covering of X by
closed sets which are paracompact subspaces of X, such thateach Ae®
has a neighbourhood in X which belongs to ®. Let X’ be the set
which is the sum of X and a point w»; define a topology on X' by
taking as a fundamental system of neighbourhoods of x€X in X' the
set of all neighbourhoods of # in X, and as a fundamental system of
neighbourhoods of w the filter base generated by the complements in
X' of the sets of @ [cf. Exercise 20 ¢)]. Show that X’ is paracompact.

§ 28) Let X be a metric space, let d be the metric on X, let A be
a closed subset of X and let f: A -»[r, 2] be a continuous real-valued
function. Show that the real-valued function ¢ on X which is such
that g(x) = f(x) if xe A, and

1 .
g(x) = i A yl;lg (f(»)d(x »))

if xe(A, is continuous on X. Hence give a proof of Theorem 2 for
metric spaces.

29) Let X be a Hausdorff' topological space. Then X is normal
if and only if, for cach closed subset A of X and each real-valued func-
tion f defined on A and continuous with respect to the induced topol-
ogy, there exists a continuous pseudometric d on X with respect to
which f is uniformly continuous. (To show that the condition is sufficient,
show that every real-valued function f defined on a closed subset A,
and continuous with respect to the induced topology, can be extended to a

contipuous function on X; for this, consider the Hausdorff space X
associated with the uniformity defined on X by the pseudometric d.)

30) Let X be a normal space and let g (resp. f) be an upper (resp.
lower) semi-continuous function on X, suchthat g <f Show that there
Is a continuous real-valued function 2 on X such that g< A <f.
[Reduce to the case where f and g take their values in [o, 1]. For
each dyadic number reo, 1], let F(r) [resp. G(r)] be the set of all
x*eX such that f(x) <r (resp. g(x) <7). Define by induction a
farml)_r of opensets U(r) (where r runs through the set of dyadic numbers
contained in [o, 1]) such that when r<7 we have F(r) cU(),
U() cU(') and UQ) < G('), by imitating the proof of Theorem 1
of no. 1; then complete the proof as in Theorem 1.]
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§s

1) a) If A is a subset of a topological space X, show that the following
statements are equivalent: a) the frontier of A is nowhere dense;
8) A 15 the umon of an open set and a nowhere dense set; y) A is the
difference between a closed set and a nowhere dense set.
5) Show that if a subset A of X is such that, for cach point xe4,
there is a neighbourhood V of # in X such that VnA is nowhere
densein X, then A is nowhere densein X.
2) Asubset A of a topological space X is sald to be 2 thin set if, for each
perfectset PeX, P A 1s nowhere densein P,
a) Every fimte union of thin sets 1s thin,
5) The frontier of a thin set 15 nowhere dense.
¢) There 1s a largest perfect set in X whose complement is thin.
€ 3) Let A be a subset of a topological space X, and let D(A) denote
the set of all xeX such that, for each neighbourhood V of x, the sct
VA is not meagre. D(A) is contamed mn A,
4) If B isasubsetof X suchthat D(B) = @, then

D(AuB) = D(A)
for every subset A of X.
6) D(A)=¢ ifandonlysf A is meagre. [Begin by showmng that if
(U, 15 a famuly of patrwise disjoint open subsets of X and i, for each 1,
V, 1s a nowhere dense set (relauve to X) contained n U, then
UV, is nowhere dense  Then consider a maximial set %t of apen subsets
of X, each pawr of which are disjomt, and such that Au U is meagre
for each UeiM; the existence of such a maximal set 1s established by
Zor’s lemma. Show that if D(A) =, then An(W is nowherc
dense, where W 15 the union of the sets of 2%, and hence show that A
15 meagre.]
¢) Show that D(A) 1s closed and that An(D(A) 1s meagre for all
AcX [show, with the help of 5), that AnfD(A) is meagre relative
to the open subspace ([D(A)]
d) Show that D(A) 1s equal to the closure of its intesior. [If D'(A) is the
closure of the intenor of D(A), show that An{D'(A) is meagre, by
observing that this set 1s the unzon of

AnfD(A)  and  AnD(A)n[D'(A)]
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4) Let X and Y be two topological spaces and let A (resp. B) be a
subset of X (resp. Y). _
a) A x B is nowhere dense (resp. perfect) in X X Y if and only if
one of the two sets A, B is nowhere dense (resp. A and B are closed
and one of them is perfect).

b) Ax B isthinin X XY ifand onlyif A and B are both thin sets.

€ 5) a) Let X and Y be two topological spaces andlet A be a nowhere
dense subset of X X Y. If the topology of Y has a countable base,
show that the set of all xeX such that the section An ({ x} X Y)
of A at x is not nowhere dense relative to {x} X Y is a meagre set
in X (if U is any non-empty open set in Y, show that the set of all
reX such that {x} X U is contained in the closure of the section of
A at x isa nowhere dense setin X).

b) Show by an example that the result of @) can be false if the topology
of Y does not have a countable base (take X to be a Hausdorff space
with no isolated points and Y to be theset X with the discrete topology;
and take A to be the diagonal of X X Y).

¢) If B, G are subsets of X, Y respectively and if one of B, C is meagre
(in X, Y respectively), then B X C is meagre in X XY. Conversely,
if B X C ismeagrein X X Y and if the topology of either X or Y
has a countable base, then one of the sets B, C is meagre.

d) Deduce from ¢) that if the topology of one of the spaces X, Y has

a countable base, then D(B x G) = D(B) X D(C) in the notation of
Exercise 3.

6) Aset A in a topological space X is said to be almost open if there is
anopenset U in X such that both Unf}A and An{jU are meagre
sets.

a) The complement of an almost open set is almost open.
b) Any countable union of almost open sets is almost open.
¢) Show that the following statements are equivalent: «) A is almost

open; 8) there is a meagre subset M of X such that An GM is both
open and closed in the subspace X — M; v) there is aset Gc A which
Is a countable intersection of open sets in X, such that A— G is meagre
in X; 3) there is a set Fo A which is a countable union of closed sets
in X, such that F— A is meagre in X; ¢) the set D(A) n D(X — A)
(Exercise 3) is nowhere dense in X; 6) the set D(A) n fA is meagre in
X. [Use Exercises 3 a) and 34) to show that o) === () =~ 8) = a).]
d) l.,et X, Y be two topological spaces and suppose that the topology
of either X or Y has a countable base. Then a subset of X X ¥
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of the form A X B is almost open if and only if cither both A and B
are almost open or one of them is meagre [use {) of ¢)].

7) A topological space X is said to be non-meagre if it is not meagre rela-
ave to itselfl

) X 18 non-meagre if and only if every countable family of dense open
setsin X has a non-empty intersection.

4) In a non-meagre space, the complement of every meagre sct is a non.
meagre subspace.

8) Let X bea topological space in which there is a non-cmpty open subset
A which is a non-meagre subspace. Show that X is non-meagre and
that A 12 not a meagre set relatne to X,

9) Let X be the subspace of R? which is the union of Q? and the line
y=o0. Show that X is meagre relative toitsell. Deduce thata topolog-
1cal space can have non-meagre subspaces without being non-meagre
atself,

10) Show that every regular pscudo-compact space (§ 1,
Exercise 21) 15 a Baire space (argue as m Theorem 1).

11) If X 15 a Baire spacc with no 1solated points, show that every point
of X 15 a pomt of condensation of X (Chapter I, § g, Exercise 17).

€ 12) A topological space X 13 said ta be fotally non-meagre if every non-

Smpty closed subspace of X is nom-meagre. A locally compact space

15 totally non-meagre, and 013 a complete metric space.

a) Show that a totally non-meagre regular spal:e 18 a Baire space.

5 In an totally <, & b

closed set 1s thun (Exercise 2) and hence has a( least one lSOlaKed point.

¢) In a totally non-meagre space X, every subspace A which is the
ofa of open sets 10 X 15 totally non-

meagre (if F isasubset of A whichisclosedin A, let F be the closure

of F in X, andshow that Fn [jF is meagre relative to F).

d) If every point of a topological space X has a neighbourhood which

15 a totally non-meagre subspace, then X 1s totally non-meagre.

€ 13) Let X be a totally non-meagre space which is connected and
locally connected. Show that X cannot be the union of an infinite
sequence (F,) of non- cmpty mutually dxsjomt closed sets.  (Let H be
the union of the frontiers H, of the F, in X; show that H is closed
m X and that cachsel H, i) nowhere dense in H~ to tslabhsh the latter
point, consider a fund ! system of ds of a
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€ 20) Let f bea homeomorphism of a subset A of a complete metric
space X onto a subset A’ of a complete metric space X'. Show that
there exists an extension f of f to aset B which is a countable intersec-
tion of open sets in X, such that f is a homeomorphism of B onto
a set B’ which is a countable intersection of open sets in X' (apply
Exercise 19 to f and to the inverse homeomorphism g).

€ 21) o) Let (f;) beasequence of continuous mappings of a topological
space X into a perfectly normal space Y (§ 4, Exercise 8) such that,
for each xeX, the sequence (f,(x)) has a limit f(x) in Y. Show

—1 3 3 3
that, for every closed subset S of Y, A= f(S) is a countableintersection
of open sets. [There exists a decreasing sequence (U,) of open sets in

Y such that S = nﬁn; note that f(x)eS if and only if, for each

integer n >0, there exists an integer k> o such that f..(x) €U,.]
Deduce that A — A is meagre in X.

&) Deduce from a) that if we suppose in addition that Y is a metrizable
space of countable type, then the set of all xeX such that f is not
continuous at x is meagre. [If (V) is a base of the topology of Y

and if S, =Y—V, and A, = _—fl(S,,), show that x must belong to
one of the sets A, — A,.]

22) a) Let X be a Baire space, Y a metric space, (f,) a sequence
of continuous mappings of X into Y such that, for each xeX, the
sequence (f,(x)) has a limit f(x) in Y. Then the set of all points
xeX at which f is not continuous is meagre. [Prove that, for each
integer 7 > o, the set of all points x e X at which the oscillation w(x;f)
of fis < 1/n contains a dense open set; for this, if G, denotes the set
of xeX for which the distance from f,(x) to f,(x) is < 1/en for all

q = p, show that the union of the interiors of the sets G, is a dense open
set.]

b) Let K be the compact interval [o, 1] in R. Give an example of a

sequence of continuous mappings f, of K into the compact space KK

such that lim f,(x) = f(x) exists for each xeX, but such that f
n>w0

is not continuous at any point of K.

ﬂ.23) Let X be a topological space, and let Y, Z be two metric spaces,
with metrics d, d’ respectively. Let f: X X Y—>Z be a mapping
such that y — f(x4, ») is continuous on Y for each x,eX and such
that x — f (x, ») is continuous on X for each yoeY.

a) For each real number ¢ > 0, each beY and each xeX, let
&(x; 5, ) denote the least upper bound of the numbers o >0 such that
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b) Deduce from a) that there is a dense subset M of X/R which is a
countable intersection of open sets in X/R and is such that for each

xe$(M) the image under o of every neighbourhood of » in X isa
neighbourhood of ¢(¥) in X/R (use Theorem 1).

€ 27) a) Let G be a topological group, and let A be an almost open
set (Exercise 6) in G. Show that if A is not meagre then AA~! isa
neighbourhood of the identity element in G. [Note first that G is a
Baire space by virtue of Exercise 3. Let A* be the union of all open

sets UcG suchthat Un (A is meagre. Show that A* is not empty
and that if xeG is such that xA* meets A*, then xA meets A.
Hence show that AA-15 A*(A%¥)-1]

b} Deduce from a) that an almost open subgroup of a topological group
G is either meagre or else open (and closed). In particular, a countable
topological group which is a Hausdorff Baire space is discrete.

¢) Show that there exist subgroups H of the topological group R such
that R/H is countably infinite (use a Hamel base); such a subgroup is
dense but not meagre nor almost open.

d) Let G be a metrizable topological group whose left and right uni-
formities coincide. Show that if there exists a metric on G, compatible
with the topology of G, and with respect to which G is a complete
metric space, then G is a complete metrizable group [use ) ; § 3, Exercise
2; and § 2, Exercise 24].

§ 28) Let G, G’ be two topological groups. Show that every continuous
homomorphism f of G onto G’ is a strict morphism in each of the following
two cases :

a) G is locally compact and s-compact, and G’ is non-meagre [show
that there is a relatively compact openset U in G such that the interior
of £(U) is not empty; deduce that for each compact neighbourhcod
V' of the identity element of G, the interior of f(V) is not empty,
and then apply Chapter ITI, § 2, Exercise 18].

8) G is complete, the topology of G has a countable base, and G’ is
non-meagre. [By using the fact that, for each neighbourhood U of the
identity element ¢ of G, G is the union of a sequence of sets of the form
%U, show that for each open set A in G there is an open set A’ in
G’ which contains f(A) and is such that f(A) is dense in A’. Then
consider a fundamental system (U,) of symmetric neighbourhoods
of ¢ in G, such that U, cU,, and show that f (U,) contains the
openset Upyy: to do this, take any point o' € Uby, and then construct
by induction a sequence (b,) of points of G such that b,&Up, and
such that f(b,b,...5,) tends to a'; note that, if «’ e Uj, then there
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exists ye U, such that f()€x'Ul,] The hypothesis that G hasa
countable base 1s essential, as is shown by the example where G’ 15 the
group R with the topology of the realline, G is the group R with the
discrete topology and f: G — G’ is the identity mapping.

2g) Let G be a locally compact, g-compact, topological group, or else
a complete metrizable group whose topology has a countable base. Let
H be a closed normal subgroup of G and let A be a closed subgroup
of G. Then the quoticnt group Af(AnH) 1s isomorphic to AH/H
1f and only if AH is a closed subgroup of G [to show that the condition
is necessary, notc that AJ(AnH) is complete, by Chapter III, § 4,
no. 6, Proposition 13, and Chapter 1X, § 3, no. 1, Proposition 4; to show
that the condation is sufficient, use Lxercise 28].

¥ 30} Let G be a group and let d be a metric on G such that, with
respect to the topology G defined by d on G, the mappings y~»x,y
and y—yz, of G 1nto G arc continuous for each x5 G.

a) Show thatif G is complete with respect to the topology 6, then the
mapping (x,y) — xy 1s continuous on G X G (use Exercise 23).

5) Suppose 1n addition that § has a countable basc. Show that the
mapping x —x~} 15 then continuous on G, i.c., that the topology ©
1s compatible with the group structure of G. [In the group G X G,
endowed with the topology © X G, consider the set F of all points
(% »%) where xeG, F 1sclosedin G X G, and the law of composition
(%25, 571) = (27,5 "%~ dcfines a group structure on F; show that
the topology 1nduced on F by that of G x G is compatible wath this
group structure by using a). ‘Then prove, by arguing as in Exercisc 28 8),
that the projection pr; of F onta G is bicontinuous.]

§6
1) g) Every ds ional space 1s ly regular. The non-
normal locally compact spaces defined 1n § 4, Exercise 26 ) and § 5, Exer-

cise 15 are zero-dimensional

8) A topologicat space X 13 said to be strongly zero-dimensional of for each
closed subset A of X and each neighbourhood U of A, there is an
open and closed naighbourhood of A contamed m U. Every strongly
zero-dimensional space 1s normal A normal space s strongly zero-
cimensional if and only if 1ts Stone-Cech compacufication (§ 1, Exercise 7)
15 totally disconnected [use Exercise 17 ¢} of § 4]

¢) Let X be a strongly zero-umensional HausdorfT space and let (U.)
be an mereasing sequence of non-empty open setsin X. Show that there
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exists a sequence (Gj) of mutually disjoint sets which are both open
and cdosed in X, such that G,<U, for each n, and U G, = U U,
n

n
(define the G, by induction). If, moreover, X is perfectly normal
(§ 4, Exercise 8), every open set in X is the union of a countable family
of mutually disjoint sets which are both open and closed in X.

d) Let X be a normal space which is the union of a sequence (A;)
of strongly zero-dimensional subspaces. Show that X is strongly zero-
dimensional. [Let B, G be two disjoint closed subsets of X; define
by induction two increasing sequences (Gy), (H,) of opensetsin X such
that G,nH, % @, A,cG,uH, BnA,cG, CnA,cH,]

€ 2) @) Let X be a metrizable space. Show that the following proper-
ties are equivalent :

«) There exists a metric d compatible with the topology of X, with
respect to which X is an ultrametric space (§ 2, Exercise 4).

) X is strongly zero-dimensional.
y) There exists a sequence (8B,) of locally finite families of open and

closed subsets of X such that B = U 8B, is a base for the topology of
X n

[To show that «) implies ), note that if F is a closed set in an
ultrametric space X, then thesetofall xe X such that d(x, F) =p>0
is both open and closed in X. To show that ) implies y), use Lemma g
of § 4, no. 5 and Exercise 1 ¢) of § 6. Finally, to establish that ~) implies «),
reduce to the case where B, = (U, )en, and if £y is the character-
istic function of U,;, consider the mapping x — f(x) = f(x) of
X into the product group GN*L, where G = Z/2Z (identified with the
set {0, 1 ;), for each neN, let G, be the subgroup of G consisting
of the elements whose (k, %) coordinates are zero forall heL and
all k<n; show that if G is endowed with the group topology for
which (G,) is a fundamental system of neighbourhoods of o, then f is
a homeomorphism of X onto a subspace of G; and complete the proof
by noting that the topology of G can be defined by an invariant metric
with respect to which G is an ultrametric space.]

b) Deduce from a) that every zero-dimensional Hausdorff space X which
has a countable base is a strongly zero-dimensional metrizable space.
(Show by using § 2, no. 8, Proposition 13 that there exists a countable
base formed of sets which are both open and closed.) Furthermore, X
Is then homeomorphic to a subspace of Cantor’s triadic set K (cf.
§ 2, Exercise 12 (*).)

* H . . » .
( )_ It Is not known whether every zero-dimensional metrizable space is strongly
zero-dimensional.
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€] 3) 4) Show that every totally disconnected subspace of R is zero-

dimensional.

5) Let K be Cantor’s triadic set; every xeK can be written uniquely

in the form x = D 23%, where (m)ypy is a strictly increasing (finite

X

or nfinite) sequence of integers > o (Chapter TV, § 8, Exercise g); and

define f(x) to be the number 2(— 1y4f2% Let G be the graph of

the funcnon Sfin KXR. Show t.hat the metrizable space G is totally
d but is not [Note that the intersection

of G and the line {o} X R contains an open interval containing the

pomnt (o, 0).]

4) Let X be a metrizable space.

4) Show that the set of Borel subsets of X is the smallest subset § of
$P(X) which contains all closed subsets of X and is such that countable
umons and countable intersections of sets of § belong to §, (Consider
the subset @ of § consisting ofall Ae§ such that X — A ef.)

5) Show that the set of Borel subsets of X 1s the smallest subset § of
$(X) which contams all open subsets of X and is such that every
countable intersection of sets of § belongs to §, and every union of 2
sequence of mutually dijomnt sets of § belongs to § (same method).

¢) Every ordinal @ _can be wntten umquely in the form a=wd -+ 1
where m<w (Set Theory, Chapter IIL, § 2, Exercise 15); « 15 sad
to be even or odd according as n 1s even or odd For every countable
ordinal o, we define by transfinite induction sets of subsets §(X),
Ga(X) (or simply g, @) as follows: §, (resp. @) is the set of all
closed (resp_open) subsets of X; if & 1sevenand >o, ¥, (resp. G}
15 the set of all subsets of X which are countable intersections {resp.
countable unions) of sets belonging to U % (resp U G5 of 2
£ <z

s odd, then §, (resp G,) 15 the set of all subsets of X which are
countable unions (resp. countable mtersectrons) of sets belonging to
Ut\'g (resp. U ). Show that the union of the §; (resp. @) is
e set of Borel sabsets of X [use 2)]. Deduce thatif X 15 of countable
type, the set of Borel subsets of X has power at most equal to the power
of the continuum

d) The relanon Ae§, 1 equivalent to [Ae@, Every finte umon
(xesp. intersection) of sets of §, (resp. ) belongsto §, {resp. Ga)-

We) have §;CBam 1 Os; 2nd O, € Baey 0 Gauy (use transfinite induct-
10m,
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¢) Let f be a continuous mapping—c;f X into a metrizable space Y.
Show that J §x(Y)) €Fa(X) and f (§4(Y)) € G(X).

f)If X and Y are two metrizable spaces and A e F,(X), B e §,(Y),
[resp. Ae@y(X), Be@y(Y)], then AXBef,X xY) [resp.
AxBe@ (X x Y)] ‘
g) Let (X,) be a sequence of metrizable spaces. Show that if A,
isa Borel set in X, for each n, then H A, is a Borel set in H .

n n

k) Let « > 0 be an even (resp. odd) countable ordinal and let (A,)
be a countable covering of X formed of sets belonging to @, (resp. ).
Show that there is a partition (B;) of X such that B,cA, and
B,ef, n G, foreach 2 [use d)].

€ 5) a) Let J be the Polish space NN (N carrying the discrete topology)
and let X be a metrizable space of countable type. Show that for each
countable ordinal « thereisasubset G, of J X X suchthat (i) Gy& @,
(J x X) (Exercise 4) and (ii) for every subset Ue @ (X) there exists
ze] such that G,(z) = U. [We may proceed as follows by transfinite
induction: the spaces J and JN being homeomorphic, let f be a
homeomorphism of J onto JN, and for each integer n let f, =pr,o f.
If (A, is a countable base of X containing the empty set, take G,

such that Gy(z) = IJ Ay ) for each zeJ. For each countable ordinal
@, take Ggyy to be such that Gonn(2) = [N Gu(fo(2)) if a is even,
and Gy, (2) = U Gu(/(2)) if « is odd. I*r:inally, if « has no prede-

n
cessorand if (A,) isan increasing sequence of ordinals such that «=sup A,
n

take G, to be such that Gu(z) = UG; (fal2)). Use the fact that
Ju is continuous on J.] n "

b) In particular take X = J. Show that the set pr;(G,n A), where

A is the diagonal of J X J, belongs to @4(J) but not to §,(]J) [argue
by contradiction, using a)].

6) a) Let J be the Polish space NN. Show that if X is any Souslin
space, there is a continuous surjection of J onto X [reduce to the case

where X is Polish and consider a sifting of X by a sieve (C,) where
allthe G, are infinite].

b) Let X be a metrizable space. Show that if A is any Souslin subspace

of X, there is a closed subset F of J X X such that A = pr2(F)
[use a)].

¢) Let X be a metrizable space of countable type; let L =JxX
and let F be a closed subset of J X L such that for each closed subset
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M of L there cxists ze] such that F(z) =M [Exercisc 54)] Show
that, for cach Soushin subspace S of X, there exists ze] such that
Pr(F() = S Deduce that,sf X =J, theset T ofall zeJ such that
zepry(F(2)) is 2 Souslin set, butthat J —T Is not 2 Souslin set [same
reasoning as mn Excrcise 5 8)] (*).

7) @) Show that every zero-dimensional Polish space is homeomorphic to
a closed subspace of the product J = N¥ (consider a strict siftng of
X by sets which are both open and closed).

5) Let X be a zero-dimensional Polish space and let Y be a dense
subspace of X which has no intenior pont and which is a countable
intersection of open sets in X. Show that Y 1s homeomorphic to J.
{Note that, m a metrizable zero-dimensional space, an open but not
closed set 1s the union of an enfinite countable sequence of pairwise disjoint
sets which are both open and closed; use Theorem 1 of no. 1.) Deduce
that every dense subspace of R, which has no interior pomt and is a
countable intersection of open scts, 1s homeomorphic to J (note that
such a set 1s ined in the ofa dense subset D
of R, and that (D 15 zero-dunensional).

¢) If X is any uncountable zero-dimensional Polish space, there exists a
parution of X into a countable set and a subspace homeomorphic
to J [use 5) and Cxereise 11 of § 5]

8) Let X be a Souslin space and let f be a continuons mapping of X
into a Hausdorfl space Y Show that if f{X} is uncountable, there
exists a subspace A of X homcomorphic to Cantor’s triadic set K
(Chapter IV, § 2, no. 5) such that f|A is injoctive, [Reduce to the case
where X 1s a complete metnic space: show that there exists a sieve
C = (C,, p) such that, for each n, G, has 2" elements, and that there
exsts for each n a mapping ¢, of C, into the set of all non-empty
closed subsets of diameter < 2-% 1 X, such that (1) ¢ae{2) € palBale))
for all c¢eCyy, (u) whenever ¢ and ¢’ are distnct elements of G,
S(2a(e)) and f(g,(¢')) arc digont Use § 5, Exeraise 11.) In particular,
every uncountable Soushin space contains a subspace homeomorphic to
XK and therefore has the power of the continuum

€. 9) a) Let X be a Polish space, and let R be an equivalence relation
on X. Show that there exists a subset of X which 15 a countable inter-

(*) * Ttcan be shown that i the space ¢(I,R) of contnuous real-valued func-
tions on a compact interval IcR, endowed with the topology of wuform conver-
gence (which makes 1t 1nto a Pohsh space), the set of differentiable functions 13
1ot a Soushn sct but 1ts complement is a Soushn set {cf. 5. MazurxEwicz, Fund.
Math 27 (1936), - 244} o
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section of open sets and which meets each equivalence class in exactly
one point, provided one or the other of the following two hypotheses is

satisfied :
«) R isclosed;
8) X is locally compact and the graph of R is closed in X X X.

[For ), follow the method of the proofof Theorem 4 of no. 8, making use
of the following remark: If (G,) is a sequence of sets, each of which is
a countable intersection of open sets, and if foreach 7 there exists a neigh-
bourhood V, of G, such that the family (V,) is locally finite, then

UG,, is a countable intersection of open sets. Same method for 8);

n
observe that the saturation of a compact set is now closed (cf. Chapter I,
§ 10, Exercise 16).]

b) Let X be a Polish space, let R be an equivalence relation on X
which is both open and closed, and let ¢ : X - X/R be the canonical
mapping. Show that there exists a subset A of X which is a countable
intersection of open sets in X and is such that the restriction of ¢ to A
is a homeomorphism of A onto o(A) and such that o(A) is dense in
X/R and is a countable intersection of open sets. [With the notation
of the proof of Theorem 4 of no. 8, show that we may assume that for each
n the o,(c) have been defined in such a way that the image under ¢
of the union of the interiors of the #4,(¢), as ¢ runs through C, is
dense in X/R; use a) and Theorem 1 of no. 1.]

¢) Show that the conclusion of b) remains valid when X is locally compact
and has a countable base and R is a closed equivalence relation on X
all of whose equivalence classes are compact. [Reduce to case 4) by the
use of § 5, Exercise 26.]

§ 10) 4) Let X be a metrizable space and let S be a Souslin subspace
of X. Show that S isalmost openin X (§ 5, Exercise 6). [Let P be
a Polish space, g a continuous mapping of P onto S, (Cy, fn, 9) 2
sifting of P, and f the corresponding continuous mapping of L(C)
onto P (in the notation of no. 5); let h=gof, and for each ceC,
let ¢,(c) denote the subspace of L(C) consisting of sequences (cr)
such that ¢, =c. Let Fyle) = h{gy(9) and let U,(e) = g(za(e)) > Fald)
foreach ce Q,; let W,(c) denote the union of D(U,(¢c)) (§ 5, Exercise g)
and a meagre set in X, such that F,(c) e W,(c) ¢ U,(0), so that W,(c)
isalmost openin X. Show that

Vale) =Wl n B U Wanale)
p(e)=¢
is meagre in X by noting that F,(e) = {J Foua(c'); show also
ple)=¢
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that the set W,(c) — Fale) is contained in the union of the sets Vo(d)
where m>n and, for each m, d runs through the set of elements of
C,, such that pu(d) = ¢ Hence show that F(c) is almost open.]

#) Give an example of a continuous mapping f of fo, 1) into uself
and an almost open set Be I such that f(B) 15 not almost open. [Use
Exercise 16 5) of Chapter IV, § 8, and show that we mav take B tobea
subset of the Cantorset K suchthat f(B) = Z has the property described
in § 5, Exercise 18 d).]

€ 1) Let X =R* and let M be a closed subset of X. A point
xeM issaid to be hnearly accessible if there exists a point ye X —M such
that the open segment with extremities x, y is contained in X —M.
Show that the set L= M of linearly accessible pomts of M is a Soushn
set. [Let d(z, ) be the Euchdean metnc in X, and for each zeX
let f{x, ») = d(x 2) + &z, ») —d(x, ). Note that the set of all
(5,7, 20€X x X X X such that xeM, yeX—M, zeM, z+x and
£l%3) =0 15 2 countable union of compact sets, and consequently so
151ts projection on the product of the first two factors.]

12) Let X be a metrizable space, and let f be a mapping of the set
RIX) of compact subsets of X mto R which satisfies the conditions
{CA)) (for two compact subsets of X) and {CAyy). For each subset
A of X, let f,(A) denote the least upper bound of the numbers f(K)
for all compact subsets K of A, and let f*(A) denote the greatest
lower bound of the f,(U) for all open sets U contamng A. A is
said to be admusible with respect to f if f(A) = fe(A).

a) Show that for every compact subset L of X and every e>o, there
exists an open set Uo L such that, for every compact subset K of X
for which LeK < U, wehave f(K) <f(L) 45 (Argue by contradict-
ton.) Deduce that every compact subsct and every open subset of X
15 admissible with respect to f

b) Suppose that f satisfies the following condition :

(AL) For each parr of compact subsets K, K’ of X, we have
FRUK) +f(KaK) <f(K) + (K.
Show thataf (K,) s a fiite family of compact sets with the property that
£(Y K)<+ @,
:
andaf (K]) 1s another fimte famuly of compact sets indexed by the same
set, such that K{cK, and f(K!) > — o foreach i, then we have
S(UR)—r (Ur) < Surm)—ray-
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Let (A;), (B;) betwo finite families of subsets of X, with the same index

set,such that B;c A; foreach 7, f* (UA,-) <+ oo and f*(B)>—
I

foreach i. Show thatif f satisfies (AL), we have

f*(LiJ Ai) —f* (lg B,-) < §5 (f*(A) —f*(B)).

[Reduce to the case of an index set with two elements. Consider first
the case where A; and B; are open sets, and use the following lemma:
if U, U, are two open sets and K is a compact set contained in Uy v U,
then there exist compact sets K;cU; (i=1,2) such that Kc K, u K,.]
¢) Suppose that f satisfies condition (AL). Show that for every increasing
sequence (A,) of subsets of X such that f*(A;) >— o0, we have

(U A,,) =sup SF*(A,) [useb)]. Deduce that if f does not take the

value — o on f(X), then f* isa capacityon X,

d) Suppose that f satisfies the condition (AL). Show that the union
of any sequence (A,) of admissible sets such that [f*(4,) > — oo
foreach n is admissible. [Use &) and ¢).]

* 13) Let K be a compact subset of R2 For each real number 3y,
let 3,(K,») [resp. 3,(X,»)] denote the diameter of K n ([o, + oo[X g y})
[resp. Kn {(J— o, 0] X g y})]. Show that the functions y — 3,(K, )
and y —3,(K, ») are upper semi-continuous. Let o be an increasing
continuous mapping of [0, 4+ <] into itself such that o(0) = 1 and
o(+ ) =2, and let

0, 3) = oK (K, ) and S = [ e, )

Show that f satisfies the conditions (CA;) and (CAyy) and that we
have f(KuK') <f(K) + f(K") for each pair of compact subsets K,
K' of R2 Butif A is the closed set defined by x>0 and o<y <1,
show that f,(A) =1 and f*(A) = 2.,

14) Let X be a metrizable space and let f be a capacity on X such

that f(AuB) < f(A) + £ (B).

a) With the notation of Exercise 12, show that f*(A uB) < f *(A) +f*(B)

and Sx(AuB) < f4(A) +f*@B) for any two subsets A, B of X.
f K is a compact set contained in AuB, and U is an open set

containing B, write K in the form K = (K nU) u (K n §fU).]

8) Let K bea compact subset of X having the power of the continuum,

andlet (A, B) be a partition of K into two sets such that every compact

subset of A or of B is countable [cf. § 5, Exercise 18 d)]. Show that
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if f{{x}) =o forall xeX andif f(K) >0, then neither A nor B
1s capacitable with respect to f.

* 15) Let u bethe Lebesguemeasureon R; define acapacity f on Rt
satisfying the condition (AL) of Exercise 12 by setting f(A) = u*(pr,A)
(Proposttion 15).

a) Let A be a non-capacitable bounded subset of R? (Exercise 1g),
let B, bea arcle [l = r such that A is contained in the open dise
il <7 andlet B, be a cucle |jx]| =+ of radws # >r. Show
that AuB, and AuB, are capacitable, although therr intersection
A 1s ot

b) Forcach n, let C, bethesetofall xeR? such that

relixll < r 42
3

Show that each of the sets Au G, is capacitable, although theirintersect-
jon is not, and that we have inff(C,) % f (n c,.). .
» '

€ 16) Let X, X' be two metrizable spaces. A mapping f- X > X'

1s said to be a Borel mapping 1f; for each closed subset F' of X', 7'(F")

15 a Borel set n X. For cach even (resp. odd) countable ordnal s,

fissad tobe of class a 1f, for cach closed subset F’ of X, 7 (F*) belongs

to B.(X) [resp G,(X)] (Exercise 4); then, for each open set G' in
2

X, F(G") belongs to Gg(X) fresp §o(X)]. The Borel mappings of

class’ o are precisely the continuous mappings

) The characteristic function ¢, of 2 subset A of X is of class « if

and only if Aef,n G,

8) Let f X ->X' be a mappmg of class @ Show that for every subset

g

B’ e §(X') [resp. B & Gp(X")], 7 (B") belongs to Faep (X) [resp. Gasp(X)]

(Use transfinite induction on )

¢) Let f:X -»X' be a mappng of class o andlet g. X' =X’ bea

mappng of class B, where X’ 15 a third metnizable space. Show that

g of 1s 2 Borel mapping of class a + B

d) For each even (resp odd) countable ordinal a, let (A,) beasequence

of subsets of X which belong to @, (resp. %) and which cover X

If a mapping f: X > X' is such that f|A, 15 of class « for each n,

then f 15 of class a. Give the analogous result for a finte sequence of

subsets of X which belong to &, (resp ) and cover X.

17) @) Let X, X’ be two metrizable spaces, X' being of countable

type, and let (U;) be a countable base for the topology of X' Let «
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be an even (resp. odd) countable ordinal. If a mapping f: X — X'

is such that ?(UQ) belongs to @y (X) [resp. §,(X)] for each #n, then f
is a Borel mapping of class «.

b) Let (X;) be a sequence of metrizable spaces of countable type. A
mapping f= (fn) : X —>H X, is of class « if and only if each f,

n
isof class « [use a)]. Deduce that, if X is of countable type, the finite
real-valued functions of class « on X form a ring.

¢) Let X, X' be two metrizable spaces of countable type, and let «
be an even (resp. odd) countable ordinal. If a mapping f: X - X'
isofclass a, show thatits graph belongs to §,(X X X') [resp. G (X x X')]
[use b) and Exercise 16 b)].

18) Let X he a Souslin space, X' a metrizable space of countable type
and let f be a mapping of X into X'.

a) Show that if the graph G of f is a Souslinsetin X X X', then f
is a Borel function and therefore [Exercise 17¢)] G is a Borel set (use
Theorem 2, Corollary).

b) Show that if f is an injective Borel mapping and if X' is a Souslin
space, then the image under f of any Souslin setin X is a Souslin set in
X' (use Exercise 17¢)). If f is bijective, the inverse mapping is also a
Borel mapping.

19) Let X, X’ be two metrizable spaces and let f be an almost open
mapping (§ 5, Exefcise 24) of X into X’'. Show thatif B’ is any Borel
setin X', then f(B') isalmost openin X (cf. § 5, Exercise 6). Deduce
that if g is a Borel mapping of X’ into a metrizable space X”, then
go f is almost open. Give an example of a continuous mapping f

and an almost open mapping g such that geo f is not almost open
[cf. Exercise 10 5)].
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() be a multipliable family of points of G; show that, for each
neighbourhood U of ¢, there exists a finite subset' Jo of I su.ch that,
for every finite subset K of 1 contained in a slice of I which does
not meet Jo, we have p,eU. [Show first that there exists a finite
subset H, of I and a finite number of points ay, a,, ..., a, of G such
that, for every finite subset L of I contained in a slice of I which
does not meet H,, we have p;eq Vet for at least one index &,
where V¢ is a neighbourhood of e such that ViV;cV,. Consequently
we may restrict ourselves to considering finite subsets contained in one
of the open intervals whose end-points are two consecutive indices of Hg;
use the argument of Exercise 2 4) and the uniform continuity of x-1
on each of the neighbourhoods @,V gai™.]

Deduce that under the same conditions we have limx, = ¢ with
respect to the filter of complements of finite subsets of I (if I is infinite).

4) Let G be a locally compact group. If (x,) is a multipliable family
of points of G, show that the set of finite partial products p; of this
family is relatively compact.

5) a) Let G be a complete group such that every neighbourhood of the
identity element ¢ in G contains an open subgroup of G. Show that

asequence (x,) of points of G is multipliable if and only if limx, = e.
n>a

b) Let G be a complete group in which every neighbourhood of e
contains a normal open subgroup of G. Show that a family (x),ey of
points of G is multipliable if and only if lim x, = ¢ with respect to the
filter of complements of finite subsets of 1 (use Exercise 3).

6) Let A Dbe the algebra (over R) of bounded real-valued functions
defined on theinterval X =[1, 4+ oo[ of R, withthenorm || f|}=sup|f(x)}
zE€X

For each integer n > o0, let u, be the function which is equal to 1/n
for n<x<n+41 and equal to o eclsewhere. Show that the family
(r+u,) is multipliable in A but that the series whose general term is
U, 1s not absolutely summable in A.

7) Let (x,) be a sequence of points of a normed algebra A, such that

for every permutation ¢ of N, the infinite product with general factor

Xgm is convergent and P Xom 15 a unit. Show that each of the
=0

n=
sequences (xqr,) is multipliable (same argument as in Chapter III,
§ 5, no. 7, Proposition g).

08 Let A be a complete normed algebra. Show that if (x,) is
ahsequence of points of A such that, for every permutation ¢ of N,
the sequence (xq,) is multipliable and its product is a unit, then each
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x, is aumt. (First establish the following algebraic lemma: in a ring
with an identity element, if two elements x, y are such that zy is a unit
and yx is not a zero davisor, then x and y are both units.)

DIAGRAM OF THE PRINCIPAL TYPES
OF TOPOLOGICAL SPACES
metnzable

locally compact sp
compact sp "= with countable base =% Polish sp

lusin sp

soushn sp

metnizable,
focall

ally  — metrizable sp
compact sp.

v
v
compact sp. mem——) 'gf_‘":'gfr::a'::’“‘ S ) paracompact sp

normal sp

locally
Comphct sp ——F completely regular sp

Tegular sp
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HISTORICAL NOTE

(Numbers in brackets refer to the bibliography at the end of this Note.)

As we remarked in the Historical Note to Chapter II, the notion of
a metric space was introduced in 1906 by M. Fréchet, and developed
some years later by F. HausdorfT in his “AMengenlehre’”. It acquired
great importance after 1920, partly as a consequence of the fundamental
work of S. Banach and his school on normed spaces and their applica-
tions to functional analysis, and also because of the significance of the
notion of absolute value in the theory of numbers and algebraic geometry
(where in particular the process of completion with respect to an
absolute value has proved to be a powerful instrument).

The decade 1920-1930 saw a whole series of investigations into the
properties of metric spaces. These studies, undertaken by the Moscow
school, aimed especially at getting necessary and sufficient conditions for the
metrizability of a given topology. This movement of ideas brought out
the significance of the notion of a normal space, which had been defined
by Tietze in 1923 but whose important role was recognized only as a
consequence of the work of Urysohn [6] on the extension of continuous
real-valued functions. Except for the trivial case of functions of 2 real
variable, the problem of extending to the whole space a continuous real-
valued function defined on a closed set was first considered (for the
case of the plane) by H. Lebesgue [3]; before Urysohn’s definitive
re§ult{ 1t was solved for metric spaces by H. Tietze [4]. The gener-
alization of this problem to include functions with values in an
arbltrar‘y topological space has acquired considerable importance in
a‘Igeb_rauc topology in the last few years. Recent work has also shown
that in questions of this sort the notion of a normal space is not easily
handled, since it allows too many possibilities of “pathology”; it often
has to be replaced by the more restrictive concept of paracompactness,
introduced in 1944 by J. Dieudonné [9]. In this theory, the most remark-
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able result is the theorem of A, H. Stone [10] which states that every
metrizable space 1s paracompact (*).

‘We have already noted (Historical Note to Chapter IV) the important
work at the end of the nineteenth century and the beginning of the twentieth
(E. Borel, Baire, Lebesgue, Osgood, W H Young) on the classification
of pomntsets 1n R*, and on the classification and charactenization of
real-valued functions obtamed from continuous functions by rterating
the process of passing to the lumit (with respect to sequences of functions).
It was quickly realized that metnic spaces, whose development after 1510
1s largely the work of the Russian and Polish schaols, formed a natural
domain for investiganions of this nature. Among other things, the study
of metric spaces has shown clearly the fundamental role played m
modern analysis by the notion of a meagre sct and by the theorem on
the countable ntersection of dense open sets in a complete metric space
(§ 5 no. 3, Theorem 1), which was first proved (independently) by
Osgood [1] for the real hne and by Bawre [2] for the spaces R™.

On the other hand, Soushn in 1917 [5), correcting an error of Lebesgue’s,
showed, that the continuous 1mage of a Borel set 1s not necessanly a Borel
set, this Ied hum to the defimtion and study of a larger class of sets, since
called “analytic sets” or “Soushn sets”, After Souslin’s premature
death this work was carried forward particularly by N Lusin (whose deas
had inspired Soushn’s work) and the Polish mathematicians (see [7] and
[8]). The importance of these sets nowadays lies in their applications to
the theory of integration (where, thanks to their special properties, they
allow constructions which would be impossible for arbitrary measurable
sets) and to modern potential theory, in which the fundamental theorem on
the capacitabihity of Sousln sets, proved recently by G. Choquet [11],
has already shown itself to be rich 1n diverse applications.

(*) This theorem permtted a morc satisfactory solution to the metrzation
problem than the cnteria obtained around 1930 by the Russo-Polsh school (the
“Nagata-Smurnoy cniterion”, of § 4, Exercuse 22)  But it should be noted that
hitherto these critersa have had hardly any applications, as so often in the history
of mathematics, 1t appears that the importance of the problem of metrization bas
1ain less 10 113 solution than in the new ideas 1t has sumulated
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CHAPTER X

Function spaces

1. THE UNIFORMITY OF ©-CONVERGENCE

Notation. If X and Y are any two sets, we recall that the set of all
mappings of X into Y isdenoted by & (X; Y), and may be identified
with the product set YX (Set Tkeory, Chapter II, § 5, no. 2). For each
subset H of F(X, Y) and cach xeX, we shall denote by H(x)
the set of elements #(x)eY as u runs through H. If ¢ 15 a filter
bascon J (X; Y), we denote by ®(x) the flter basc on ¥ formed by
the sets H(x) as H runs through ¢. Finally, we recall that, for each
ueF (X; Y) and each subset A of X, u)A denotes the restriction of u
to A, whichisa mappmg of A mto Y; if H isa subsct of & (X;Y),
HJ|A will denote the set of restrictions u]A. of functions s H.

1. THE UNIFORMITY OF UNIFORM CONVERGENCE

Let X beaset and let Y be a umform space. For each entourage V.
of Y, let W(V) den tc the set of all pairs (x, ) of mappmngs of X
into Y such that (u(x), () € V forall xeX. As V runs through the
set of entourages of Y, the sets W(V) form a fundamental system of entour-
ages of a umformity on  (X; Y) For they clearly satsfy Axiom (Uf)
{Chapter II, § 1, no. 1), if V, V' are two entourages of Y such that
VeV, we have W(V)c W(V), and thcr:forc the sets W(V) sausfy

Py
(B) (Chapter I, § 6, no_3), we have W(V) = W(V) so that (Uu)
s satisied, finally, the relauions “(u(x), o(x)} eV for all xeX” and

“(o(x), w(x)) eV for all xeX” imply the relation “(ulx), w(e) eV

for all xeX”;in other words, we have W(V) < W(V), which proves
(U)-
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&-CONVERGENGE § 1.2

DernrrioN 1. The uniformity on the set & (X5 Y) which has as a fundamental
system of enlourages the set of subsets W(V), u_)here V runs through the set of
entourages of Y, is called the uniformity of uniform convergence. The topology
it induces s called the topology of uniform convergence. If a filter ® on F (X;Y)
converges Lo an element wq with respect to this opology, ® is said to converge uni-
Sformly to .

Note that the fopology of uniform convergence on F(X; Y) depends on the
uniform structure of Y and not merely on the topology of Y (Exercise 4).

The uniform space obtained by endowing & (X; Y) with the uniformity
of uniform convergence is denoted by I, (X; Y).

2. .CONVERGENCE

Dervition 2. Let X be a set, Y a uniform space, & a set of subsets of X.
The uniformity of uniform convergence in the sets of &, or stmply the uniformity
of ©-convergence, is the coarsest uniformity on J (X3 Y) which makes uniformly
continuous the restriction mappings u — ulA of F (X, Y) into the uniform spaces
F. (A5 Y), where A runs through &.  The uniform space obtained by endowing
F(X;Y) with the uniformity of G-convergence is denoted by Fgy(X; Y).

The topology induced by the uniformity of &-convergence is called the
topology of ©-convergence; it is the coarsest for which all the mappings uz—u|A
of H(X;Y) into F,(A; Y) (Ae®) are continuous (Chapter II, § 2,
no. 3, Proposition 4, Corollary).

Afilter & on & (X;Y) convergesto u, with respect to the topology
of &-convergence if and only if u|A converges uniformly to uy|A with respect
to & forall Ae® (Chapter I, § 7, no. 6, Proposition 10), and & is
therefore said to converge uniformly to u, on the sets of &.

A filter base & on Fg(X; Y) is a Cauchy filter base if and only if]
forcach Ae®, theimage of & under the mapping u—u|A is a Cauchy
filter base on J,(A; Y) (Chapter II, § 3, no. 1, Proposition 4).

- Let f be a mapping of a topological (resp. uniform) space Z into
Jg(X;Y). Then f is continuous (resp. uniformly continuous) if and only
if, for each Ae®, the mapping z—f(2)|]A of Z into &, (A; Y)
15 continuous (resp. uniformly continuous) (Chapter I, § 2, no. 3, Proposi-
tion 4; Ghapter II, § 2, no. 3, Proposition 4).

.. Finally, let M be a subset of Fg(X; Y); then M is precompact
if and only if, for each A e &, the set of restrictions u|A for ueM is a
precompact subset of &, (A; Y) (Chapter II, § 4, no. 2, Proposition 3).

Remarks,

? 1) The general definition of the entourages of an initial uni-
formity (i

Chapter II, § 2, no. 3, Proposition 4) shows that a fundamental
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system of entourages of Fg(X; Y) may be obtained as follows: for cach
Ae@ and each V of a fund 1 system of 2
of ¥, let (A, V) be the set of all pairs of mappings (4,2) of X mto
Y such that (x(x), 2(x)) eV for each xeA; as A runs through &
and V runs through %, the finite ntersections of the sets W(A, V) form a
fundamental system of entourages of Jg(X; Y).

This description shows immediately that if &, & are two sets of subsets
of X such that Ge @, then the umformuty of &'-convergence 1s finer
than that of &-convergence.

2) However, the uniformity of G-convergence 15 unaltered by replacing
© by theset & of alk subscts of X iohich are contained 1n finste umsons of sets
of & In the study of G-convergence we may thercfore always restrict
ourselves o the case where the set & satisfies the following two conditions:
(F}) Every subset of a set of © belongs to .

(Fiy) Every fimte umon of sets of  belongs to &

If (Fy) 1s satsfied, we obtan a fundamental system of entourages of
Fe(X, ¥) by taking all the sets W(A, V), where A runs through &
and V runs through a fundamental system of entourages of Y.

3) The umformity of G-convergence 1s the inverse image, under the
mapping u — (A)ree of F(X,Y) 1to [] F.(A;Y), of the uniformity
AES

of this product space (Chapter IT, § 2, no 6, Proposition 8), If & isa

covering of X, this mapping 1s snjective and Fg(X; Y) is thereforc isomorphie

to the umform subspace of [ #,(A; Y) which s theimage of this mapping.
e

Prorosrrion 1. If Y us Hausdorff and & is a covenng of X, fhen the space
Fe(X,Y) 15 Hawsdorf.

Let 4 v be two elemems of F5(X; Y) such that (x, 2) e (A, V)
for every entourage V of Y and every Ae@. Since ¥ 15 Hausdorf
itfollows that « and ¢ comncide on everyset A €@, andsince & covers X
wemust have ¥ =v

Remarks  4) Let H be a subset of (X, Y). By abuse of language,
the umformuty (resp topology) induced on H by the wmformty (resp
topology} of G-convergence on F(X, ¥) 1 called the undormuty (resp
topology) of &-convergence on the set H.

5) Let L be a set filicred by a filter ®, and let X —u, be a mapping
of L mto Fe(X, Y) which has a it o with respect to 0% we say
then that, with respect lo the filter (&, the mappings ur of X anie Y comerge
antformly to v [or that the family (w;) 15 untformly convergend o v] 0 cvery
setof € I L=N and & 1 the Fréchet filter, we omut mention of
® m ths statement
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EXAMPLES OF &-GONVERGENCE § 1.3

More particularly, suppose that there is a commutative and associative
law of composition (written additively) defined on Y. If (u,) is any
sequence of mappings of X into Y, let », be the mapping defined by

n

n(9) = 2 ul) (meN);
k=0
we say that the series whose general term is u, is uniformly convergent in every
set of @ if the sequence () is uniformly convergent in every set of &.
Likewise we define a uniformly summable family (i)rer of mappings of X

into Y by considering the mappings x — 2 m(x) for all finite subsets
rey

e
J of L and the limit of these mappings in Fg(X; Y) with respect to
the directed set of finite subsets of L (Chapter I1I, § 5, no. 1).

6) Itfollowsimmediately from Definitions 1 and 2 that, forevery x & U A,
Aec
the mapping # ~> u(x) of F(X;Y) into Y is uniformly continuons. Hence,

in particular, if H denotes the closure of a subset H of JFg (X; YY), we
have H(x) cH(x) for all xe U A (GChapter I, § 2, no. 1, Theorem 1).
A€eG

3. EXAMPLES OF &.CONVERGENCE

L. Uniform convergence in a subset of X. Let A be a subset of X and
take & = {A} The uniformity (resp. topology) of &-convergence is
then called the uniformity (resp. topology) of uniform convergence in A; if a
flter & on Jg (X; Y) converges to u,, it is said to converge to u,

uniformly in A, When A = X we recover the structure of uniform
convergence defined in no. 1.

IL. Pointwise convergence in a subset of X. Let A be a subset of X, and
take & to be the set of all subsets of X which consist of a single point
belonging to A (by Remark 2 of no. 2 it comes to the same thing if we
take & to be the set of all finite subsets of A). The uniformity (resp.
t°P019gY) of &-convergence is then called the uniformity (resp. lopology)
of pointwise convergence in Ay if a filter ® on Jig (X; Y) converges to
Uy, 1t is said to converge to u, pointwise in A. This will be the case if
?ﬁltd orgy if, for each xe A, uy(x)is a limit of u(x) with respect to the
er &,

. In particular, when A = X, the uniformity (resp. topology) of point-
wise convergence in X is called simply the uniformity (vesp. topology) of
bountwise convergence; the uniform space obtained by endowing ¥ (X; Y)
with .th1s.structure is denoted by & (X; Y). Note that the topology
of pointwise convergence is Jjust the product topology on YX and therefore
depends only on the topology of Y, and not on its uniform structure.
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IIL. Compact convergence. Suppose that X is a topologtcal space, and take
& to be the set of all compact subsets of X, The uniformity (resp, the
topology) of G-convergence 1s then called the wniformuty (resp, the fopology)
of compact consergence, and the uniform space obtamed by endowing & (X; ¥)
with this unifornuty is denoted by &, (X; Y). The structure of compact
convergence is coarser than that of uniform convergence, and the two
coinaide 1f X is compact; also it is finer than the structure of pointwise
convergence, and these two cowncide f X is discrete.

I X 18 a unform space we can define on & (X; Y) the uniformity
of precompact convergence by taking & to be the st of all precompact subsets
of X. Agam,if X is a metnc space we may take & to be the set of all
Bounded subsets of X; the uniformity of G-convergence is then called the
uniformity of bounded convergence.

4. PROPERTIES OF THE SPACES Fe(X: Y)

Proposrrion 2. Let Xy, Xo be two sets, let Y be a uniform space and lnt
©, beasetofsubsetsof X, (1= 1,2) and &; X &, the set of subsets of X, x X,
of the form A, X A,, wheoe A €@, 1=1, 2. Then the canonual byection

FX XX V) >F (X F(Xn: YY)
(Set Theory, R,§4,00 14) 15 an tsomorphism of the umform space
Fo, e, (X1 X X3 ¥)

onto Fg, (Xy; Fe, (Xp, V).

Let V bean entourage of Y andlet A, €, (s =1, 2); then it follows
smmediatcly from the defimtions that W{A; X A,, V) is identified with
W(A,, W(A,, V)) by the canonical bycction, and the result is immediate,

Prorostrion 3 a) Let X beaset, let & be aset of subsets of X5 let Y, Y’
be two unpform spaces, and bt f3 Y =Y’ be o unyformly confinuour mapjng.
Then the mapping u—>fo 5 of Fs (X3 Y) into T (X3 Y') 15 ungformly
continuous.

b) Let X, X' be twosets, let & (resp @) bea set of subsets of X (resp. X7);
let 'Y be a uniform space, and let g X' —> X be g mappung such that, for eack
A'e®', g(A') is contaned n a finte umon of sets of &. Then the mapping
u>uog of F(X,Y) mio Fg (X', Y) is unsformly continuous.

ProposTIoN 4. Let X, Y be two sets, let (Xy)rey, bz afomly of sets and
let (Vyuay be @ famuly of uniform spaces.  For cach Ne L, let ©, brasetof
subsets of Xy, Ut gy ke amappngof Xy mto X, andlet & bebhe set of
subsets of X ahich 15 the umon of the sels gy(S,). For etk ped, lt fy
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COMPLETE SUBSETS OF Jig(X; Y) § 1.5

be a mapping of Y into Yy, and endow Y with the coarsest uniformity for
which the f, are uniformly continuous. Then the uniformity of S-convergence
o F(X; Y) is the coarsest uniformity whick makes uniformly continuous the
mappings & —>fuouo g of F (X;Y) into Fg, (X3, Yy).

These propositions are immediate consequences of the description of a
fundamental system of entourages for the uniformity of &-convergence
given in no. 2, Remark 1; the details of the proofs are left to the reader.
Proposition 4 implies, in particular:

Corortary. Let X be a sety let (Y ) er be a family of uniform spaces and
let © be a set of subsets of X. If we endow I_[ Y, with the product uniformity,

t€1

the canonical bijection of the uniform space Fg (X, H Y‘> onlo the product uni-
1€1

Jorm space H Je (X; Y,) (Set Theory, R, § 4, no. 18) is an isomorphism.

t€1

5. COMPLETE SUBSETS OF Fg(X; Y)

ProrosiTioN 5. Let & be a set, Y a uniform space and & a set of subsets
of X. Thenafilter & on Fg(X; Y) converges to uy ifandonly if ¢ isa
Cauchy filter with respect fo the uniformity of S-convergence and converges pointwise
o uy in B= U A,
Aeg

Since the structure of pointwise convergence in B is coarser than that
of @-convergence, it is enough to show that for each A e @& and each closed
entourage V of Y, W(A, V) is closed in B with respect to the topology
of pointwise convergence (Chapter II, § 3, no. 3, Proposition 7). Now
W(A, V) is the intersection of the inverse images of V under the mappings
(t,9) = (u(x), v(x)) as x runsthrough A; these mappings are continuous
with respect to the topology of pointwise convergence (no. 2, Remark 6),
and the result follows.

CoroLLARY 1. A subspace Y of Fig(X; Y) is complete if and only if, for
¢ach Cauchy filter & on H, there exists uge H such that & converges point-
wise to uy in B = U A.

Ae@
This follows immediately from Proposition 5.

Cororrary 2. Let ©,,&, be two sels of subsets of X, whose union is the
same and which are such that &,c ©,, and let H be a subset of F (X; Y).

Then if H is complete with respect to S,-convergence, it is complete with respect
to Gy-convergence.
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For every Cauchy filter with respect to &,-convergence is also a Cauchy
filter with respect to &,-convergence, and we may apply Corollary 1,

Cororary 3. Let H be asubsetof F (X;Y) such that, for cach
xeB= U A,
)

the closure of H(x) in Y s a complete subspace of Y. Then the closure H
of H o %5 (X, Y) uacomplete subspace.
Let @ be a Cauchy filter on H, and define a mappmg »: X >Y
as follows. If xeB, &{x) 15 a Cauchy filter on () (no. 2, Remarké),
hence by hypothesis 1t has at least one imit point; take u(x) to be one of
these hmits If x¢B, take o(x) to be any point of Y. With thi
definition of », 1t1s clear that @ converges pomtwise to 7 in B, and ¢
15 therefore a himitof & 1 Fg (X; Y) by Proposition 5

n particular, if Y 1s complete, the hypothesss of Corollary 3 of Propo-
sition 5 15 satisfied for everv He & (X; Y); hence:

Tueorem 1 Let X beaset, let & be a set of subsets of X, andlet Y bea
complete wnyform space.  Then the umform space I (X5 ¥) is complele.

6 ©.CONVERGENCE IN SPACES OF CONTINUOUS MAPPINGS
Let X, Y be two topological spaces, and let € (X;Y) denote the set of

all continuous mappngs of X tnto Y. If & is a set of subsets of X andif
Y 152 umform space, we denote by g (X;Y) theset € (X;Y) endowed

with the uni ofe Tn €, (X;Y), €. (X;Y)
and €, (X; Y) denote the set € (X; Y) endowed respectively with the

of pomtwise compact and umform
convergence.

Prorosrion 6. Let X be a topological space, Y @ umform space and &
@ set of subsets of X For eash AeG and each closed entourage V of Y,
the traces on € (X, Y) X €(X, Y) of W(A, V) and W(&, V) are the
same.

For if o are contmuous mappmgs of X into Y, the mappug
5> (ufx), () of X mto Y x Y is contmuous, and the hypothess
that (u(x), 2(%)) € V forall x e A therefore ymples that (u(), o(x)) € V=V
forali xeA (Chapter I §2,n0 1, Theorem 1).

If & denotes the set of closures 1n X of the sets of @, Proposition §

shows that, on € (X;Y), the structures of G-convergence and &-conver
gence are 1dentical
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CoroLtArY. Let B be a dense subset of X. On C(X;Y), the structure
of nniform convergence is identical with the structure of uniform convergence in B.

ProrostTioN 7. Let X be a topological space, let & be a set of subsets of
X and let 'Y be a uniform space. If Y is Hausdorff and if the union B of
the sets of © s densein X, then Cg (X;Y) is Hausdorff.

Forif (u, ) belongs to all the sets W(A, V), where Ae@ and V is
an entourage of Y, the hypothesis that Y is HausdorfT tells us that
uy) =v(x) forall xeB; if u and » are continuous, then u=1v
by the principle of extension of identities (Chapter 1, § 8, no. 1, Propo-
sition 2, Corollary 1).

In particular, on € (X; Y), the topology of pointwise convergence
in a dense subset of X is Hausdorff,

ProrosiTion 8. Let X be a sef, § a filter on X, and let Y be a uniform
space.  Then the set Y of mappings u: X =Y such that u(§) is a Cauchy
filter base on Y is closed in T, (X; Y).

Let u#y: X =Y lie in the closure of H in &, (X;Y). For each sym-
metric entourage V of Y, thereisa mapping ze H such that (uy(x),
ux)) eV for all xeX; on the other hand, by hypothesis there is a set
Me§ such that (u(x), u(x')) eV whenever » and &' are in M.
Since (ug(x), u(x)) eV and (up(x), u(x)) eV, it follows that (uy(x),
t(x)) €V whenever » and x' are in M, and therefore uy(§) is a
Cauchy filter base on Y.

Corovrary 1. Let X be a topological space and Y a uniform space. The
set of mappings of X into Y which are continuous at a point xye X is closed
in ¥, (X; U).

If V is the neighbourhood filter of x, in X, u(x,) is a cluster point of
#(V); hence u is continuous at x, if and only if #(V) is a Cauchy
filter base on Y (Chapter I, § 3, no. 2, Proposition 5, Corollary 2).

CoroLrary 2. Let X, L be two sets filtered by fillers §, ©& respectively,
and let Y be a complete uniform space. For each e L, let u, be a mapping
of X. mto Y. Suppose that (i) the family (wy\)rey converges uniformly in
X (with respect to the Silter &) to a mapping v: X —Y; (ii) for each heL,
t, has a limit y, with respect to the filter §. Under these conditions, v has a
hmu:’ with respect to §, and every limit of v with respect to § is a limit of the
Jamily (n)yer, with respect to (B

FOT 2 lies in the closure of the set of the u, in &, (X;Y), and therefore
”}(lg) isa Gaucl.ly filter base on Y by virtue of Proposition 8; this shows
that v has a limit 7 with respect to § because Y is complete. Let
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X' =Xu i"’l be the topological space associated with the filer §
(Chapter 1, § 6, no. 5), and extend u, (resp. ) to a mapping i, (resp. 7)
of X' into Y by putting fy(w) = [resp. ¥(w) =] Then the
mappings &, § are continuous on X', and ¥ converges uniformly
m X to 7 with respect to ©; since X is dense in X, the Corollary
to Proposition 6 shows that T converges uniformly 1 X' to 7, and
particular that y == limg .

Tueorey 2. Let X b a topological space, Y a uniform space. Then the
st C(X;Y) of continuous mappings of X nto Y 1 a closed subset of the
space F (X;'Y) endowed unth the topology of uniform convergence.

For each xeX, the set of mappings of X into Y which are continuous
at x 1sclosedin &, (X; Y) (Proposition 8, Corollary 1}; hence the inter-
section € (X;Y) of these sets is also closed

Thus result may be expressed m the form that the unform fimat of continuaus
Sunctions 15 contanuous-

COROLLARY 1. If' Y 15 a complete uniform space, then Cy (X;Y) is complete.

For, by Theorem 2, €, (X; Y) is a closed uniform subspace of the uni-
formspace &, (X; Y), which s complete by Theorem 1 of no. 5.

CoroLrary 2. Let X be o topological space, & a set of subsets of X, and
Y sumformspace  Let £ (X3 ) denote the set of oll mappings of X snto Y
whose restriction to eack set of & is contnuous. Then Co (X;Y) is a closed
subspace of the umform space F (X3 Y) and is complete if Y 15 complete.
Suppose that # lies i the closure of g (X; Y) in Fg (X; Y); then
(no. 2), for cach A<, #|A liesn the closure of € (A;Y) in & (A;Y),
and 1 therefore continuous by Theorem 2.

CoroLLary 3. Let X be a topological space which is cither metrizable or
locally compact, and lt Y be a umform space, Then € (X; Y) is closed in
the umiform space F, (X; Y); of wn additron Y is complete, the uniform space
(X Y) 15 complete.

By virtue of Corollary 2 it is enough to show that, if we take & to be theset
of compact subsets of X, we have Cg(X;Y)=_C(X;Y) inboth cases
under consideration. Thisisclearif X slocally compact. If X ismetriz-
able, and #: X —Y 1s a mapping whose restriction to every compact
subset of X is contmuous, then for each xeX and each sequence (2,)
of pomts of X which converges to x, we have u(x) =lmu(z),

and therefore u 1s continuous at x (Chapter IX, § 2, no 6, Proposttion 10).
Note that the argument above applies whenever every point of x
has a countable fund 1 system of hood:
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) Remarks. 1) In general, the set C(X; Y) is not closed in & (X; Y)
with respect to the topology of pointwise convergence: in other words,
' a pointwise limit of continuous functions is not necessarily continuous
[Exercise 5 )]
2) A filter on C(X; Y) can converge poiniwise to a continuous function
without converging uniformly to this function.

For example, on the interval I = {o, 1], let u, be the real-valued function
whichisequalto o for *x =0 and 2/n < & < 1, equalto 1 for x = 1/n,
and linear in each of the intervals [o, 1/n] and [1/n, 2/n]. The sequence
{1,) converges pointwise to o, but does not converge uniformly to o
in I (cf. Exercise 6).

3) If X is a uniform space, a proof analogous to that of Proposition 8
shows that the set of uniformly continuous mappings of X into Y is closed
in & (X;Y).
4) Suppose that the uniform space Y carries a commutative and associa-
tive law of composition, written additively, such that the mapping
{»))—>y+y iscontinuouson Y X Y. Then, if () is a sequence
of continuous mappings of X into Y such that the series whose general
termis u, is uniformly convergent in X, the sum of the series is continuous
on X

We leave it to the reader to state the corresponding result for uniformly
summable families (no. 1, Remark 5) of continuous mappings.

PropostrioN g, Let X be a topological space, Y a uniform space. Then the
mapping (f, x) > f(x) of Cu(X;Y) X X into Y is continuous.

Let f,: X —>Y be a continuous mapping, let x, be a point of X
and let V be an entourage of Y. The set T of continuous mappings
f:X Y such that (f(x),f (%)) eV forall xeX is a neighbourhood
of fy in €, (X;Y). On the other hand, since f; is continuous, there
18 a neighbourhood U of x, in X such that (fy(x), fo (xs)) eV for

all xeU. Consequently we have (f(x), f(%,)) e V  whenever
(%) eT x U, and the result is proved.

2. EQUICONTINUOUS SETS

1. DEFINITION AND GENERAL CRITERIA

DEFINITION 1. L X be a topological space and Y a uniform space. A
suoset M of F(X; Y) is said to be equicontinuous at a point xye X if, for
each entourage V' of Y, there is a neighbourhood U of x, in X such that
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(f (ol S () eV forall xeU and ofl feH. H wssadto be equucontinuos
1f it 15 equicontanuous ol every pownt of X.

Dermvimionz.  Let X and Y be twouniform spaces. A subset H of & (X;Y)
15 sad to be umformly equicontinuous 1f, for each entourage V. of Y, there
exssts on entowrage U of X such that we hare {(f(x), f(¥)) €V whenerer
(+,#)eU and feH.

Afamily (Sl of MappIngs or X into Y is sald to b: cqmcontmuous
at a point X, (rcsp. 1f the
set of the f; is equicontinuous at x, (resp. :q\ucommuous, uniformly
equicontinuous).

It 15 clear that if He 5 (X, Y) 15 equicontinuous at x,, then each
JeH s continuous at x,; if H 1s equicontinuous, then each feH
1s continuous on X, 1e. He€ (X; Y). Likewise, 1f H is umiformly
equicontinuous (X being a uniform space), every feH 15 umformly
continuous on X. It is also clear that a uniformly equicontinuous set of
mappmgs is equicontinuous, but a set of umformly continuous mappings

without berng uni (see Exer-
cise 1, Corollary 2 to Proposition 1; and no. 2, Proposition 4).

Examples 1) Let X be a topological space (resp. a umform spacc)
and Y a unform space. Every fintte sct of continuous (resp. umformly
contuuous) mappings of X mto Y 1 equicontinuous (resp. umformly
equicontinuous).

2) Let X, Y be twometncspaces, d {resp ") themetricon X (resp Y),
and let &, « be two real numbers > 0. Then the set of all mappings f:

X Y such that

&S (2, S5} < k(dlxm )
for each parr of points %, x’ of X, 15 uniformly equicontmuous. For
example, ‘the set of all wometries (Chapter IX, § 2, no. 2) of X onto a
subset of Y 1 umsformly equicontinuous.
* Let H be a sct of real-valued functions defined on an interval IR,
which are diffrentiable on 1 and are such that | f(x)| < & forall xel
and all feH Then H 1s unformly cqucontiduons, because if sy, %
are any two pomnts of T we have | f (x;) —F (¥1)| < kix, —x,| for each
feH by the mean value theorem 4
3) Let G be a topological group, let Y be a umform space and ket
J G =Y bea unformly continuous mappmg [G being endowed with
1ts left unformty (Chapter II1, § 3, no. 1)] _For cach &G, let f,
be the mappmg x —>f(sx) of G mto Y. Then the sct of mapping?
7{s€G) 1 umformly equicontinuous, since the relaton W eV s
equivalent to (sx) (i¥) e V

ProvosTion 1 Let T be aset, let & be a set of subsets of T, It Y bea
untform space, X a topologecal (vesp ungform) space, and let f be a mapping
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of TXX into Y. For each Ae®, let HycT (X; Y) be the set of all
mappings x ~f (1, ) as ¢ runs through A.  Then the mapping x —f (., x)
of X into Fg (T3 Y) is continuous at a point x, € X (resp. uniformly contin-
wons) if and only if the set Hy is equicontinuous at xo (resp. uniformly equi-
continuous) for all AeS.

Consider first the particular case where &= {T yie Fg (T; Y)=F, (T;Y).
For each entourage V of Y, the condition (f(., %), f(.,*"))e W (V)
signifies that {f (¢, %), f (4, x))eV forall teT. Tosaythat x—f(., %)
is continuous at x, (resp. is uniformly continuous) is therefore equivalent
to saying that, for each entourage V of Y, there is a neighbourhood
U of %, in X (resp. an entourage M of X) such that the relation
xeU [resp. (x, 2') e M] implies (f (1, x), f (2 %)) €V [resp. (f (% x),
flt, ¥)eV] for all teT, and the proposition follows from Defini-
tions 1 and 2. In the general case, we have to express that, for each
Ae®, the mapping x —f (., x){A of X into &, (A;Y) is continuous
at x, (resp. uniformly continuous), by virtue of § 1, no. 2; from what has
been said, this is equivalent to saying that, for each Ae®, H, is equi-
continuous at xy (resp. uniformly equicontinuous).

Proposition 1 allows us to translate Definitions 1 and 2 into forms
which are sometimes useful, by applying it to the case where T =H
and f is the mapping (A, ) = A(x) of H X X into Y; since f(., %)
is the mapping & — h(x) of H into Y, we see that:

CoroLrarY 1. Let X be a topological (resp. uniform) space, Y a uniform
space and Y a subset of F (X; Y). Foreach xeX, let x denote the mapping
h—~h(x) of H into Y. Then H 1is equicontinuous at x, (resp. uniformly
equicontinuous) if and only if the mapping x —~% of X into the uniform space
o (H; Y) s continuous at x, (vesp. uniformly continuous).

In particular, if X is compact, every continuous mapping of X into

%, (H; Y) is uniformly continuous (Chapter II, § 4, no. 1, Theorem 2).
Therefore :

COFOLL_.ARY 2. Let X be a compact space, Y a uniform space. Then every
equcontinuous subset of & (X; Y) is uniformly equicontinuous.

Now suppose we have a set T, a topological space X, a uniform space
Y andamapping f: TxX —Y. Let f denote the mapping x—f (., %)

of X into &, (T; Y), and let us consider the canonical mapping
8:(,g) >g(t) of T X'F,(T;Y) into Y. Itisclear that the diagram
Tx XLy
by Xf-\ /4 6
T X F, (T; Y)
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(where 1 is the identity mapping of T) is commutative. Suppose
now that T is endowed with a topology and that, for cach xeX, the
mapping £{ ,x) 12— f(¢., %) is continucus; we can then replace F, (T; Y)
by €, (T;Y) i the above ciagram. But we know that § 1s continuous
from § 1, no 6, Proposition 9; hence 1f f is continuous it follows that f
is continuous. Since the continuity of f can be expressed with the help
of Proposition 1, we obtain the following result :

ComorLary 3 Let T, X be fopological spaces, Iet X be a unform space
and let f be amapping of T X X wnto Y. Them f 15 continuous, provided
that the followang conditions are satssfied :

1) Foreach xeX, the partial mapping £~>f{4 %) is continuous,

2) As ¢ runs through T, the partial mappings x ~> £ (1, %) form an equicontin-
wous subset of F (X, Y).

In particular, take T to be a subset H of § (X;Y) and f to be the
canonical mapping (k, %) ->A(x) of H X X nto Y; condition 1)
of Corollary 3 means that H 1s endowed with a topology finer than that
of pointwi , and condition z) means that H is equicontin-
uous. Hence.

Cororrary 4 Let X be a topologrcal space, Y @ umform space, H an
equicontinuons set of mappings of X into Y. If H is endowed wath the topology
of powntwise convergence, then the mapping (h, x} —>h(x) of H XX inks
Y 15 continuous

More intuitwvely, this expresses the fact that ff heH converges poiniumse
to hyeH andif xeX convergesto xy, then h(x) convergesto ho(re).

CororLary 5. Let X be a topologucal space, et Y, Z_be two unsform spaces
and let H be an equicontinuous set of mappngs of Y wnto Z. If H, C(X,Y)
and € (X; Z) are endowed wath the topology of posntwrse contergence, then the
mapping (u,0) —~uo v of Hx C{X,Y) into € (X;Z) is contnuous.

We have to show that, for each seX, the mappmng (4, v) —> s(u(x))
of HX €(X,Y) mto Z 15 continuous. Now v —»o{x) 1s continuous
on H (§ 1, no, 2, Remark 6), and 1t follows from Corollary 4 that
(4, ) >u(y) 15 2 conbmuous mappmg of H x Y into Z, since
(2, 7) > u{z(x)) 1 the composition of (4,3) —> u() and {1, v) - {, 2(x))
the result 1s proved.

The following proposition and 1ts corollary are the analogues of Corol-
lanies 3 and 4 of Prop 1 for 1y sets of map+
pmgs.
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prorositioN 2. Let T, X, Y be uniform spaces and let f be a mapping of
TxX into Y. Then f is uniformly continuous if and only if the following
hwo conditions are satisfied :

1) The mappings % —> f(@t, %) (teT) form a uniformly equicontinuous subset
of FXY).
2) The mappings t—> Ft, x) (xeX) form a uniformly equicontinuous subset
of (T;Y).

It is easily seen that the conditions are necessary. Conversely, sup-
pose that they are satisfied. Let W be an entourage of Y; then
there exists an entourage U of T and an entourage V of X such that:

1) (#',t") € U implies that, foreach ve X,

(f (' 2), f (", %)) e W.

2) («,«") € V implies that, for each teT,

(), f(t, x”)) e W.

It is now clear that the relation “(¢/, t") e U and (x', x") e V"’ implies
2
that (f(t', &), £ (", ")) e W, whence the result.

In particular, take T to be a subset H of & (X;Y), endowed with
the uniformity of uniform convergence, and take f to be the canonical
mapping (#, x) = k(x); then condition 2) of Proposition 2 is automatic-
ally satisfied because, for each entourage W of Y, the set of pairs
(i, ") such that (h'(x), £"(x)) e W for all xeX is by definition an
entourage of the uniform structure of H. Hence only condition 1) has
to be expressed ; in other words :

CoroLLary. Let X, Y be two uniform spaces and let H be a subset of F (X; Y).
Then | is uniformly equicontinuous if and only if the mapping (h, x) — h(x)
of HX X into Y is uniformly continuous, H being endowed with the uniform-
iy of uniform convergence.

2. SPECIAL CRITERIA FOR EQUICONTINUITY

It Is clear that every subset of an equicontinuous (resp. uniformly equi-
cont}nuous) set is equicontinuous (resp. uniformly equicontinuous).
Again, if X isa topological (resp. uniform) space and Y is a uniform
Space, every finite union of equicontinuous (resp. uniformly equicontinuous)
subsets of i (X; Y) is equicontinuous (resp. uniformly equicontinuous).

Let X, X" be two topological (resp. uniform) spaces, let Y, Y’ be two
uniform spaces, let S X —>X' be a continuous (resp. uniformly contin-
uous) mapping and let g£:Y —>Y be a uniformly continuous mapping.
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1t follows immechately from the definitions that the mapping u# —>gouo
of 5(X;Y) mto F(X'; Y') transforms equicontimuous (resp. uniformly
sets into (resp.

sets

ProrostTion 8. Let X be a topological (resp. uniform) space, let (Y,),e
be a family of uniform spaces, let 'Y be a set, and for each ve X, lt f, bea
mapping of ¥ nto Y. Let Y be endowed with the umnt:l uniformity for
which all the f, are ungfannl] continuous.  For a subset H of F(X;Y) to
be equicontinuons {resp uniforaly equicontinuous) it is necessary and sufficient that,
Jor each vel, the image of H under the mapping u—>fiou be an egue
‘continuous (vesp. umformly equicontinuous) subset of & (X; V).

Thiss an d q of D 1 and 2 and the definition
of the entourages of Y.

ProrosmioN 4. Let X, Y be two uniform spaces and let H be a set of unt-
Jormly contimuons mappngs of X wnto Y. Let X, ¥ be the Hausdorff complet-
ions of X, Y respectuely, and let T denote the set of mappings &t X%
as u runs through H (Chapter TI, § 3, no. 7, Proposinon 15). Then H
25 amyformiy equcontinuous sf and only of B 15 uniformly equicontinuous.

We recall that the diagram

() '

15 commutatve, where ¢ and j are the canonical mappings, moreover,
the umformuty of X (resp. Y) 1s the inverse image under i (resp. j)
of that of X (resp. ¥) Hence H is uniformly equicontinuous if and
only 1f its 1mage under the mapping x ~> f o u 1s uniformly equicontinuous
(Proposition 3}, and we may already Testrct ourselves to the case \vh:r:
Y 1s Hausdorff and complete, if H 1s uniforml;

thenso1s H, because 1t 1s the image of H under the mappmv G>don;
thus it remains to prove the converse \\hen Y=V. Let V be a
closed of Y, byh there U of X such
that the relations (x, #)& U and ueH m'Aply that (u(x), u(¥)) e V.
Now, if U' 15 the image of U under i X 1, the closure U’ of U’
m X x X 15an entourage of X (Chapter II, § 3, no. 7, Proposinon 12);
the hypothesis ymples that, whenever (z, #) €U’ and zeH, wehane
(#(2), #(Z'))&V. Smnce V 1s closed and & 15 continuous, we have also
(‘:(z)} i) eV for all {,¢')eTU’ and all ueH; this completes the
proof.
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provosiTioN 5. Let G, G’ be two topological groups endowed with their left
uniformities, and let H I{e a set of homomorphisms of G into G'. Then the
following conditions are equivalent :

a) H is equicontinuous at the identity element ¢ of G,

b) H is equicontinous,

¢) H is uniformly equicontinuous.

It is enough to show that a) implies c). Let V' be a neighbourhood
of the identity element ¢’ of G’; then, by hypothesis, there is a neighbour-
hood V of ¢ in G such that 2(V) <V’ for all ueH; since the ele-
ments of H are homomorphisms, the relation x~1yeV implies that we

have
(u(x))" T u(y) = u(x~1y) e V"

In view of the definition of the entourages of the left uniformities of G
and G' (Chapter I11, § g, no. 1), the result follows.

3, CLOSURE OF AN EQUICONTINUOUS SET

ProrostTioN 6. Let X be a topological (resp. uniform) space, let Y be a
uniform space and let H be a subset of &F (X; Y). Then H is equicontinuous

af a point xyeX (vesp. uniformly equicontinuous) if and only if the closure H
of H in F; (X;Y) is equicontinuous at xq (resp. uniformly equicontinuous).

The condition is sufficient, trivially. To show that it is necessary, consider
an entourage V of Y whichis closedin Y x Y; by hypothesis, there is
a neighbourhood U of x, in X (resp. an entourage M of X) such
that the relation xeU (resp. (#/, x") e M) implies (k(x,), h(x)) €V
[resp. (h(x"), h(x")) e V] for all heH. Since V is closed, the mappings
he&(X; Y) which satisfy the relation (h(xo), h(x)) € V for all xe U
[resp. the relation (A(x'), h(x")) e V for all (¥, #") e M] form a closed
subset of & (X;Y) (§ 1, no. 2, Remark 6); since this closed subset contains
H, it contains H. Hence the result, since the closed entourages of Y

form 2 fundamental system of entourages (Chapter II, § 1, no. 2, Proposi-
tion 2, Corollary 2).

4. POINTWISE CONVERGENCE AND COMPACT CONVERGENCE
ON EQUICONTINUOUS SETS

TleOREM L. Let X be a topological (vesp. uniform) space, let Y be a
wiiform space and let H be an equicontinuous (resp. uniformly equicontinuous)
Subset of C(X;Y). Then the following uniformities on Y are identical : the
uniformity of compact (resp. precompact) convergence, the uniformity of pointwise
convergence and the uniformity of pointwise convergence in a dense subset D of X,
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It is enough to show that the last uniformity on H is finer than the first;
1n other words that, given an entourage V of Y and a compact {resp
precompact) subset A of X, there exists an entourage W of Y anda
fimte subset F of D such that the relation

(2) ueH, seH and (u(x),0())eW forall reF
implies
3@ (u(x), o eV for all xeA.

Suppose first that A is compact and H cquicontinuous. Given
a symmetric entourage W of Y, every pomt xeX has a neighbourhood
U(x) such that the relation =« U(x) implies (u(x), u(x')) €W for all
ueH. We can therefore cover the compact sct A by 2 finite number
of open sets U, such that, for each pair of points ', x* of the same set
U, we have (u(x), s(+))eW forall xeH Let 4 be a point of
DnU, let F be thesetof the g, and suppose that (2} is true; then for

each xeA there exists an index i such that g, and x belong to the
same set U, so that we have (u(x), u(a)) e W and (o(a), 2(x)) € W;
thus (2) implies (3) provided that W 15 chosen so that We V.

KA pact and H i we use Propo-
sition 4 of no 2, 1t 15 enough to note that :(A) is compactin X, i(D}
densen X and that the entourages of Y are the inverse mages of those
of ¥ under the mapping j X j.

CoroLrary  Under the hypotheses of Theorems 1, the closre T of H in
F(X; Y) wuh respect to the topology of pontunse convergence is the same as the
closure of H an € (X; Y) wrth respect to the topology of compact (resp. pre-
compact) convergenze,

For the set H 15 (resp. unif q by
Proposition 6 of no. 3, and hence 15 contamed in € (X; Y); the result
follows immedately from the fact that, on H, the two topologies under
consideration are the same, by virtue of Theorem 1.

5. COMPACT SETS OF CONTINUQUS MAPPINGS

Trzores 2 (Ascoh). Let X b a topological (resp wmiform) space, let €
be a covering of X, let Y be a umform space and H a sef of mappings of X
wnto Y such that, for each A€ @ and cach ueH, the restriction of u o A
is continuous (resp umformly continuous). Then, for H to be precompact with
vespect to the umformuly of @~convergence, 1t 5 necessary in oll cases and also suffuent
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if the sets Ae® are compact (vesp. precompact) that the following conditions
should be satisfied :

a) For cach A ®, the set HAcF (A; YY) of restrictions to A of functions
of H is equicontinuous (resp. uniformly equicontinuous).

b) For each xeX, the set H(x) €Y of points u(x) (ueH) is precompact.

1) Let us show first that conditions a) and b) are necessary. We know
(§1,n0. 2, Remark 6) that the mapping « —u(x) of Jg (X;Y) into Y
is uniformly continuous; hence, if H is precompact, sois H(x) (ChapterII,
§ 4, no. 2, Proposition 2), which proves b). To prove a), consider a set
Ae®, apoint xoe A and an entourage V of Y; since H is precompact
it can be covered by a finite number of W(A, V)-small sets; in other words
there is a finite sequence (x;) of elements of H such that, for each zeH,

we have
(@) (u(x), w;(x))eV for all xeA

for at least one index 1.
Since each of the A is continuous at x, (resp. uniformly continuous)
there is a neighbourhood U; of x, in A (resp. an entourage M; of

A) such that

5) xelU; implies (u(x), w(%,)) €V,
(resp. such that

(6) (*',x"yeM; implies (4(x'), 4(x")) e V.)

Let U (resp. M) be the intersection of the U; (resp. M;); it is a
neighbourhood of x, in A (resp. an entourage of A). For each ueH
there is an index i for which (4) holds; writing condition (4) for
% and for x (resp. for ' and #") and taking account of (5) [resp. (6)],
we see immediately that the relation xe U [resp. (&', x") € M] implies

B

(ux), u(x))) eV [resp. (u(x"), u(x")) e\af], for each weH; and this

establishes a).
2) Now let us show that the conditions a) and b) are sufficient if the sets
Ae€®@ are compact (resp. precompact), Condition b) implies that H
1 precompact with respect to the uniformity of pointwise convergence
(Chapter 11, § 4, no. 2, Proposition g), But it follows from condition a)
and Theorem I of no. 4 that on H|A the uniformity of pointwise conver-
;glence m A coincides with the uniformity of uniform convergence in A;
ence H|A Is precompact in J, (A; Y), which implies that H is
precompact with respect to the uniformity of &G-convergence (§ 1, no. 2).

~ Note that condition b) of Theorem 2 is automatically satisfied if Y
1S & precompact space.
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Corortary 1 Let X be a topological (rcsp. uniform) space, It Y be a
Hausdorff uniferm space and let H be an equicontinuous (mp. uniformly equi-
continuous) subset of C(X, Y). Suppose that H(x) is relotively compact
wm Y foreach xeX. Then H 1 relatively compactsn € (X;Y) wrth regpect
to the topology of compact (vesp precompact) convergence.
Let H bc the closure of H in &, (X; Y) H s equicontmuous (resp.
no. 3, Prop we have
() cHEm (§ 1, 0. 2, Remark 6) and therefore H(x) s also relatwely
compact; hence Theorem 2 shows that H is precompact with respect
to G-convergence, where & denotes the set of all compact (resp. precom-
pact) subsets of X Moreover, since FI(#) is compact, and therefore
cornplete, H 15 complete with respect to the umformity of pointwise
convergence {Chapter I1, § 3, no 5, Proposition 10 and no. 4, Propositon 8)
and therefore also with respect to the uniformity of G-convergence (§1,
no. 5, Proposition 5, Corollary 2); H 1s thcr:forc compact, since it 13
complete and Hausdorff (§ 1, no. 2, P 1).

Corotuary 2. Let X be a topological (vesp unform) space, det Y be a
complete Hausdorff unyform space and let H be an equicontinupus (resp. um-
Sormly equicontinuous) subset of € (X; Y}  Suppose that H(x) 1 relaticely
compact m ¥ forall xeD, uhere D 15 a dense subset of X, Then H s
relatizely compact 1 € (X; Y) wath respect to the topology of compart (resp.
precompact) convergence

It 1s enough to show that H{x} 1s relatively compact for all xeX, for
we can then apply Corollary 1 Since Y is complete it 15 enough to
show that H(x) 1s precompact forall xeX. Nowif V isany symmetnc
entourage of ¥, there 13 a neighbourhood U of x such that {a{x),
u(x))eV for all eV and all seH. By hypothesis there exists
#eUnD, and since H(x) 1s relatively compact in Y, there exsts a
finite number of points y, € Y such that H({z') is contained in the union
of the sets V{(3); hence H(x) 1s contained m the union of the sets
¥(1,), and the proof 1s complete,

Corotrany 3. Let X be a locally compact space, Y a Hausdorff uniform

space, H asubretof € (X;Y). Then H 1srelatiwely compact sn €. {X, Y)

lfand only of B 15 equcontinuous and H(x) relatively compact in Y for aH
eX

In view of Corollary ¢ 1t 13 enough to show that, f H 1s relatively compact
in €(X; ¥), then H 15 equicontinuous. Now each point xeX
has a compact neighbourhood A, and 1t follows from Theorem 2 that
HJA 13 equicontinuous, this implies that H is equicontinuous at %,
and the result 1s proved
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Remark. Let X be a topological space, Y a uniform space and &
a set of subsets of X. Then on every precompact subset H of Jg (X; Y),
the uniformity of &-convergence is the same as the uniformity of pointwise
convergence in B = U A. We can reduce to the case where B = X
AEG

and Y is Hausdorff and complete; for if j is the canonical injection
B—X and i the canonical mapping Y — Y, the uniformity of &-conver-
genceon & (X;Y ) is the inverse image of the uniformity of G-convergence
on & (B; XA’) under the mapping § :u —>¢ o uoj (§1, no. 4, Proposition 4),
and H is precompact if and only if 6(H) is (Chapter II, § 4, no. 2,
Proposition 3). This being so, if B =X and Y is Hausdorff and com-
plete, Jig (X; Y) is Hausdorff and complete (§ 1, no. 2, Proposition 1
and no. 5, Theorem 1); hence the closure H of H in this space is compact.
On H, the topology of pointwise convergence is Hausdorff (§ 1, no. 2,
Proposition 1) and coarser than that of &-convergence; hence these two
topologies coincide (Chapter I, § 9, no. 4, Theorem 2, Corollary g) and
consequently so do the uniformities of &-convergence and pointwise
convergence (Chapter I, § 4, no. 1, Theorem 1).

3. SPECIAL FUNCTION SPACES

1. SPACES OF MAPPINGS INTO A METRIC SPACE

Let X beaset, Y a uniform space, (f),er a family of pseudometrics
defining the uniform structure of Y (Chapter IX, § 1, no. 4), and let
& .be a set of subsets of X. For each 1el, eachset Ae®, and each
pair (u,9) of mappings of X into Y, write

&, A(“: U) = i’égﬂ (u(x)a U(x))§

it follows immediately that g, , is a pseudometric on i (X;Y) and that
the family of pseudometrics (g, 4)ier,1ec defines the uniformity of
©-convergence on F (X; Y). In particular:

Proposrrion 1. If Y is a metrizable uniform space, the uniformity of uniform
convergence on F (X; Y) s metrizable.

For if 4 is a metric on Y compatible with its uniform structure, the

Structure of uniform convergence on & (X; Y) is defined by the single
pseudometric

S(u, v) = ilelg d(u(x), »(x));
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in general this pseudometric is not fimite, but 1t is equivalent to a finite
one (Chapter IX, § 1, no. 2), and since the uniformuty of uniform conver.
gence 15 Hausdorff (§ 1, no. 2, Proposition 1), it 1s metrizable.

CororLary. Let X be a topological space and let 'Y be a metrizable umform
space.  Suppose that there 1s a sequence (K,) of compact subsets of X such that
cvery compact subset of X s contaned in some K,. Then the umiformity of
compact convergence on 5 (X3 Y) 15 metrizable.

Since the K, cover X, % (X; Y) is isomorphic to a uniform subspace
of []F.(Ku ¥) (81, no. 2, Remark 3), and the corollary therefore

follows from Proposition x (Chapter IX, § 2, no. 4, Theorem 1, Corollary 2).

Note that this corollary apphes in parucular of X is locally compact
and g~compact (Chapter I, § g, no. g, Proposition 15, Corollary 1).

Now let Y be a metric space and let d be its metric. If X 15
any setand © any set of subsets of X, we shall denote by R (X; ¥)
the set of all mappmngs u: X ~Y such that u(A) is bounded for each
Ae@ Unless the contrary is expressly stated we shall regard 85 (X;Y)
as endowed with the uniformaty of G-convergence, which 15 defined by the
followsng famuly of pseudometrics on Ba(X; Y) <

Ay, v) = sup d(u(s), o{#)) (Ace)

which are finte by hypothesss. When & = {X}, we write $(X;¥)
in place of Bz(X, Y). A mapping u:X —Y is said to be boundsed 1f
it belongs to B (X, Y), re. 1f a{X) is a bounded subsct of Y.

Provosrrion 2. Let X beaset and Y a metric space The set B(X; Y)
of bounded mapprngs 1s both open and closed n the space F, (X3 Y).
If 4 1s bounded, then every mapping v: X Y such that for all
xeX, we have d(a(x), o(x)) <1 15 bounded, because

2elx), wlxe)) < Hulsdy ulm)) + 23

hence B (X; Y) 1s open  On the other hand, if  lies in the closure
of $(X;Y) 1n % (X,Y), thereisa mapping #,e® (X;Y) such that
d(u(x), uy(x)) < 1 forall xe X; hence u 1s bounded.

CoroLLary 1. Let X be g set and ¥ @ metnc space.  Then Bz (X, Y)
ts elosed i T (X, Y). In porticulor, if 'Y s complete then R (X; Y)
complete wnth sespect to the umformuty of S-convergence.
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For Bg(X; Y) is the inverse image of the subset H B (A; Y) ofthe
Ae@
product H F,(X; Y) under the canonical mapping of Jg(X;Y)
A€

into H F, (A; Y); the first assertion therefore follows from § 1, no. 2,

LEB .
Remark g, and the second follows from the first, if we take account

of Theorem 1 of § 1, no. 5.

CoroLrarY 2. Let X be a topological space and 'Y a metric space. Then
the space of all bounded continuous mappings of X into Y is both open and closed
in €, (X;Y); itis complete ift 'Y is complete.

The space in question is % (X; Y) n G, (X; Y); the first assertion follows
from Proposition 2; the second follows from the first (§ 1, no. 6, Theorem 2,
Corollary 1).

2. SPACES OF MAPPINGS INTO A NORMED SPACE

Consider, more particularly, the situation in which Y is a normed vector
space over a non-discrete valued division ring K (Chapter IX, § 3, no. 3).
Letus denote by ||y]| thenormof ye Y. Theset J (X;Y)=Y%X isthen
canonically endowed with a K-vector space structure. A mapping
#: XY is bounded if and only if the real-valued function x ~ |Ju(x)||
isbounded in X. If u, v are bounded mappings of X into Y, itis
clear that #+-7 and M (heK) are bounded; in other words, B (X; Y)
Is a vector subspace of F (X; Y). Moreover, [[u|| = sup [[u(x){| is a norm

€
on & (X;Y); for it satisfies the triangle inequalityznd [}l =0 implies
#=0, and foreach A €K we have

(Pall = sup (Rae)| = sup (0] fle)l| = 2]-5up (el = [ el

Moreover, it is immediately verified that the uniformity on $ (X; Y)
defined by this norm is the uniformity of uniform convergence. Unless
the contrary is expressly stated, whenever % (X; Y) is considered as a
normed space, it is the norm defined above which is in question.

}:ROPOSITION 3 If the normed space Y is complete, then every series (uy) of
ounded mappings of X into Y which is absolutely convergent in the normed

space B (X'; Y)_ (ie. which is such that ), [ju,|] < + o ; cf. Chapter IX,
§3, no. 6) is uniformly convergent in X,  n=0

For since 4 (X ; Y) is complete (no. 1, Proposition 2, Corollary 1), the

rt}sult fqllows from Chapter IX, § 3, no. 6, Proposition 11 and the definition
ot uniformly convergent series.
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Remark, U 2 fj < + 0, then i< S lufi<+n
F = 2

for cach xe&X; nother words, for each xeX the series wath gencral
term u,(x) 15 absolutely convergent in the space Y. The converse i
false. To avord alt confusion we shall somctimes say that the secs
yath general term 1, 1s normally consergent, meanimg that the serics with
general term |ju)| 13 convergent. A series can be unformly conver-
gent m X wathout being normally convergent; this 1 the case, for
example, for the series (4,) i the space B(R, R), defined as follows .
u{x) = (1jn) sin = of xefrm, (24 1<), 4,(x) = 0 otherwse.

When Y 1s a normed algebra (Chapter IX, § 3, no. 7) over a non-discrete

valued ficld K, then ®(X; Y) is a K-algebra, and the norm [
15 compatible with the algebra structure, since

sl = sup (e} < sup -t
< sup u(a-sup ()] = ] [

Thus & (X, Y) 13 now a normed algebra over K,

Provostrion 4 Lot X, (1€1<n) and Y be rormed vector spaces over
a non-diserete valued dunsion nng K, and let x=1:IX,. Then the set of all
multilinear mappngs of X wmto Y is closed n the space. F, (X3 Y).

This set consists of all weF (X; Y) which satisfy all the relations

L R R TR I C VRN AR A
(1) Fulxy o a)
alre W s x) =M, % )

(1 €1<n, x,x, # arbitrary elements of X,, A an arbitrary element
of K), since both sides of the relations (1) are continuous functions of
u on F(X,Y) (§1, no 2, Remark 6), the result follows (Chapter I,
§8,no 1, Proposition 2)

ProposiTion 5. Under the hypotheses of Propositon 4, theset € (X,, . , Xy Y)
of continuous multshinear mappings of X wnto Y 15 closed in JF (X; Y) unth
respect to the topology of bounded comergence; it is complete with respect to the
untformity of bounded convergence if Y s complete.
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Forif @ is the set of all bounded subsets of X, € (X, ..., X,; Y) is the
intersection of the set of all multilinear mappings of X into Y and the
set Bz (X;Y) (ChapterIX, § 3, no. 5, Theorem 1); the result thus follows
from Proposition 4 and Proposition 2, Corollary 1.

Far the remainder of this subsection, X denotes a non-discrete valued field.

Then € Xy ...y Xny Y) is a vector subspace of & (X; Y). Let B

be the unit ball in X, the set of all (x;); ;¢ such that sup [jxf] < 1.
L

[Ish

Then the mapping # —u|B of £ (X, ..., X,; Y) into B (B; Y) is
injective; moreover, the inverse image, under this mapping, of the uniform-
ity of uniform convergence on R (B; Y) is the uniformity of bounded
convergence on £ (X, ..., X3 Y). For every bounded subset of X
is contained in a set of the form pB (for some p.eK*), and if # is an
element of £(X,, ..., X,; Y), tosay that [ju(z){|< a for all zepB
is equivalent to saying that {|u(z)|] < af|p|" for all zeB. It is easily
verified that the number

il — sup 151
=3

samrmon $(X,, ..., X,; Y) and defines the uniformity of bounded
convergence on this set, and clearly we have

(@) flues s 2a)lb < Heefl-flaall - - - Hlxall:

Unless the contrary is expressly stated, whenever £ (X, ..., X,;Y)
is considered as a normed space, it is the norm defined above which is in
question,

PropostTiON 6. The multilinear mapping
(U, xp5 -o0s X)) > u(xy, ...y Xp)

of the normed space £ (Xy, ooy Xp3 V) X Xy X oo X X, inlo Y s
contintous,

This is an immediate consequence of the inequality (2) (Chapter IX,
§3, n0. 5, Theorem 1).

PROP.OSITION 7. Let X, Y, Z be three normed spaces over XK. The canonical
maphing 0f the normed space & (X, Y; Z) into the space of linear mappings of
Xinto & (Y;Z) which sends each ue € (X,Y; Z) to the mapping x > u(x,.)
Wanwsometty of £ (X; Y5 Z) onto 4 (X; 4 (Y; Z)).

This follows immediately from the definitions and the relation

2 (e Mo pli)y= ~ sup flulx )l
Ixli<i\yn<1 IEMIES Bk FIES]
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Propostrion 8. Let X, Y, Z e three normed spaces over K. The bulinear
mappmg (4, 0) > oo u of L(X; Y) X L(Y;Z) into £ (X; Z) it contne
uous.

Forif ue£(X;Y) and vef (Y;Z) wehave
(3 lle = o} < [lull-}iefls

since for all xeX we have [lo(u(x))i} < (il (eIl < i+ [d))1xf] by
reason of (2).

In particular, on the set £ (X) of continuous endomorphisms of anormed
space X over K, the norm |ll] is compatible with the Kealgebra
structure of £ (X).

Remark, 2) Theset S(R=; R*) of licar (necessarily contunuous) mappings
of R~ into R+ can be identified with the set M, . (R) of matnces
with n rows and m columns with coefficients in R and hence can be
identified with R=~; on #(R"; R*}, the undormity of bounded convergence
(with respect to the Euchidean metric on R™), of compact convergence,
and of pointwise convergence are then identified with the additioe umform-
iyon R™. Takethe normol x » (x)eR* to

lx} = sup befy

and et (e be the canonucal s of R f . and o e b s
mappings of R~ tnto Re such that [ju(e) —sle) s+ for 15/
thenwe have |3, — 8, & ¢ for each paur” (i.f) [d o), and ¥ i B
berng the matnces of 4, # and

1t are sausfied, we have {u(x) — o(x)j € mar for cvcry point x of
2 cube of centre 0 and wide 4 1n R,

3 COUNTABILITY PROPERTIES OF SPACES
OF CONTINUOUS FUNCTIONS

Tueoresm 1. Let X be a compact space.

a) If X s metnzable and f Y 35 any mutrigable unform space of eountable
type (Chapter IX, § 2, no 8), then the metrizable space Cq (X; Y) of contin-
uous mappings of X nto Y, endowed wnth the topelogy of uniform convergence,
15 of countable type.

b) Contersely, if the metrzable space €4 (X; R) is of countable bpe, thn X
15 metnzable.

a) Let d (resp. d') be a metnc compatible with the topology of X
{resp. with the uniformity of Y), then 23(f; 2) =supd'(f ) g}
is a metric defining the uniformuty of uniform conve ergence on the space
€ (X, Y), the functions of € (X;Y) being bounded because X 15
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compact (no. 1),  For each pairofintegers m >0, n > 0, let Gy, be the
setof functions fe € (X;Y) suchthat therelation d(x, x') < 1/m implies
d(f (), f(+)) < 1/n. Every function fe€(X; Y) is uniformly contin-
wous (Chapter II, § 4, no. 1, Theorem 2) and therefore, for each n > o,
¢(X; Y) is the union of the sets Gp, (m >o0). Let {al, cens ap<m)§
be a finite subset of X such that the open balls with centres g; and radii
im cover X (1 <1< p(m)); and let (b,.)rey be a countable sequence
which is dense in Y. For each mapping ¢: [1, p(m)] =N, let H,
be the set of those fe& G, such that d'( f(ay), bogy) < 1/n for 1 <E< p(m).
By the definition of the &, G, 1s the union of the sets H, for ¢ e N#™;
let Cny be the set of mappings ¢ € NP™ such that H,# @, and for
each € Gy, let g, be an element of H,; finally, let L,, denote the
countable set of g, for ¢« Gy, Let fe Gun andlet ¢ be an element
of Gy, such that fe Hg; then it follows immediately from the definitions
that we have d'(f(x), go(*)) < 4/n for all xeX, ie. 8(f, g) < 4/n
Hence the union of the sets L, isdensein G, (X;Y), because for every
integer n >0 andevery f € C (X;Y) there exists m such that f e G,,,
and we have just seen that the distance from f to L, is < 4/n.

b) Let I=1To,1]. Since G, (X;I) isa uniform subspace of €, (X; R),
it Is of countable type. Let (f,) be a sequence which is dense in
€ (X; I). Consider the product space K = IN and the mapping ¢:
x~+(fa(x)) of X into K, which is obviously continuous. The mapping
Y is injective; for, by definition of the sequence (f;), the relation
fil#) =fu(s") for all n implies, on passing to the limit, f(x) =f (")
for every function f eC(X; I); but this is impossible if x5 % by
virtue of Axiom (Oyy) applied to the point x and to a neighbourhood
V of x which does not contain ' (Chapter IX, § 1, no. 5, Theorem 2).
It follows that the compact space X is homeomorphic to the subspace
YX) of K (Chapter I, § g, no. 4, Theorem 2, Corollary 2); since K is
metrizable and of countable type, so is ¢(X) and therefore sois X.

Q.E.D.

CoroLrary. Let X be a locally compact space whose topology admits a count-
able base, and let Y be a metrizable uniform space of countable type.
a) The space & of continuous mappings of X into Y which have a limit at

infinity, endowed with the topology of uniform convergence in X, is a metrizable
space of countable type.

b), The space C. (X; Y) of continuous mappings of X into Y, endowed
with the topology of compact convergence, is a melrizable space of countable type.

‘:) Let X' be the compact space obtained by adjoining a point at infinity
0 X (Chapter I, § 9, no. 8, Theorem 4); by definition, every function
fed can be uniquely extended to a continuous function f: X' —Y,
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and f-» J is therefore a bijection of L onto €(X'; Y); and this bijection
is 2 homeomorphism of the space L onto €, (X's ¥) by Proposition
60f§ 1,0, 6. Since X' is metrizable (Ghapter IX, § 2, no. g, Proposi-
tion 16, Corollary) the result follows from Theorem 1, apphed to X'
and Y.

b) Let (U,) be a covering of X by relatively compact open sets, such
that every compact subset of X 15 contained in some U, (Chapter I,
§9, no g, Proposition 15, Corollary 1), If & 1s the set of the U,, the
topology of compact convergence on € (X;Y) is the same as the topology
of G-convergence. Conscquently (§ 1, no. 2, Remark 3) the space €, {X;Y)
1s homeomorphic to a subspace of the product ][ ¢, (T,; V); since

each of the compact spaces U, has a countable base, it is metrizable
(Chapter IX, § 2, no 9, Proposition 16); each of the Gy (Uy; Y) is there-
fore metnzable and of countable type by Theorem 1, and hence so is
S, (X, Y).
Note that the space of all bounded continuous real-salued functions on R,
endowed with the topology of uniform convergence, 1 not of countable
type {Cxercise 4).

4. THE COMPACT-OPEN TOPOLOGY

Tusoresm 2 Let X be a topological space, Y a uniform space. For each
compact subset K of X and eack open subset U of Y, let T(K, U) denote
the set of all continuous mappings u: X —Y such that w(R)cU. Then
the sets T(K, U generate the topology of compact convergence on € (X; Y).

Let Y' be the Hausdor{T unuform space associated with Y (Chapter 11,
§3,n0.8) andlet ¢~ Y+ Y be the canonical mapping of Y onto Y.
The topology of compact convergence 13 the coarsest topology for which
the mappings u — (1o )|K of £ (X; Y) into G (K;Y') are contin-
uous, as K runs through the set of all compact subscts of X (§ 1, no. 4,
Proposttion 4).  Hence we obtarn a subbase of the topology of &, (X; Y}
by taking a subbase of the topology of €, (K; Y') for each compact
subset K of X and then taking the union {in B(E(X; Y))] of the
inverse images of these subbuses in € (X, Y). On the other hand, every
opensubset of Y is of the form 7*(U’), where U’ isopenin Y’ (Chapter
1L, § 3, no 7, Proposition 12), hence, for each compact subset K'>K,
T(K, 3'(U") is the imersc image of F(K, U’) under the mapping

(X, V) =C (K YY)

It thus remains for us to prove the theorem when X is compact and Y
18 Hausdorff; we shall make these assumptions from now on.

300



THE COMPACT-OPEN TOPOLOGY § 3.4

Let us first show that T(K, U) is gpen in C, (X; X). Let u, be
a point of this set; since ug(K) is compact (Chapter I, § g, no. 4, Theorem
9, Corollary 1) and contained in the open set U, there exists a symmetric
entourage V. of Y such that V(uy(K)) cU (Chapter II, § 4, no. 3,
Proposition 4, Corollary). Let W be the neighbourhood of u, in
¢, (X; Y) consisting of all continuous mappings #: X —>Y such that
(u(x), uo(x)) €V for all *xeK. For such mappings we clearly have
u(K) € V(u,(K)) e Us ‘hence ue I'(K, U) and therefore We I(K, U),
which proves our assertion.

Conversely, if W is a neighbourhood of a point 1,e €, (X; Y), let
us show that W contains the intersection of a finite number of neighbour-
hoods of the form T(X, U). We may suppose that W is the set of all
4eC (X; Y) such that (u(x), 4o(x)) € V for all xe X, V being a given
entourage of Y. Since uy is continuous on X, itis uniformly contin-
wous (Chapter II, § 4, no. 1, Theorem 2). Let V; be a symmetric

entourage of Y, open in Y X Y and such that V;cV. X can be
covered by a finite number of compact sets K; (1 €7 < #n) such that
each u,(K;) is Vysmall (1 <i<gn). Let U; be the open set
Vi{uo(K;), and let ©#: X —7Y be a continuous mapping contained
in the intersection of the n sets T(K;, U;) (which are neighbourhoods
of uy). Then, for every xeXK; wu(x) belongs to U; and therefore

t(*) and u(x) are ‘f’l-closc, hence V-close. Since each xeX belongs
tosome K; wehave ueW and the proof is complete.
This result leads us to make the following definition :

Dermviion 1. Let X, Y be two topological spaces, not necessarily uniformizable.
For each compact subset K. of X and each open subset U of Y, let T(K, U)
betheset of all we € (X;Y) such that u(K)cU. The topology on C (X;Y)
generated by the sets T(K, U) is called the topology of compact convergence or the
tompact-open topology; and we denote by C. (X; Y) the topological space obtained
by endowing € (X;Y) uwith this topology.
. II'Y is a uniform space it follows from Theorem 2 that this defini-
tion agrees with that given in § 1, no. 3.

I H is a subset of € (X;Y) we shall say that the topology induced
on H by that of G, (X; Y) is the compact-open topology on H.

Example. Let 1 be the interval [o, 1] in R. If Y is any topological
space, the space C,(I; Y) is called the space of paths in Y. For each
JeY, the subspace Q(Y) of €, (I;Y) consisting of paths # such that
#(0) = u(x) = y is called the space of loops (in Y) at the point y.

Remarks. 1) Likewise, the topology induced on € (X;Y) by the product
tOPOIOg,:y on Y:=§ (X;Y) is called the topology of pointwise convergence
being not necessarily uniformizable); it is generated by sets of the
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form T({x}, U) as x runs through X and U runs thongh the set
of all open subsets of ¥, anditis therefore coarser than the compact-open
topology. We deduce that, of Y a5 Hausdorff, the space €. (X; Y) s
Hausdorff (Chapter 1, § 8, no 1, Proposition 5, Corollary),

2) Let & be a subbase of the topology of Y, and let R be a set of
compact subscts of X with the following property :

(R) If L is any compact subsct of X and V is any neighbourhood
of L, there custs a finite number of sets K, e & such that Le [JX,cV.

‘Then the sets T(K, U), where Ke& and Ue@, form a :;bba:: for
the compact-open topology on € (X; Y). To prove this, we have to
show that if L 1s any compact subset of X and V any open subset
of ¥, andif e T(L, V), then there exists a finite number of pairs (K, U)
such that K,e &, U,e® and e ()T(K, U)c T(L, V). Note first

that for every fimte sequence (5) of'sets of & and every compact subset
M of X, we have T(M, [15,)=[1Z(M, 5,) by definition. We
may therefore first of all replace’ & by the set of finite intersections of sets
of &, 1e. we may suppose that & is a base of the topology of Y. By
poth u(l) 15 q pact and ined in V, hence there
exists a finite number of sets U, e & contaimed m V which cover »(L).
The sets & (U,) are open i X and cover L. For each seL thercs
therefore a compact nesghbourhood N, of x in L, contained in some
one of the H(U,). We can cover L with 2 fimte number of these sets
Ng, = L;, foreach j, lctusdenoteby #(s) oneof the indices 3 such that
L,cW(U). This bemng so, for cach index ; there exists [by (R)] a
finite number of sets Ky, & @ {Uyy), belonging to &, which cover Ly
For each v [\T(Kp Ug) we have |Jo(Kp) c Uy, and therefore
x %
oLycU,, and o(l) = Ustye UUgeV, thus our assertion
4 4

is proved

Turorem 3. Let X, Y, Z be three topological spaces and let f be a mapping
of X XY o Z. If f 1s contnious then f x —f(x, .} 15 a continuous
mapping of X nto €, (Y5 Z). The converse 15 true of Y 15 locally compact.

Suppose that f 1s continuous. To show that f 1s continuous we have
to prove that, for each compact subset K of Y and each open subset
U of 2, the mverse image V of T(K, U) under f is openin X.
Let %V, for each yeK, we have f(x 3) €U, and since f is
continuous there 1 a neighbourhood V, of %, in X and a nesghbourhood
W, of y in Y such that f(V, X Wj}cU. Since K 1 compact,
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there exists a finite number of points y; & K such that the sets W,, (1<i<n)
cver K. Let V' Dbe the intersection of the neighbourhoods V, of x,,

13
whichis a neighbourhood of %45 if x& V' and ye K, wehave f(x,3) €U,
since y i contained in some one of the W " and x is contained in each

V,; hence V'eV, and therefore V is a neighbourhood of each of its

points and consequently is open in X.

Conversely, suppose that f is continuous and that Y is locally compact,
and let us show that f is continuous. Let x,eX, let y,€Y and let
U be an open neighbourhood of f(xg, ») in Z; we shall show that
there is a neighbourhood V of x, in X and a neighbourhood W of
3 in Y such that f(V X W)cU. Since y—f(x,y) is continuous,
there is a compact neighbourhood W of y, such that f ({x(,} X WycU.
On the other hand, since f is continuous, the set V of x»e X such that
flx, .)e T(W, U) [i.e. such that f(x, y) €U for all ye W] is an open
subset of X and therefore a neighbourhood of x,; and we have
FVxWyeU.

Q.E.D.

Cororrary 1. Let X be a locally compact space, Y a topological space,
H asubset of C(X; Y). Then the compact-open topology on H is the coarsest
Jfor which the mapping (u, x) - u(x) of H X X into Y is continuous.

For, by Theorem 3, this mapping is continuous if and only if the canonical
injection H - C, (X; Y) is continuous.

Remark. g) Let X be a locally compact space and Y a Hausdorff
topological space. If © is a topology on a subset H of €(X;Y) such
that the mapping (u, ) ~> u(x) is continuous on H x X and if also H
is compact with respect to %, then % is the compact-open topology.
For it is finer than the latter by Corollary 1, and since the compact-open
topology is Hausdorff, the two topologies are identical. Note that if
inaddition Y is completely regular, then H is equicontinuous with respect to
cvery uniformity compatible with the topology of Y (§ 2, no. 5, Theorem 2,
Corollary 3), and for every compact subset K of X theset

HEK) = U HE
z€K

is compact, since it is the image of H X K under the continuous mapping
(4, %) — u(x).

SOROLLARY 2. Let X, Y, Z be three topological spaces such that X is Haus-
}‘:’ﬁ and Y is locally compact. Then the restriction to C (X X Y3 Z) of
;{ ¢ canonical bijection F (X X Y; Z) T (X; F(Y; Z)) (Set Theory,
>34, 10. 14) i5 a homeomorphism of €, (X x Y3 Z) onto C, (X; Cq (Y3 Z)).
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‘This restriction is certainly a byection
P  CXXY;Z) > C(X; & (Y; 2)

by Theorem 3; it remains therefore to be shown that the compact-open topo-
logy on € (X % Y;Z) is the inverse image under ¢ of the compact-open
topology on € (X; €, (Y, 2)). Swce the sets T(K, U), where K
is a compact subset of ¥ and U is an open subset of Z, form a subbase
of the topology of €, (Y, Z), it follows from Remark 2 that the topology
of €, (X,C,(Y,2)) is generated by the sets of the form  7(J, T(K, U)),
where K and U are as above and ] is a compact subset of X. Now

3
the image of 7(J, T(K, U)) under p is preasely T(J x K, U), and s
therefore an open set; so we have shown that p is continuous To
prove that p 1s a homcomorphism, we note first that the sets of the
form J X K i X X Y (where J is a compact subset of X, and K
is a compact subset of Y) satisfy the condition (R) of Remark 2 : for if
L 1sa compact subset of X xY and V 1s a neighbourhood of L
X x Y, the projections M = pry(L), N = pr,(L) are compact, since
X and Y are Hausdorff and Vn (M X N) 1s a neighbourhood of L
1 the compact space M X N, so that every point of L has a neighbour-
hood in M X N of the form J x KcV, where JeM and KcN
are compact, since L can be covered by a finite number of these neigh-
bourhoods, the assertion is proved  Therefore sets of the form T{JxX; U),
where J 1s 2 compact subset of X, K a compact subsct of Y and U
an open subset of Z, generate the topology of €, (X X Y; Z). But we
have already seen that the image of T(J XK, U) under p 1 the open
set T(J, T(K, U)) m €, (X, €, (¥,2)); hence p 15 a homeomorphism
Note that if in addition Z 18 assumed to be umformizable, Corollary 2
13 a trivial consequence of § 1, no. 4, Proposition 2.
Prorosimion 9. Let X, Y, Z be three topological spaces, Y being locally
compact  Then the mapping (8, v) >vou of Co(X, Y} x C.(Y; Z) wto
e (X, Z) 15 contonuous
We have to show that, for every compact subset K of X and every
open subset U of Z, theset R of pairs (s, 0) such that o(a(K))cU
15 open G (X, Y) X G (Y, Z). Let (25 2)€R; then #,(K)
15 a compact subset of the locally compact space Y, contaned in the open
set Z(U), and hence there 13 a compact neighbourhood L of u(K)t
contamed 1 7y(U) (Chapter I, § 9, no. 7, Proposition 10). The set
V ofall ue, (X,Y) such that »(K)eL 1 a neighbourhood of
and the set W of all veC, (¥; 2) such that (L) U 15 a ncighbour-
hood of vy; furthermore, the relation (1,5) € V X W imphies 2(u(K)) c U.
Hence the result,
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5 TOPOLOGIES ON GROUPS OF HOMEOMORPHISMS

ProposiTION 10,  Let X bea un'iﬂmn space and let X be an equicontinuous
st of homeomorphisms of X onto dlself.  If H and H% are endowed with
the Iopology of pointwise convergence in X, then the mapping u —>u~t of H-1
oo H 15 continuous.

It is enough to show that, for each x,e X, the mapping u — u=1(x,)
of H-1 into X is continuous at every point z,eH-1. Let V be a
symmetric entourage of X, and let 3, = ugi(xy). By hypothesis there
is a symmetric entourage U of X such that the relation (x, x))eU
implies (u71(x), #"Y(%y)) €V for all #eH-1. Take an element e H-?
which is W(gy.)}, U)-close to uy; then we have (u(y,), uo(p,)) € U,
ie. @(3), %) €U. It follows that (g u~Mxp)) eV, ie (u45(xy),
u1(x,)) € V; this completes the proof.

CoroLLArY. Let X be a uniform space and let H be an equicontinuous group
o homeomorphisms of X. onto itself. Then the topology of pointwise convergence
in X is compatible with the group structure of H.

This is a consequence of Proposition 10, together with § 2, no. 1, Proposi-
tion 1, Corollary 5.

ProrostrioN 11, Let X be a compact space and let T be the group of all
homeomorphisms of X onto itself. Then the topology of uniform convergence in
X 15 compatible with the group structure of T".

We know already (no. 4, Proposition g) that the mapping (x, v) — v o «
of ' XT' into T' is continuous with respect to this topology; thus we
have to show that u — #~1 is continuous at every point z, of I'. Since
t5? is uniformly continuous on X, given any symmetric entourage V
of X there exists an entourage W of X such that the relation (x,#') e W
implies (u51(x), u51(x')) € V. Hence,if u e I' issuch that (u,(x), u(x)) e W
forall xeX, it follows that (x, upt(u(x))) eV for all xeX, and

therefore (as u is bijective) (u~1(x), u5'(x)) €V for all xeX. This
completes the proof.

Nowlet X be a locally compact space and let T be the group of all
'homeO{norphisms of X onto itself. The topology of compact convergence
in X s ot necessarily compatible with the group structure of I (Exercise 17).
Let X' denote the compact space obtained by adjoining a point at infinity
o to X, Every homeomorphism z of X onto itself extends uniquely
toahomeomorphisrn u' of X' onto itself such that «'(w) = « (Chapter
I:_§ 10, no. 3, Corollary to Proposition %), so that I' can be identified
with the subgroup of the group T of all homeomorphisms of X' onto itself,
tnsisting of all homeomorphisms which leave w fixed. The topology induced
on T' by that of @, (X' XY is therefore compatible with the group struct-
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ure of I' (Proposition 11}, and T' is closed in T [with respect to the
topology induced by that of €, (X'; X')] because it 1s defined by the
cquation u(w) =w (§ 1, no. 2, Remark 6). We denote by Gy the
group topology thus defined on T'; it is finer than the topology of compact
convergence and can also (by virtue of § 1, na. 6, Proposition 6) be defined
as the topology of uniform convergence on X, when X is endowed
with the umiformuty tnduced by the unique uniformity of X',
The topology G can be characterzed as follows :

ProposITION 12, On the group T' of all homeomarphesms of a locally compact
space X, the topology Bn s the coarsest for which the mappings u—>u and
w-rul of T wmio C, (X;X) are contrnuons.

Let us denote the latter topology for the moment by &'. Smce s>t
1s continuous with respect to bg and since ©g is finer than the topology
of compact convergence, it is clear that Gy 15 finer than %'. To prove
the converse, endow X’ with its unique uniforrmty; let w,eD and let
V be an entourage of X'; then we have to prove that there 1s a compact
subset K of X and a symmetric entourage W of X' such that the
relations

ueT, (u(x), u(¥)) « W and (s52(x), s-1(x)) e W forall xe K
wmply
(wo(x), a(x)) & V for all xeX.

Let V, be a symmetnc open entourage of X' such that V, @ V; then
K, =X'—Vy{w) 15 a compact subset of X Choose a symmetric
open entourage W of X such that W V and W(w) n W(kgH(K,)) = &;
this 15 possible by Propositon 4 of Chapter 11, § 4, no 3 Let
K, = X' —W(u), which s a compact subset of X. We shall see that
W and the compact set K =K;uK; do what 15 required Since
W eV, 1t 1s enough to show that the relation

(l(x),z"1(x)) eW forall xeK, (ueI)
imphes that

((5), wyeV, for all yeW(w);

for we shall then also have (1,(y), w)eV, and thence

:
(), 8(») e VeV
for all yeW(w) =X’'—K, Nowif wehad y=W(w) and
u(y) e X! — V() = K,,
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it would follow that ye a~Y(K;) e W(uzY(K,;)), contrary to the choice
of W the proof is therefore complete. .

In general the group T', endowed with ©g, is not locally compact;
but we have the following criterion :

TuroreM 4. Let G be a subgroup of the group T of all homeomorphisms
of a locally compact space X. Suppose that, in the space C,(X; X), there
is a neighbourkood 'V of the identity mapping e such that VnG =H is

symmetric in G and relatively compact in G, (X; X). Then the closure G
of G in T' with respect to the topology 53 is a locally comf_act group with respect
1o the topology induced by ‘('5‘3 s this topology in_rﬁtced on G is the same as the
topology of compact convergence, and the closure ¥ of Hin G(X; X) isa
neighbourhood of ¢ in G with respect to this topology.

Let us show first that H is confained in T' and that the topology induced
on H by Gp is the same as the topology of compact convergence. Let uye H;
t, is therefore the limit, in G, (X; X), of an ultrafilter ¢ on H. Since
¢-1 (the image of ¢ under «-—z~1) is an ultrafilter base on Hc H,
it converges in the compact subspace H of &, (X; X) to an element
v The mapping (u, v) — uv converges to uy, with respect to @ x -1
(no. 4, Proposition q); a fortiori, w —>uu=' = ¢ converges to ugw, with
respect to @, hence ug, =e since C,(X; X) is Hausdorff. Simi-
larly v, =¢; hence u, is a homeomorphism of X, ie., n,el.
Thus H is contained in T'.  Moreover, this argument shows that H-! = H
and that, for every ultrafilter ® on H which converges to u, ®-1
converges in G, (X; X) to ugl; hence the mapping u —u-! of H
into C, (X; X) is continuous when H carries the topology of compact
convergence (Chapter I, § 7, no. 4, Proposition g, Corollary 1). Proposi-
tion 12 then shows that, on H, the topology of compact convergence is
the same as the topology induced by .

Furthermore, since the topology ©g on T' is finer than the topology
of compact convergence, H is also the closure of H with respect to 6@.
But H is a neighbourhood of ¢ in G with respect to the topology of
tompact convergence, and a fortiori with respect to the topology induced
bY. Gg; it follows (Chapter 1, § 3, no. 1, Proposition 2) that H is a
neighbourhood of ¢ in G with respect to the topology induced by ©g,
and hence G s locally compact in this topology. If W is the interior
?f V' with respect to the topology of compact convergence, then WnT'
sopenin g, hence WnG is contained in the closure of H = V n G
‘_"_‘t}} respect to Gg (Chapter I, § 1, no. 6, Proposition 5); this shows that
H isalso neighbourhood of ¢ in G with respect to the topology of
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compact canv:rgencc. Finally, for each u, €T, the bijections v ~ u5 0 p
and o>t e of € (X;X) onto itselfare continuous (no. 4, Proposic
tion g), and hence, if o€ G, uH is a neighbourhood of #, 1 G with
respect to the topology of compact convergence, This completes the
proof.

Corotrary. Let G be a group of homeomorphisms of a locally compact space
X. I[ftheclosure G of G mn €, (X3 X) is compact, then G 15 a group
of komeomorphisms of X, and the la/wlay of eompact convergence is compatible
wnth the group structure of G, which is therefore a compact topologrcal group

A group of homeomorphisms of a locally compact space X which 15
locally compact but not compact with respect to the topology of compact
convergence 1 locally closed in €, (X; X) by virtue of Chapter 1, § g, no 7,
Proposition 12, but 15 not necessantly closed.

For example, in the ring %(R%) of endomorphisms of R identificd
with the ing M,(R) of square n X n matrices over R and endowed
with the topology ol‘compnct convergence, the group GL{n, R}, rdcntified

with the group of non-singular matrices, is locally compact but dense
(Chapter v1 §x To. 6, Proposition 6).

4. APPROXIMATION
OF CONTINUOUS REAL-VALUED FUNCTIONS

1. APPROXIMATION OF CONTINUOUS FUNCTIONS
BY FUNCTIONS BELONGING TO A LATTICE

In this section we shall study the set € = € (X; R) of continuous real-
valued functions (*} defined on a compact space X, and we shall always
suppose that € 1s endowed with the topology of uniform convergence.  From
§ 3, no. 2 we know that this topology is defined by the norm

ILf1h=sup | f(=)]
eex

and that this norm is compatible with the R-algebra structure of C.
With this norm and this algebra structure, € is a complete normed algebra
over R (§ 1, no. 6, Theorem 2, Corollary 1).

(*) The real-valued functions under consideration in this section are assumed
always to be finste.
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If H is a subset of C, we shall say that a continuous real-valued
function f on X can be uniformly approximated by functions of H if f
lies in the closure of H in the space G, i.e. if, for each ¢ > o0, there
exists 2 function geH such that [f(x) —g(x)| <e for all xeX.
To say that every continuous real-valued function on X can be uniformly
approximated by functions of H therefore means that H is dense in C.

On the set G, the relation f< g [which means that f(x) < g(x)
forall xeX)] is an order relation, with respect to which € is a lattice.
Clearly we have |||e] —[o]|| <|lt—2|l, and therefore u —|u| is a
uniformly continuous mapping of € into itself. It follows that

(u, v) =>sup (u, v) =%(u 4 v+ ju—2|)
and
(v, v) =>inf (4, ) =L(u 4 v — |u—1|)

are uniformly continuous on € X C.

Prorostrion 1. Let X be a compact space and let H be a set of continuous
real-valued functions defined on X. Let f be a continuous real-valued function
on X such that for each xeX there exists a function u,eH such that
u(%) > f(x) [resp. u,(x) < f(x)). Then there exists a finite number of
functions u, =fieH (1 <i<n) such that, if v=sup(fy, for -+ So)

fresp.w = inf (£, fo, ..., fu)], we kave w(x) >f(x) [resp. w(x) < f(x)]
Jordl xeX,

Foreach xeX, let G, be the open set consisting of all zeX such
that u,(z) > f(2) [resp. u,(z) < f(z)]. Since xeG, by hypothesis,

isthe union of the sets G, as x runsthrough X. Since X iscompact
there exists a finite number of points x; (1 <i<n) such that the G,

cover X, and it is clear that the functions f; = u, satisfy the conditions
of the proposition. !

Tuzorem 1 (Dini). Let X bea compact space, and let H be a set of continuous
teal-valued functions on X which is directed with respect to the relation < (resp. =).
If the upper (resp. lower) envelope f of H is finite and continuous on X, then
S can be uniformiy approximated by functions belonging to H (or, equivalently,

the section flter of H converges uniformly to f in X).

Givenany ¢ > o, for each xe X there exists a function u, € H such that

&) > (x) —z. By Proposition 1 and the fact that H is dirccted with
respect to the relation , there exists g e H such that g(x) > f(x) —e forall

£ X; on the other hand, we have g(x) <.f(x) by definition, and there-
fore the theorem is proved.
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CorovLary. Let (u)) be an increasing (resp. decreasing) sequence of contin
wous real-valued functions on X. If the upper (vesp. lower) envelope f of the
sequence (u,) 15 finite and contimuous on X, then the sequence (4,) ‘conperges
umformly to f in X.

It is clear that the conclusion of Theorem 1 is no longer necessartly valid
if X 1 no longer assumed to be compact, 2s is shown by the example
of the decroasing sequence of functions /(n + %) in Ry.

PropostTioN 2. Let X be a compact space, and let H be e set of continuous
reat-valued funchions on X such that, gioen any fwo functions we H, veH,
the functns sup (s, v) and inf(w, v) are it H. Then a continuous real.
valied function f on X can be uniformly approximated by funchons belonging
to H "f and only of, for each real number € > 0 and each pair x,y of pownts
of X, there is @ function v, y€H such that |f(x) — s ()| < and
() —uz M < e

The condition 15 clearly necessary; let us show that it is sufficient. For
each ¢ >0, we shall show that there is a function geH such that
1f(e) —2(2)j<e forall zeX. Let x be any point of X, and let
H, be the set of all functions ueH such that «{x) <f(x) +e By
hypothesss, for cach yeX, the function u,, belongs to H, and we
have u, ,{7) >f(3) —¢ Hence, by Proposition 1, there is a finite
number of functions of H, whose upper envelope v, 1s such that
2,(2) > f (¢)—s forall £=X; on the other hand, we have o,(x) < f(x)+¢
by the defimtion of H,; finally, z,&H by hypothesis. Proposition
therefore shows that there exists a finite number of functions z,, whose
lower envelope g 15 such that g(z) < f(2) +-¢ forall zeX; but since
we have 2,(2) > f{e) —e forall g X and for every index i, we have
also g(z) >f(c) —e for all zeX. Since geH by hypothesis, the
proof 1s complete

Remark  When the set H satisfies the conditions of Proposition 2, itisa
lattice with respect to the ordening f < g. But it should be remarked
thatasubset H of € can be a lattice with respect ta this ordering wathout
1t being necessarily the case that the least upper bound {resp. greatest
Jower bound) ;n H of two functions #, » of H is the same as their [east
upper bound (resp greatest lower bound) 13 C. * An example 1 provi
ded by the comces mappings of a compact iterval of R mto R.q

CoroLLARY  Suppose that H is such that, whenever ueH and veH,
we have sup (v, o) e H and inf({y, 0y e H, and is such that, given any two
distinct ponts x, 3 of X and any tuwo real numbers a, B, there is a function
g=H such that g(x) = a and g(y) = B. Then every confuntous real-valurd
Jumction on X can be uniformiy approximated by functons belonging to H.
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APPROXIMATION OF GONTINUQUS FUNCTIONS BY POLYNOMIALS § 4.2

Desmrton 1. If X ds any set, a set M of mappings of X inio a set Y
is said to separate the elements of a subset A of X (or to be a separating set
for the elements of A) if; given any two distinct elements x,y of A, there
isa function fe 1 such that f (x) % f ( 7).

For example, if X is a completely regular space (Chapter IX, § 1, no. 5)
then the set of all continuous mappings of X into {o, 1] separates the
points of X.

TusoreM 2 (Stone).  Let X be a compact space, and let H be a vector subspace
o C(X; R) such that 1) the constant functions belong fo H; 2) if neH,
thn ujeH; 3) H separates the points of X. Then every continuous real-
ealued function on X can be uniformly approximated by functions of H.

It is enough to show that H satisfies the conditions of the Corollary to
Proposition 2. By hypothesis, if ue H and veH, we have

sup (i, 0) =3 (u+ o+ |u—ov])eH
and inf (g, v) =L (u+v—|u—uvj)eH

On the other hand, let » and » be any two distinct points of X, and
let o, § be any two real numbers. By hypothesis, there is a function
kel such that A(x) 55 h(y): say h(x) =+ and k(y) =3&. Since the
constants  belong to  H, the function
h(z) —
80 =a+ (8 M=

c—

belongs to H and is such that g(x) = « and g(y) = .

2, APPROXIMATION OF CONTINUOUS FUNCTIONS BY POLYNOMIALS

Given aset H of real-valued functions defined on a set X, we say that
a real-valued function defined on X is a polynomial (resp. a polynomial
with no constant term) with real coefficients, in the functions of H, if it is of the
form x— g( £1(%), fo(x), ..., Ja(x)) where g is a polynomial (resp. a
pqunomial with no constant term) in n indeterminates (n arbitrary)
with real coefficients, and the Ji (1 i< n) belong to H.

Throrey g (Weierstrass-Stone). Let X be a compact space and let H be a
set of continuous real-valued functions on X which separates the points of X. Then
&ery continuous real-valued function on X can be uniformly approximated by poly-
nomials (with real coefficients) in the functions of H.

An equivalent statement of the theorem is that any subalgebra of € (¥X; R)

g"(’gl'ﬁ%iaim the constant functions and separates the points of X is dense in
3 -

ltlﬁt H, be the set of all polynomials in the functions of H, and
et Hy be the closure of H, in €. If g isanypolynomialin n variables
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with real cocfficients, then (u, 43, .., n) = £{us, #3, ..., 1} is a contin-
uous mapping of € into €, which maps Hg into H,, and therefore
maps T mto H, (ChapterI,§ 2, no. 1, Theorem 1). In particular,
H, is a vector subspace of C and evidently satisfies the first and third
conditions of Theorem 2; we shall show that it also satisfies the second
condition, and this will prove that H, = €.

Since every function veH, 1s bounded in X, it is enough to prove
the following lemma
Lemma 1. For each real number ¢ > 0 and each compact interval TR there
exmsts a_polynomal p(t) with no constant term suck that 1p(€) — |t|| < ¢ for
all tel.
1t 1s enough to prove the lemma for an interval of the form I = [~aq, 4 4]
and hence, replacing ¢ by af, for the interval I =[—1, +1]. Since
|¢f = /%, Lemma 1 is a consequence of the following result:
Lessiaz. Let (P} be the sequence of polynomials wnthout constant lerms defined
by
(1) Bo(t) =0, Pt} =48} + 4 (t— (2a()}})s  m20.
In the wnterval [o, 1] the sequence (p) s increasing and converges uniformly
o \/t.
To prove Lemma 2 1t is enough to show that, for all te o, 1], we have
) ocVi—nl e =2V,

2 4\t

for (2) implies that o <\/f—p,(t) < 2/n.

We prove (2) by induction on a. Itis true forn =o. If n20
1t follows from the inductive hypothesis (2) that o <\/T— pt) €V4,
hence © < gu{t) €V/7, and therefore from (1) we have

VE—panlt) = (Vi— pult) (t — 3 VI + 20D,
30 that {/t— pou(t) > 0, and from (2)

- 2y [ _ﬁ)s /e Vi )
Ve p"ﬂ(t)$2+n\ AN 2‘-!—11\/7\x 2+ (n + DV,
2V

QED



APPROXIMATION OF CONTINUOUS FUNCTIONS BY POLYNOMIALS § 4.2

If X is not compact, the conclusion of Theorem § is not necessarily valid.
For example, a continuous real-valued function on R which is bounded
and not constant cannot be uniformly approximated in R by polynomials
(cf. Exercise 6).

provostrion 8. Let (K\).ex be afamily of compact intervals of R, K = H K,

el
their product, and let X be a compact subspace of XK. Then every continuous

rul-valued function on X can be uniformly approximated by polynomials in the
coordinales %, = Pr.

Forif = (x) and y = () are two distinct points of X, there is at
least one index t such that x, 5 y; hence the family of continuous
functions pr, satisfies the conditions of Theorem 3.

PropostTiON 4. Let X be a compact space, let A be a closed subspace of X,
and lef H be a set of coniinuous real-valued functions on X which separafes the
pinis of DA and is such that A is the intersection of the sets 4 (0) as w runs
through H. Then every continuous real-valued function on X which is zero on

A can be uniformly approximated by polynomials without constant terms in the
Sunctions of H.,

Consider first the particular case in which A consists of a single point
% The hypotheses then imply that H separates the points of X;
for, if x+ %), then by hypothesis there is a function ueH such that
u(x) # 0 = u(x)). Hence, for each ¢>o0 and each continuous real-
valued function f on X such that f(x,) = o0, there exists (Theorem 3)
a polynomial ¢ in the functions of H such that |f(x)—g(x)|<e
forall xeX. Inparticular |g(x,)| < e, so that

/() — (8(x) — g(xo))] < 2

for all xeX; and since g(x) — g(xy) is a polynomial in the func-
tions of H with no constant term, the result is established in this
case,

In the general case, consider the equivalence relation R on X whose
asses are the set A and the sets {x| for reA. The quotient space
XR is Hausdorff (Chapter 1, § 8, no. 6, Proposition 15) and therefore
compact. Let ¢:X —X/R be the canonical mapping. Every contin-
Uous real-valued function f on X which vanishes on A can be written
i the form f=f o ¢, where f; is a continuous real-valued function
on X/R which vanishes at the point xy = ¢(A). Applying the result
ii:‘efl‘;iy proved to the space X/R and the point #), we obtain the final

313



x FUNCTION SPAGES

3, APPLICATION : APPROXIMATION OF CONTINUQUS REAL-VALUED
FUNCTIONS DEFINED ON A PRODUCT OF COMPACT SPACES

THEOREM 4. Let (X\)iex b¢ afamuly of compact spaces, and let

x=T]%.
e

Then every contnuous veal-valued function en X can be umformly approxtmated
by sums of a finite number of functions of the form

@) > [Tt

where ] is an (arbitrary) finte subset of U and w, is a continuous real-valued
function on X for each o€ J.

Consider the set H of “ functions of one variable " (x) —»u(xs) (any
ael) which are continuous on X. This set separates the pomts of
X, for if x=(x) and y= () are any two distinct points of X,
there exists el such that x, %%y, and there exists a continuous real-
valued function kb, on X, such that h.(x,) #A«(7,). The funcuon
x = b (Dr,x) then belongs to H and takes distinct values at x and »
Since every polynomal 1n the functions of H is of the form stated 1n the
theorem, the result follows from Theorem g3,

Ifnotall the X are compact, the conclusion of Theorem 4 is not necessanly
valid (cf, Exercise gl

4. APPROXIMATION OF CONTINUOUS MAPPINGS OF A COMPACT SPACE
INTO A NORMED SPACE

Let X be a compact space and let 'Y be a normed vector space over
the field R (Chapter IX §3); the space € (X;Y) will atways be
assumed to carry the topology of uniform convergence defined by the
norm H“H = sp H"(*)i] (§3,m0 2).
Gven aset H of continusus real-valued ﬁm:mmr defined on X, a finite
farmily (4)1<egn Of functions belonging to H, anda finite family (#)igigcn
»

of pomnts of Y- the mapping x—> D) au(x) of X mto Y 1s then
» =
contnuous, we denote 1t by 3 ag, and we say that 1t 1s a hnear combination

of functions of H with coefficients in Y. We say that a continuous
mapping f: X -»Y can be uniformly approxsmated by linear combmations
of functions of H (with coefficients i Y), 1f f lies in the closwe of the
vector subspace of € (X, Y) formed by these lincar combinations.
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APPROXIMATION OF CONTINUOUS MAPPINGS OF A GOMPACT SPACE § 4.4

peopostrion 5. Let X be a compact space, Y a normed space over R and
H asubset of C(X; R). If every continuous real-valued ﬁmction on X can be
wniformly approximated by functions of H, tlm% every continuons mapping f of
X ine Y can be uniformly approximated by linear combinations of functions of
H with coefficients in Y.

Given any real number ¢ >0, for each xeX there exists an open
neighbourhood of x in which the oscillation of f is <e. Hence thereis
2 finite open covering  (Ajigign of X such that the oscillation of f in
each A; is <e Let 4 be a value of f in A; (1 <i<n), and let
(Whicn be @ continuous partition of unity subordinate to the covering
(4) (Chapter IX, § 4, no. 4, Corollary to Proposition 4). Let x be
any point of X. For each index ¢ such that x & A;, we have (x) = o,
and for each index ¢ such that xeA; we have {[f(x) —aj<e; it
follows that

n
< e ) ulx) =«
i=1

2 (f(x) — a)ui()

i=1

flx)— _§1 a;;(x)

On the other hand, by hypothesis there is a function y;eH such that

€

n
2 llajll
=1

|w(x) — vi(x)] <

forall xe X (1 < i< n); hence we have

n

flx)— 2 awi(x)

=1

<2 forall xeX,

and the proof is complete.

From Proposition 5 it follows that, to each of the propositions in which
ve have proved that a certain subset H of € (X; R) is dense, there
tomesponds an analogous proposition for continuous mappings of X
into an arbitrary normed space Y. We shall write down explicitly only
the proposition which corresponds in this way to Theorem 3. Given a
set H of real-valued functions on X, a polynomial in the functions of H,
with coefficients in Y, is defined to be any linear combination, with coeffi-

dents n Y, of products of a finite (possibly empty) family of functions
belonging tg 11" T (possibly cmpty) y

i};?ZOIS’SON 6. Let X be a compact space and let H be a set of continuous

- :Iue Junctions on X which separates the poinis of X. TZjlzen every contin-

Malad baﬁﬁmg of X inlo a normed space Y over R can be uniformly approxi-
%5y bolynomials in the functions of M with coefficients in Y.
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From this we deduce :

ProrostrioN 7. Let X B¢ a compact spate and let H be a set of continuous
complex-zalued functions on X which separates the points of X.  Then every
continuous mapping of X into @ normed space Y over € can be uniformiy
epproximated bj polynomuals n the functions feH ond thar conjugates F with
coeffictents in Y.

We have only to note that Y is also a normed space over R and
10 apply Proposition 6 to the set of real parts and imaginary parts of the
functions f e H, using the formulas

Rf=rU+Dh =g U=D

CoRoLLARY 1. If X is a combact subsct of the space €%, then every continuous
mappung (24, Ly 22) >+ f(2ys La --0 Za) of X into a normed space
Y ouer the field C mx b: uniformly appmnmaud by polynommals n the g, and
zy, wath cocflirents in Y,

We shall see later that i general it is not possible to approximate f uni-
formly by polynomuals (with coefficients 1n Y) tn the canables z, alone,
evenif Y

CorotLarY 2. Let X be a locally compact space and let Co (X) b the
normed C-algebra of contimuous mappings of X 1to C whech tend lo 0 at
wfimty  Let A be a subalgebra of Co(X) uhick separates the pm‘nt: of X
and 15 such that (1) ]'e:\ whenecer f& A, (1) for cach xeX, thereisan
feA suhthat f(x) %o  Then A irdensein Co(X).

If X' 1s the compact space obtained by adjoining a point at infinity w
to X, then C,(X) can be identified with the subspice of ¢ (X; C)
consisting of continuous mappings which vanish at w, the norm on
€,{X) being defined by

Ll = sup ()] = sup [ £ (=)

By virtuc of Propositon 7, cvery f @€y (X) can be uniformly approx-
imated by polynomuls with complex coefficients in the functions
belonging to A moreover, since f(w) = o, the argument of no 2,
Proposition 4 shows that we may suppose these polynomuals ta have no
constant term, and then they betong to A,
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Another application of Proposition 7 is the following :

ProposITION 8. Let P {]e the set _qf all periodic continuous mappings of R™
iy C whose group of jlen.ods contains Zm.  Then every function belonging to
p can be uniformly approximated in R™ by lincar combinations, with complex

caeficients, of functions of the form
(g Xgs «+os xp) = e(hyxy + hoxo 4 +c Bitm)s

where the Iy are rational integers (such linear combinations are called trigono-
melric polynomials in m variables).

We have only to observe that P (endowed with the topology of uniform

convergence) i canonically isomorphic to the space of all continuous

mappings of the compact space T™ into C (Chapter VII, § 1, no. 6)

and apply Proposition 7 to the set of mappings of T" into C whicli

;g:@p;md (t:o the m mappings (X1, X « - xn) —>e(x) (1< i<m) of
into C.
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From this we deduce:

PropostrioN 7. Let X beac.
complex-oalued functions on X wh.
continuons mapping of X tnto @ nom
approximated by polynomsals in the funchions
coefficients in Y.

‘We have only to note that Y is also a noru
to apply Proposition 6 to the set of real parts ana
functions f € H, using the formulas

Rf=Z(F+ T 3=~ T

Cororrary 1. If X is a compact subset of the space €*, then every co
maphing (21 Z  » 2n) > S (@ 2 - 2 2a) of X tnto g norme
Y over the field C can % unsformiy apprammaled 8y polymomals n the 2
2y wnth coefficients in

We shall see later that 1n general 1t is not possible to approxumate
formly by polynomials (with coefficients m Y) i the oarables 2,
evenif Y =

CoroLLary 2 Let X be a locally compact space and let Co (X) &
normed  C-algebra of continuous mappings of X wnio C which tend fo ¢
wfimty  Let A be o subalgebra of Co(X) whch separates the pownts of
and 13 such that (1) FeA wheneer feA, (u) for each xeX, there i
feA suhtha f(x)#0 Thn A wdemsein Co(X).

If X' 15 the compact space obtained by adjoiung a pownt at infinity
to X, then Cq(X) can be identified with the subspace of € (X,

consisting of continuous mappimngs which vanish at @, the norm

Gy (X) being defined by

Il = sup {f (9)] = sup|.f (=)}
zex zex

By virtue of Proposition 7, every f e, (X) can be umformly appre
imated by polynomuals with complex coefficients in the func.’
belonging ‘to * A; moreover, snce f (o) = 0, the argument of
Proposition 4 shows that we may suppose these polynomuals to *
constant term, and then they belong to A.
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EXERCISES

§1

1) Let X be a2 set, let Y be a uniform space containing more than
one point, and let & be a non-empty set of non-empty subsets of X
Let Y3 (X; ¥) be the sct of all constant mappings of X imto Y.
For cach yeY, ket ¢, be the constant mapping of X into Y whose
value s y.

a) Shaw that y ¢, 15 an isomorphism of Y onto the uniform subspace
Y oof F5(X,Y

5) 5z (X, Y) 15 Hausdorff if and only 1if Y is Hausdorff and & 15 a
covering of

& Y welosedin Fs (X,Y) Wandonlyif Fg (X;Y) 1s Hausdorff

2) Let X beaset, let Y be a Hausdorf uniform space contauung
more than one point, and let €, &, be two sets of subsets of X which
satisfy condutions (Fy), (F}y) of no. 2. Show thatf €, <G, and 8,78,
then the uniformity of &,-convergence is strictly coarser than the umiform-
1ty of €y-convergence  In parllcular

M If X sa H: space,

of compact convergence u strictly coarser than the umrommy of uniform
convergence

(1) If X 15 a Hausdorff tapological space which has infinite compact
subsets (cf Chapter I, § g, Excrcise 4), then the uniformuty of pomtwise
convergence 13 strictly coarser than the umformty of compact convergence.

3) Let X beaset,let & bea coveringof X, let Y bea non-Hausdorfl
uniform space and let Y, be the Hausdorfl uniform space associated
wath Y (Chapter 11, § 3, no 8). Show that the Hausdorff uniform
space associated with J (X, Y) 15 1somorphic to Fg (X; Yo)-

4) Show that, on thesct € (R; R) offinite continuous real-valued functions
defined on R, the topology of uniform convergence with respect to the
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Jdditive uniformity of R is not ‘the same as the topology of uniform
convergence with respect to the uniformity induced on R by the (unique)
uniformity of the extended line R (although the topologies induced by
these two uniformities on R are the same).

5) Let X bea topological space. A set & of subsets of X is said to be
wiwraled if it satisfies conditions (Fy) and (Fy;) of no. 2 and if the closure
ofevery set of & belongs to &.

2) Show that if X is normal and if & is saturated and covers X, then

theset € (X; R) is dense in the space Cg (X; R) (no. 6, Theorem 2,
Corollary 2) with respect to the topology of €-convergence. In particu-
lar, (X; R) is densein & (X; R). C(X; R) isclosed in J; (X; R)
onlyif X is discrete.

§) Let X be a completely regular space (Chapter IX, § 1, no. 5) and let
&, 6, be two saturated sets of subsets of X, such that &, ¢ &, and &, # &,.
Show that the topology of &,-convergence on € (X; R) is strictly coarser
than the topology of &,-convergence.

6) a) Let X be a topological space, Y a uniform space, and let &
be a filter on the set € (X; Y) which converges pointwise to a function
. Then u, is continuous at a point xye X if and only if, for each
entourage V of Y and each set M e d, there is a neighbourhood U
of %, and a mapping ueM such that (u,(x), #(x)) & V for all xeU.
b) Let X be a quasi-compact space, Y a uniform space and ¢ a filter
on €(X; Y) which converges pointwise to a function u;,. Then u,
is continuous on X if and only if, for each entourage V of Y and
eachset M & &, there exists a finite number of functions eM(<gign)

§u§h that, for each xeX, we have (uq(x), v;(x)) € V for at least one
index 1,

) Let X, Y be two Hausdorff uniform spaces. For each continuous
mapping f: X >V, let G(f)<cX X Y be the graph of f; G(f) is
dosedin X x Y (Chapter I, § 8, no. 1, Proposition 2, Corollary 2) : hence
/=>G(f) is an injective mapping of C (X;Y) into the set § (X X Y)
of non-empty closed subsets of X X Y.

) Sf}ow that the mapping f— G(f) of G, (X; Y) into §(X X Y)
5 uniformly continuous when § (X X Y) carries the uniformity defined
n Chapter 11, § 1, Exercise 5.

§ Let T' be the image of € (X; Y) in (X X Y) under the mapping
{h-) C}UL andlet o: I — €, (X;Y) be the inverse mapping. Show
tioar:)l X is compact, then ¢ is continuous on I' (argue by contradic-
? Take‘bOth X and Y to be the compact interval [0, 1] of R. Show

4 9 is not uniformly continuous on T
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€ 8) Let X, Y be two metric spaces and let (f,) be a sequence of
Borel mappings of class « of X into Y (Ghapter IX, § 6, Exercise 16),
4) Suppose that the sequence (f;) converges pointwise to a mapping f:

X —>Y. Show that f 1s of class a-+1. [I U is an open subsct

of Y, note that 7 (U) = (ﬂ f‘.ﬂ(U)) and use Chapter IX, § 6,
Exercise 4]
5) Suppose that the sequence (f) converges uniformly to /. Show
that f ;sofclass @. [Let F bea closed subset of Y, and for each mteger
n >0, let V, bethesetof points of Y whose distance from F 15 < 1/n.
Show that there is an increasing sequence n —m{z) of integers such that

FE =7 wn(V0d

¢) Suppose that Y is of countable type. Show that, if f: XY is
a Borel function of class « > o, there exists a sequence of Borel functions
g1 XY, of class <a, such that (g,) converges pomtwise to f.
[Show that we may take the g, to be functions which take only a finite
number of values; usc Exerciscs 4 #) and 16 ¢) of Chapter 1X, § 6 }

€ g) Let X be a Bac space, Y a metric space and (/) a sequence
of continuous mapmngs of X mto Y which conmverges pointwise toa
function f A pomt xeX 1s sad to be a point of uniform comergence of
the sequence (f,)} if, for cach & >o, there exsts a neighbourhood
V of x and an imteger p such that d(fu(s), flg)) S ¢ for all yeV
and all integers m > p, n> p, d being the metric on Y. Show that the
complement S of the set of pomts of umform convergence of the sequence
() 1s meagre m X [cf Chapter IX, § 5, Exercise 220).] Guve an
cxample where S s dense in X. [Take X =Y =R, let nor,
be a bijection of N onto Q, and let (g,} be a sequence of continuous
mappings of R mto {o, 1] which conserges to the zero function for
x#0 and to 1 at x =0, the convergence being uniform in every open
set of R which does not contan o Then consider the sequence of

functions f(x) = ¥ a,ga(x —r,), where the sequence (x,) tends to
=
o 1n a suitable way]

10) Show that, on the group T of homeomorphisms of the seal hne R
onto itself, the topology of pointwise convergence is the same as the topology
of compact convergence (cf § 3, Exercise 14)

11) Let X be a topological space and G a topological group. The
set €(X, G) of contnuous mappings of X into G is a subgroup of
thegroup G¥. Let & be asct of subsets of X.
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) Suppose that for each {Xe &, ea.ch neighbourhood V of ¢ in G and each
1€ (X; G), there exists a neighbourhood W of ¢ in G such that
Wsic W for all se u (A). Show that the topology of &-convergence is
then compatible with the group structure of € (X; G), and that the right
(respe left) uniformity of the topological group Cg (X; G) so defined
s the same as the uniformity of &-convergence. Consider the case of
pointwise CONVETgence, the case of compact convergence when G is
locally compact, and the case where G is abelian.

- ) If G is the group SL(2, R) endowed with the topology induced
by that of R4, show that the topology of uniform convergence is not
compatible with the group structure of C (R; G).

12) Let X be a topological space and let A be a topological ring (Chap-
ter IIL, § 6, mo. 3). The set € (X; A) of continuous mappings of X
into A isasubring of the ring AY. Let & be a set of subsets of X.

o) Suppose that, for each M e & and each ze(C (X; A), the set u(M)
is bounded (Chapter III, § 6, Exercisc 12). Show that the topology of
@-convergence is compatible with the ring structure of € (X; A). Consider
the case of pointwise convergence and the case of compact convergence.

b Let X be a locally compact ¢-compact space which is not compact
{Chapter 1, § 9, no. g). Show that the topology of uniform convergence
is not compatible with the ring structure of € (X; R).

§ 2

1) Let f be the real-valued function on R which is equal to o for
¥$0,to x forog x< 1, andto1for x> 1. Show that the sequence
of real-valued functions f,(x) = f (nx —n?) (neN) is equicontinuous
but not uniformly equicontinuous on R, although it is formed of uni-
formly continuous functions.

2) Let X be a Hausdorff topological space in which every point admits

a countable fundamental system of neighbourhoods, and let Y be a

}m‘fom’ space. Let H be a subset of € (X; Y) with the property that,

or eth compact subset K of X, the set H]K of restrictions to K of

meppings e H is an equicontinuous subset of € (K; Y). Show that
s cquicontinuous (argue by contradiction).

%)(}I(.et X,Y,Z be three metric spaces and let H be a subset of
s XY; Z). Suppose that, for each x,e X, the set of mappings
anc(l” }-1), a5 # runs through H, is an equicontinuoussubsetof € (Y; Z),

that, for each JYoeY, theset of mappings u(.,%,), as u runs through
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H, is an equicontinuous subset of € (X;Z). Show thatif X is complete,
then for each be Y thercisaset S, in X whose complementss meagre
1 X and whichis such that, foreach ae Sy, theset H is equicontinuous
at (s, 8). (Apply Chapter IX, § 5, Exercisc 23, using Chapter X, § 2,
Proposttion 1, Corollary 1.)

4) Let X, Y, Z be three undorm spaces.

@) Let H be a umformly cquicontuous subset of € (Y3 2) If H,
€(X,Y) and € (X, Z) are endowed with the uniformity of umform
convergence, show that the mapping (2, #) >ueo of H X € (X; Y)
wnto € (X; Z) 15 umformly continuous.

8) Let K be a umformly equicontinuous subset of € (X; Y), and let
L be a umformly equicontinuous subset of € (Y; Z). Show that the
setofmappings v v u, where u runs through K and 7 runsthrough L,
13 a uniformly equicontinuous subset of € (X; 2).

5) Let X be a topological space and let Y be a normed space over a
non-discrete valued division ring K. Let H be a subset of & (X; Y),
equicontintous at a pomnt xp€X, and let £>0 be a real number.
Then the set H, of lnear combinations Y, ¢, of functions # eH,

B
such that 3, ¢/ < &, 15 equicontinuous at the point £,
N

6) Let X be a topological space, Y a uniform space, H an equicontin-
uous subset of C(X;Y), and ¢ a filter on H. Show that the set
ofall xeX such that ¢(x) 13 a Cauchy filter basc on Y is closed
m X,

7) Let X bea topological space, Y a complete Hausdorff uniform space,
and let ¢ be a i b hism of Y onto an
open subset ¢(Y) of a Hausdorff uniform space Y'. Let H be an
equicontinuous subset of € (X; Y), and let H' be the sct of mappgs
gou, where ueH 1If » liesn the closure of H' in J, {X;Y’), show
that F{s(Y)) 15 both open and closed in X. In particular, if X is
connected, #(X) 1s contaned m p(Y) or mn a connected component of
7(Y). (Observe that » 15 contmuous, and use Exercise 6.)

8) Let H be an e us set of ofa 1 space
X mto R.

a) Show that the set of upper (resp lower) envelopes of fimite subsets
of H 1s equicontmuous.

5) Let z be a mapping of X into R which Les in the closure of H
with respect to the topology of pomntwise convergence. Show that v
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-1 _
is continuous on X and that the sets o (+ o) and 7 (— ) are both
open and dosedin X (use Exercise 7).

¢) Deduce from g) and d) that the upper (resp. lower) envelope  (resp. o)
of H is continuous on X and that @ (+ ) [resp. & (— )] is both
open and closed in X.

d) Suppose that X is connected and that there is a point ;e X such that
H{x, is bounded above in R. Show that, for every compact subset
K of X, the set of restrictions to K of functions of H is uniformly

pounded above in K [use ¢)].

) Let X be aset, Y a uniform space and & a covering of X. A
subset H of the uniform space Jig (X; Y) is precompact if and only
if (i) for each xe X, H(x) is precompact in Y; (ii) the uniformity of
Sconvergence and  that of pointwise convergence coincide on H.
(Apply Theorem 2 by considering X as a discrete space and reducing
to the case where Y is Hausdorfl and complete.)

10) a) Let X be a compact space, let () be a sequence of continuous
mappings X — X, which converges pointwise but not uniformly in X
to a continuous function (§ r, no. 6, Remark 2). Show that the set
of mappings f, is relatively compact in €, (X; X) but not in

Cu (X: X) = ec (X; X).

b) Let 1 be the interval [— 1, 4 1] of R and for each integer n >0
let 1{(::,,) = sin \/x + 4n?z2 for all x> 0. Show that the set H of
functions u, is an equicontinuous subset of € (Ry; I) and is relatively
compact in &, (Ry; I) but not in &, (Ry; I). (Note that the sequence
(1) converges pointwise to 0.)

11) Let X be a completely regular space and let & be a set of subsets of
X whose interiors cover X. Show that the space €, (X; R) is not
locally compact.

12) Let X be a topological space, Y auniformspace, H anequicontin-
vous subset of C(X;Y) and V a symmetric entourage of Y. Given
apomt xeX, show that the set of points »' € X for which there is an
Integer » (depending on #’) such that H(x’ c:\n/'(H(x)) is both open
and closed in X. Deduce that, if K is any compact connected subset
of X and if x, is any point of K, there is an integer 7> o such that

HE) < V(H(xy).

€ .
i 13) Let X be a topological space, let Y be a locally compact uni-
brmspace andlet H be an equicontinuous subset of € (X; Y).
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@) Let A be the set of all xeX suchthat H(x) is relatively compact
m Y. Show that A isopenin X (cf Chapterl, §9, no. 7, Proposition 10
and Chapter 11, § 4, no 3, Proposition 4).

5) Suppose in addition that Y is complete with respect toits uniformty;
then A is also closed in X [observe that if x,e &, then H(x,) is rela.
tively compact in Y by considering an ultrafilter on H(x,) as the image
of an ultrafilter on H]. In this case, if X is connected, then H 15
relatively compact mn €, (X; Y) if and only if, for one point x,eX,
theset H{x,) 1s relatwely compact in Y.

¢) Take X to be the compact interval [o, 1] of R, and take Y to
be the mterval Jo, 1] endowed with the umformity induced by that
of R. Give an example of an_equicontinuous subset H of €(X; Y)
such that the set A defined in 4) 1s the interval Jo, 1].

d) Suppose that X =Y and that H consists of homeomorphisms
of X onto itself Show that if H is umformly equicontinuous, then
theset A defined 1n g) is both open and closed in X,

14) Let T be an fconti; group of h his of R.
Show that 1f a homeomorphism ze[l" leaves at least one point of R
fixed, and 1f u 15 increasing, then u is the identity mapping (show that
otherwise the group generated bv u is not equicontinuous at a suitably
chosen fixed pownt of #). If z is decreasing, then u? is the idennty
mapping

€ 15) Let X be a compact metnzable space, let T' be the group of all
fomeomorphisms of X, andlet G be 2 subgroup of I' which operates
transitiely on X. If H 15 the centralizer of G in T, show that H
15 equicontinuous [Argue by reductio ad absurdum, supposing that H is
not equicontinuous at some point 2« X; deduce the existence of a sequence
of pomts xy€ X and a sequence of elements u, & H such that

bms,=a, lma@ =5 lmu)=q

where & c¢. Hence show that the sequence (u,) converges pointwisc
in X, but that no point of X is a point of unsform convergence of this
sequence; this contradicts Exercise § of § 1.]

16) Let X be a Hausdorff uniform space andlet I' he an equicontinuous
group of h of X. The il relation R defined
by T' on X is open {Chapter I, § 5, no. 2).

a) Show that if every orbit of T' 1s closed in X, then the orbit space
XTI is Hausdorff.
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5 Show that if every orbit of T ?s.compact, then the relation R is closed
(use Ghapter I, § 5, no. 4, Proposition 10).

) Give an example where X is compact but none of the orbits of I’
isclosedin X (cf. Chapter IIT, § 2, Exercise 29).

(17) Let X be a compact space and TI' a countable group of homeo-
morphisms of X. Suppose that the orbit space X/T' is Hausdorff (and
therefore compact).

a) Show that, for each xeX, the orbit ['(x) of x is finife (observe
that if it were infinite it would have no isolated point, and use Baire’s
theorem (Chapter IX, § 5, no. 3, Theorem 1)).

b) For each x,e X, let A(xp) be the normal subgroup of T' consisting
of homeomorphisms which leave fixed all the points of the orbit I'(x).
Show that if A(x,) is finitely generated, then I' is equicontinuous at
tw {Let f; (1 1< m) be the generators of A(xy), and let g, (1 <k < n)
be representatives of each of the cosets of A(xy) in I' other than A(x)
itell. Take a neighbourhood V of x, such that none of the sets fi(V),
JTUV) meets any of the sets g,(V), and then use the fact that the
equivalence relation defined by I' is closed (Chapter I, § 10, no. 4,
Proposition 8).]

¢) Without making any hypothesis on A(x,), suppose that x, has
a countable fundamental system of connected neighbourhoods in X. Show
that T' is equicontinuous at x, [same method as in 4)]. Deduce that
if X is locally connected, then D is equicontinuous.

d) Take X to be the compact subspace of R consisting of the points
o%,1nand 1+ 1/n (» an integer >2). Givean exampleof a count-
able group T' of homeomorphisms of X, such that X' is Hausdorff
but T' is not equicontinuous.

$18) Let G be a Hausdorfl topological group operating continuously
on a Hausdorff topological space X. G is said to be proper at a point
%&€X if the orbit G.xy is closed in X and if G operates properly
o G.x, (Chapter ITI, § 4, no. 1),

) Let G bea locally compact topological group operating continuously
o1 2 Hausdorff uniform space X, Suppose that the set of homeomor-
p}usrr_ls ¥~s.x of X, as s runs through G, is equicontinuous. Show
batif G s proper at a point x,e X, then there is a neighbourhood
.V of %y such that the set of elements se G such that s.VnV#0@
grelauvely compact in G (cf. Chapter III, § 4, no. 4, Proposition 7).
ieduce that the set D of points of X at which G is proper is open
" X and that G operates properly on D. Ifin addition X is locally
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2y Let A be the set of 2l xe X suchthat H(x) is relatively compact
in Y. Show that A 1sopenin X {cf. Chapter], § g, no. 7, Proposition 10
and Chapter II, § 4, no 3, Proposition 4).

5) Suppose in addtion that Y 1s complete with respect toits uniformsty;
then A 1s also closed 1n X [observe that if x,€ A, then H{x,) 1s rela-
tively compact in Y by considering an ultrafilter on H(z,) as the image
of an ultrafilter on HJ. In this case, if X is connected, then H 1
elatively compact m & (X; Y) i€ and only if, for one point x,eX,
the set H(z,) 1s relatively compactin Y.

¢) Take X to be the compact mterval [o, 1] of R, and take Y to
be the mterval Jo, 1] endowed with the umformity induced by that
of R. Give an example of an equicontinuous subset H of € (X;Y)
such that theset A defined in 4) 15 the interval Jo, 1.

d) Suppose that X =Y and that H consists of homeomorphisms
of X ‘onto itself. Show that if H is uniformly equicontinuous, then
theset A defined 1n a) 18 both open and closed in X.

14) Let T' be an cq group of h phisms of R.
Show that 1f a homeomorphism seT lcaves at least one point of R
fixed, and 1 u 15 increasing, then u s the identity mapping (show that
otherwise the group generated by u is not equicontinuous at a suitably
chosen fixed pomnt of u). If u 15 decreasing, then u? is the identity
mappng.

€ 15) Let X be a compact metrizable space, let T' be the group of all
homeomorphisms of X, andlet G be a subgroup of I' which operates
transttwely on X If H 1s the centralizer of G in T, show that H
1s equicontinuous  [Argue by redustio ad absurdum, supposmng that H is
not equicontinuous at some pomnt 2 & X; deduce the existence of a sequence
of pomts %,e X and a scquence of clements u, H such that

mr=a,  Vmuld =5 lme() =
ped s are

where 53¢ Hence show that the sequence (u,) converges pointwise
in X, but that no point of X is a point of umiform convergence of this
sequence; this contradicts Exercise g of § 1]

16) Let X be a HausdorfFuniform space andlet T' be an equicontinuous
group of homeomorphisms of X. The equivalence relation R defined
by I' on X is open (Chapter I, § 5, no. 2).

4) Show that if every orbit of T* is closed in X, then the orbat space
X/T' is Hausdorf.
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compact, show that D 15 both open and closed in X (use no 1, Proposi.
tion t, Corollary 2)

5) In the real plane R?, let E be the set consisting of the origm (o, 0)
and the pomnts (0, 2°") as # runs through the mtegers > o For
each neZ such that ns%0 let u, be the restricion to E of an affine
linear mapping of R? into atself, such that u,(0, 0} = (r, 0), and
u(0, ™) = (0, ") where § 15 an irrational number such that
o <6<t Let X be the (locally compact) subspace of R? which i
the umion of E and the sets u,(E) for reZ,n% 0. Furthermore, let
u, denote the identtty mapping of E, and extend u, (n=Z} to the
whole of X by putting u#,(tua(z)) = #psm(*) forall xeE and all me Z.
The set G of mappings u, 18 a group of homeomorphisms of X which
1s given a discrete topology so that G operates continuously on X,
Show that G 1s proper at every point of X, but is not equicontimuous
and does not operate properly on X.

¢) Let X be the (not locally compact) subspace of R? (identified with
C) which 1s the umon of the half-plane y > 0 and the origin. Define a
homeomorphism # of X onto itself by putung u(o, o) 0, 0) and
u(re®) = re®  where o 1w if o<wgln o=
for {xSugi~ v=20—zfor fr€uw <= (<0, 0<0 <3

Let ‘G be the group of homcomorphisms of X generated by , and
endow G with the discrete topology. Show that G is equicontinuous
on X and that the set of points of X at which G is proper is the half-
plane 3> o.

w—%=

19) Let X be a HausdorfFuniform space and let G be 2 group of homeo-
morphisms of X onto atself

a) Show that if G is equcontinuous and discrete with respect to the
topology of pointwise convergence, then G is closed n &, (X; X)

5) Show thatsf G, endowed with the discrete topology, is proper at one
pomt of X at least (Exercise 18), then G is closed m J, (X, X) and
the topology of pamtwise convergence nduces the discrete topology
on G

) Let X be the topological sum of two spaces Xy, Xi, cach homeo-
morphic to R, so that X can be identificd with the product space
R x {1, 2{. Endow X with the product umformuy. For each par
(m, ) of rational integers let u,, denote the homeomorphusm of X
defined by uu(xg) = x; + m2 + nd, tp{es) = x, + my 4 n3, where
xneX, and xeX,, and a, §, ¥, 3 are four non-rero real numbers such
that afg and y/3 are irrational and distinct.  Show that the #, form
a group of homeomorphisms of X which 15 equicontinuous and discrete
with respect to the topology of pointwise convergence, but that G (with
the discrete topology) 1s not proper at any point of X.
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) Let G be a group of homeomorphisms of a Hausdorff uniform
gace X Suppose that G is equicontinuous and that G, endowed with
the discrete topology, operates properly on X.  Suppose, furthermore, that
theset of points x € X, which are not fixed points of any homeomorphism
¢eG other than the identity, is dense in X. TUnder these conditions,
dow that there is an open set F in X such that Fn U(F) =@ for all
4G other than the identity, and such that the canonical image of F
in the orbit space X/G is a dense open subset of X/G, homecomorphic
to F {use Exercise 16 and Zorn’s lemma).

§3

) Let X be a topological space and Y a metric space. Show that the
sctof all mappings of X into Y whose oscillation (Chapter IX, § 2, no. g)
atevery point of X is <o (where a is a given real number > o) is
closed in the space JF, (X; Y).

9) Let X be a set; show that the mapping « ->sup u(x) of $B(X; R)
into R is continuous. zex

5) Let X be a metric space, 4 the metricon X. For each xeX let

¢, be the real-valued function y — d(x, ) which is continuous on X.

Show that the mapping x —d, is an isomelry of X onto a subspace of

G:(X; R) [endowed with the pseudometric &(u, v) = sup |u(x) — o(x){].
zeX

4) A completely regular space X is such that the metrizable space
G (X; R) is of countable type if (and only if) X is compact and metriz-
able. [By considering the Stone-Ciech compactification of X (Chapter
IX, § 1, Exercise 7) show that X must be metrizable, and then observe
that the space €, (Z; R) is not of countable type. ]

5) Let X be a completely regular space.

¢ every point of the space G, (X; R) has a countable fundamental
system of neighbourhoods, then there exists an increasing sequence (K;)
of compact subsets of X such that every compact subset of X is contained
msome K,; and €,(X;Y) isthen metrizable for any metrizable space Y.

% .(X; R) is metrizable and of countable type if and only if all the
tmpact subspaces K, are metrizable (use Exercise 4). For every metriz-

able space Y of countable type, C.(X;Y) is then metrizable and of
countable type.

§n6)Ya) Let X be a topological space, Y a metric space, d the metric
For e "h aninteger >0 and S a subset of the space X" X Y™ X Ri.
@(X,ac, pomt z = ((x;), (»), r) &8, let U, be the open subset of
1\&; Y) consisting of continuous mappings f of X into Y such that
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d(f(x)y 3) <t for 1<i<n Show that, of D is a dense subset
of 8, wehave {J U, = J U,

se8 2ED
5} Deduce from a) that if the topologies of X and Y have countable
bases, then every subspace of €, (X;Y) is a Lindelof space (Chapter I, § o,
Exercise 15) and is therefore paracompact (Chapter IX, § 4, Exercise 23).

7) Let X be a space which has a countable dense subset, let Y bea
Hausdorff space in which every pomt has a countable fundamentat system
of neighbourhoods (resp a metrizable space) and let H be a subset of
C{X;Y). Show thatif T isa topology on H which is finer than the
topalogy of pomtwise convergence in X and with respect to which H
15 compact, then every point of H has a countable fundamental system
of neighbourhoods in the topology & (resp. © is metrizable). (Note
that if D 1s any countable dense subset of X, then the topology & is
finer than the topology of pointwise convergence in D and that the latter
topology 15 Hausdorff.)

8) a) Let f be the contnuous mapping (%,5) -4 of R x R into R.
Show that the mapping x —f(x, .} of R mto G, {R; R) is not contin-
uous.

5) Let X, Y be two topological spaces, let Z be a uniform space and let
f1X XY >Z be a mapping. Show that if f(x, ) is continuous on
Y forall xeX and if the mapping x-»f(x, .) of X into C(Y;2)
15 continuous then f 1s connawous on X X Y.

€ 9) a) Let X,Y,Z be three topological spaces. Suppose that X and
¥ “are Hausdorff and that every point of each of these spaces has a coun-
table system of neighb d. Let f be a mappmg
of X X Y ito Z such that f(x, .) 1s continuouson Y for cack xeX
and such that the mapping x —f(x, .) of X into &, (Y; Z) is contin-
uous. Show that f 1s continuous on X X Y (cf.§ 1, no. 6, Theorem 2,
Corollary 3)

5) Show that the conclusion of a) holds good when the hypothesis on
X is replaced by the hypothesis that X 1s locally compact and Z 1 a
umform space (usc § 2, Exercise 2, and Ascoli’s theorem) [ef. Exercise
1 5],

€ 10) Let X, Y be two topological spaces. For each subset A of X
and each subsct B of Y let T{A, B) denote the setof all ze € (X;Y)
such that 4(A) < B

Let 1t=(U,) be an open covenng of X. Let Ty denote the
topology on € (X; Y) generated by the sets I(F, V), where V runs
through the set of all open sets of Y and F runs through the set of closed
subsets of X contained 1n at least one U,.
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o) Show that By is finer than the compact-open topology (use Theorem g

of Chapter IX, § 4, no. 3). If X is regular, the mapping (v, x) — u(x)
of E(X; Y) x X into Y is continuous when € (X, Y) carries the

topology -

b Let & bea topology on € (X;Y) with respect to which the mapping
i 9l of C(X; ¥Y) XX into Y is continuous. Let z, be
a continuous mapping of X into Y, let x; bea pointof X andlet V
b an open set in Y which contains uy(x,). Show that there exists
anopen neighbourhood U of x, in X such that T(U, V) is a neighbour-
hood of &, with respect to .

) Suppose that X is completely regular. Show that if, among the
topologies © on € (X; R) for which (x, ¥) — u{x) is continuous, there
isatopology ©, coarser than all the others, then %, must be the compact-
open topology.  [Let T(U, V) be a neighbourhood of o in € (X; R)

with respect to b, Let (W,) be any open covering of U; let
% be the covering of X formed by thescts W, and {fU. Using a) and
arguing by contradiction, show that a finitc number of the W, cover U.]

d) Show that, if X is completely regular but not locally compact, the
mapping {u, &) > u{x) of C,(X; R) x X into R is not continuous
atevery point. [Consider a point x, which has no compact neighbour-
hood and argue by contradiction, using 4).]

C1) Let X, Y be two non-empty topological spaces whose product
XX Y isnormal. Let T be a topology on theset € (X; R) such that,
for every continuous real-valued function f on X X Y, the mapping
J=f{.) of Y into € (X; R) is continuous.

q) Let 3, be a limit of a sequence (z,) of points of Y all distinct
f"{m Jo let A be a countably infinite closed subset of X, all of whose
ponts are isolated, and let I be a bounded open interval in R. Show
that, with respect to the topology G, the set T(A, I) (Exercise 10) has
10 interior point. [If uye T (A, T), construct a continuous mapping
[XXY >R such that f(.,p,) =u, and that f(., z,) & T(A, I)
forall 2, % %] .

b) Hence show that if, in addition, the mapping (& %) — u(x) of
b(X; R) X X into R is continuous with respect to the topology D,
if X is locally paracompact (Chapter IX, § 4, Exercisc 27), and if there
E‘m in X asequence of points (x,) which converges to a point distinct
omall the x,, then, X must be locally compact [use Exercise 104)
and Chapter IX, § 4, Exercise 25¢)].

3‘ Deduce ﬁ'(.)m b) that if X is metrizable but not locally compact, then
fI¢ are points of @, (X; R) which have no countable fundamental
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o, 10 the line » = 2/(2n -+ 1) is the translation (x, N = (x+1,9);
on the other hand, consider the scquence (x,) of translations

(x2) = (%3 4 2/(2n + 1)).]

i5) @) Let X bea uniform space, let & be a set of subsets of X, let
T be the group of all homeomorphisms of X, and let u;eI". Suppose
that for each A e & there exist Be& and an entourage V of X such
that: o) 151 is uniformly continuous on V(A); @) the relations uel
ad (u(x,), u(x)) €V for all xeB together imply Acu(B). Under
these conditions, show that u —u~! (defined on I') is continuous at
4, with respect to the topology of &-convergence on '

§) Show that the condition §) may be replaced by the following: g’)
there exists a connected set Cc X such that V(A)c C and V(C) is
contained in the interior of wu,(B). [Show that ') =3~ ) by reductio
o absturdum. ]

(16) Let X be a uniform space and let I" be the group of all automor-
fhisms of the uniform structure of X.

q) Show that the topology of uniform convergence on T' is compatible
with its group structure (use Exercises 12 and 15). Moreover, the uni-
formity induced on T by the uniformity of uniform convergence in X
coincides with the right uniformity of the topological group T

) If X is the compact interval [o, 1] of R, show that the topological
goup T' defined in 4) has no completion [construct a sequence of homeo-
morphisms (1) of X which is uniformly convergent but such that the
sequence (4;1) is not uniformly convergent].

1) Shw_/ that if X is a complete Hausdorff uniform space, then the
topological group T' is complete with respect to its fwo-sided uniformity
(Chapter 111, § 3, Exercise 6). [Observe that if & isa Cauchy filteron I

with respect to this uniformity, then ®(x) and ®-'(x) converge in X
forall xe X]

$17) a) Show that if X is a locally compact, locally connected space,
then the topology induced on the group I' of all homeomorphisms of X
by the compact-open topology coincides with the topology ©Gg defined
no. 5 [use Exercise 15 b) and Proposition 12 of no. 5]-

b Let X be the locally compact subspace of R consisting of the points
vand 2"(neZ), If T is the group of all homeomorphisms of X,
show that the topology induced on I' by the compact-open topology is-
ot compatible with the group structure of I

;8)) Le.t X bea locally compact space endowed with a uniformity compat-~
¢ with its topology, and let I' be the group of homeomorphisms
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system of neighbourhoods [use Exercise 9a)]  Give a dircct proof wsing
Exercise 5 a).

12) Let X be a topologcal space, ¥ and Z two umiform spaces, &
aset of subsets of X and % a set of subsets of Y.

) Let upe€(X,Y). Show that if, for each A, uy(A) is contained
1 some set of I, then the mapping v—>vou, of Cy(Y; Z) into
€z (X, Z) 15 contmuous.

4) Let H be a subspace of Cg(X; Y) andlet z,eC(Y;Z) Show
that if v, 15 uniformly continuous on H(A) for all A«®, then the
mapping u->ve0u of H into g (X;Z) 1 continuous.

¢) Let u,&C (X, Y) and let y,eC(Y; Z). Suppose that, for each
Ae, thercewsts Be ¥ andan V of Y satisfying dt

(1) V(,(A)) €B, () z, 15 uniformly continuous on B

Then the mapping {1, 9) =7 o « of Cz (X; ¥} X &g (¥; 2) into € (X;2)
15 continuous at (g, %), In particular, the mapping (4, ) >vou of
C.(X, Y) x G (Y; Z) into €, (X, Z) is continuous at every point
(o vg) such that 2, 15 umformly continuous on Y.

d) Let 1, be the homeomorphism x-»2® of R onto itself, Show
that the mappmg u — 4o & of C, (R; R) into itself is not continuous
at every point

€ 13) Let X, Y, Z be three HausdorfT topologcal spaces.

) Show that for all u,e € (X;Y) and all v,=€ (Y; Z), the mappings
vorveu, of C (Y, Z) mto C(X,Z) and u—>rzgpou of G (X;Y)
into €, (X, Z) are continuous.

5) Suppose that every pomnt of Y (resp. Z) has a countable fndamental
system of neighbourhoods and that X has a countable dense subset
Let H be a compact subset of € (X; Y). Show that the mapping
(1) >vou of Hx C(Y;2) mto € (X; Z) is continuous. [Start
by showing that if K is any compact subset of X, then H(K) isa com-
pact subsct of Y, by using Exercises 7 and g a).]

¢) Show that the mapping (4, ) >vou of € (Q; Q) xC, (Q; Q
mto €, (Q, Q) 15 not continuous at any pont,

14) Let T' be the group of all homeomorphisms of the real plane R?
endowed with the topology of powntwise convergence. Show that the
mapping (#,5) »veu of I'X ' into T is not continuous _[Consider
a sequence of homeomorphisms {7,) such that v, leaves fixed every
pomt {x,3) for which ye&[1/(n + 1), t/1], and such that the restriction

330



x FUNCTION SPACES

of X. For eachentourage V of X and each compact subset K of X,
let G(K, V) denote the set of pairs (v, 2) of homeomorphisms of X
such that (u(x}), »(x}) € V and (s~1(x), v~{x)} € V forall xeK.

a) Show that the sets G(K, V) forma fundamental system of entourages
of a umformity 91 on T' and that the topology induced by this umiform-
1ty is the topology Gy defined in no. 5.

b) Show that if X is complete with respect to its umformity, then I'
1s complete wath respect to the uniformity U,

¢) Show that T' is complete with respect to the two-sided uniformty
defined by the topology By [use Exercise 16 ¢)].

d) Take X to be the locally compact subspace of R consisting of
pomts of the form n4 2" (neZ, m an integer >1). Show that
on the group I' neither the uniformity U nor the uniformity of compact
convergence 1s comparable with any of the three uniformities (left, nght
and two-sided) defined by the topology Ty

1g) Let H be an cqui group of } hisms of a umform
space X, endowed with the topology of pointwise convergence, H isa
topologlcal group (no. 5, Corollary to Proposition 10).

a) Show that the left umformuty on H is finer than the uniformity of
pomtwise convergence and that these two uniformities coincide 1f H i
umformly equicontinuous,

b) Let & be the homeomorphism of the real line R defined by
() =x+1 for #<o, uls) =x+1f{x+1) for x30. Let Hbe
the subgroup generated by u in the group of all homeomorphisms of
R. Show that H 1s equicontinuous and 1s duscrete with respect to the
topology of pamtwise but that the unifc of pomtwise
convergence on H 18 not the discrete uniformty (observe that the Lmit
W (x) —'(x) 15025 7 tendsto 4 oo}

) Take X to be the discrete space N of natural integers, endowed
with the metric d such that d{m, n) = 1 whenever m#%n, and take H
to be the group of isometrtes of N, which 15 umformly equicontinuous
Show that the topological group obtained by endowing H. with thetopol-
has mo {same method as m

ogy of poin
Exercise 16 5)).

d) Suppose that X is Hausdorfl and complete and that H s uniformly
equicentinuous  Show that the Cauchy filters on H with respect to the
two-sided uniformty of the topological group H converge in the space
G, (X; X); that theset H' of theur limt points is a uniformly equicontin-
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wous group of homeomorphisms of X, which (endowed with the topol-
oy 0? pm'mwisc convergence) is complete with respect to its two-sided
mformity; and that H is dense in H'

20) Let X be the locally compact subspace of R? consisting of the lines

=0,y=1fn (#>1), andlet G be th.e group of all homeomorphisms
4 of X whose restriction to each of the lines y = 0, y = 1/n is a transla-
gmof the form  (x, ») = (¥ + @y, ¥). Show that G satisfies the conditions
of Theorem 4 of no. 5, but that the topologies of compact and pointwise
wnvergence on G are distinct.

(o) Let X be a locally compact space, and let T be a subset of
E(X; X) consisting of surjective mappings. Let © be a topology on T
whichis finer than the topology of pointwise convergence and with respect
towhich T is locally compact, and consider the following property of the
pair (T, ) :

A} Forall ueT and veT, we have uoveT; and for each ueT
the mappings »—>u o » and v —v o u of T into itself are continuous with
respect to ©.

0) Suppose that X is compact and metrizable, that the pair (T, G) satisfies
() and there exists a group G of homeomorphisms of X which is
dnein T with respect to the topology ©. Show that the set H of
bijetive mappings in T is the complement of a meagre set in T. [Note
firt, using Exercise 7, that every point of T has a compact metrizable
neighbourhood (with respect to ©). Let (V,) be a fundamental system
of neighbourhoods in T of the identity element ¢ of G, and let H,
betheset of all ye T for which there exists ueT such that voueV,;
oberve that H contains the intersection of the sets H,.]

) Show that, under the hypotheses of a), the restriction to G X X
ofthe mapping = : (u, ) — u(x) of T X X into X is continuous. [Show
fist that it is enough to prove that, for cach x,e X, there exists u,eH
such tha:t = 1S continuous at (#9s %¢)s Dby establishing that this implies
the continuity of = at (e, xp). If V is a compact metrizable neighbour-
boodof ¢ in T, show next, by using a) and Chapter IX, § 5, Exercise 23,
that there exists u,€ Hn'V such that = is continuous at (ug, x4).}

2112}2;) Let X be a compact space, and let T be a subgroup of the group of
5 meomorphisms of X, endowed with a locally compact topology
for which "condition (A) of Exercise 21 is satisfied. Let G bea
:)O:"'ggle SUbgr?up of T, and let f be a continuous real-valued function
e -IGonsxder the continuous mapping x—>g¢(x) of X into IS,
g% gt K eR and o(x) = (f (#(x)))ues- Let Y be the image
under o3 Y isa compact metrizable subspace of I€.
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of X For each entourage V of X and each compact subset K of X,
let G(K, V) denote the set of pairs (s, 2) of homeomorphisms of X
such that (u(x), o(x)) €V and («7(x), 24x)) eV forall xeK

) Show that the sets G(K, V) form a fundamental system of entourages
of a uniformity 4 on T' and that the topology mduced by this uniform-
sty is the topology Gp defined i no. 5.

5) Show that 1f X is complete with respect to its uniformity, then [
1s complete with respect to the uniformity U.

¢) Show that T' is complete with respect to the two-sided uniformity
defined by the topology Gg [use Exercise 16 ¢)],

d) Take X to be the locally compact subspace of R consisting of
points of the form n 42" (neZ, m an integer >1) Show that
on the group I neither the umformity U nor the uniformty of compact
convergence 15 comparable with any of the three uniformuties (left, right
and two-sided) defined by the topology ©p.

1g) Let H be an equi group of h phisms of a umform
space X, endowed with the topology of pomtwise convergence, H isa
topological group (no. 5, Corollary ta Praposition 10),

a) Show that the left uniformity on H 1s finer than the uniformity of
pomtwise convergence and that these two uniformities coincide if H 1s
uniformly equicontinuous. -

5) Let » be the homeomorphism of the real line R defined by
wF) =541 for x50, ulx) =x+1f(x+ 1) for x20. Let H be
the subgroup generated by u in the group of all homeomorphisms of
R. Show that H 1s equicontinuous and 1s discrete with respect to the
topology of pomtwi: but that the ity of pointwise
convergence on H. 1 not the discrete uniformity (observe that the hmut
wi(x) —u'(x) 13025 n tendsto 4+ o).

¢) Take X to be the discrete space N of natural integers, endowed
with the metric d such that d(m, n) =1 whenever m#£n, and take H
to be the group of 1sometries of N, which is uniformly equicontnuous
Show that the topologcal group obtained by endowing H with the topal-

has no letion [same method as in

ogy of p
Exercise 16 6)].
d) Suppose that X 15 Hausdorff and complete and that H is uniformly
equicontinuous. Show that the Cauchy filters on H with respect to the
two-sided uniformity of the topological group H converge in the space
,(X; X); that the st H' of their imat points is 2 umformly equicontin-
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compact in Gy (X3 X) (Chapter II, § 4, Exercise 6), and hence equicon-
tinuous.]

o) Let X be a locally compact space, T a group of homeomorphisms
of X, & a locally compact topology on T, which is finer than the
topology of pointwise convergence and for which condition (A) of
Exercise 21 is satisfied.  Show that the mapping (4, x) —u(x) of T x X
mto X is continuous with respect to ©. [Extend the elements of T
1o homeomorphisms of the one-point compactification X' of X; then,
by using Exercise 22 d), show that the result of Exercise 23 is applicable. ]

{g5) Let G be a group endowed with a topology © with respect
o which G 1is locally compact and the translations ¢->s and ¢—> 4
are continuous on G for all se G. Show that © is compatible with
the group structure of G (Theorem of R. Ellis). [Identify G with the
gioup of left translations of G, endowed with the topology of pointwise
convergence, so that G is identified with a group of homeomorphisms
of the one-point compactification X of G, endowed with the topology
of pointwise convergence. Using Exercise 24, deduce that on G the
topology of pointwise convergence in X is the same as the topology of
uniform convergence in X (no. 4, Theorem 3, Corollary 1), and use
Proposition 11 of no. 5.]

{ 26) g) Let X be a locally compact uniform space, G a group of
homeomorphisms of X, and T the closure of G in & (X; X).
Show that T is compact with respect to the topology of pointwise conver-
gence and is a group of homeomorphisms if and only if G is relatively
compact in G, (X; X). [Use Exercises 12 and 24 and the Corollary
to Theorem 4 (no. 5).]

B Let G be a locally compact, non-compact topological group and let
X be its one-point compactification; G can be identified with a group
ofhomeomorphisms of X. Show that G is not equicontinuous, although
Isclosure in G, (X; X) is compact.

27) Let X be a Hausdorff uniform space and let G be an equicontinuous
group of homeomorphisms of X,

4 Apoint x,eX is said to be almost periodic with respect to G if the
obit of x, with respect to G is relatively compact in X. Let Y be
the {compact) closure of this orbit in X; then u(Y)cY forall ueG.
Let & be the restriction of # to Y considered as an element of € (Y;Y);
;EIO\.V that # is a homeomorphism of Y onto itself and that the closure

G, (Y; Y) of the image of G under the mapping u->% is a
Wmpact group of homeomorphisms (no. 6, Theorem 4, Corollary)
which is transitive on Y.
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4) Show that the set of all e T such that geo =g is a subgroup K
of T whose normalizer in T contains G. Let R be the equivalence
relation wopicK on T, and let T' be the quotient space T/R
and p: T—>T/R the canonical mapping Show that T’ 15 locally
compact, and that if we set p(u)o = p(u o 2), then T operates on the
nght on T’ 1in such a way that ¢ —¢'s 1s continuous on T’ for all
veT.

8) Let G'=p(G), let H' be theclosureof G in 'T", andlet H=2(H).
Show that,1f ue H, therelation p(s) =p(0') implies p(u o 2) = p(u o
sothat H operates on thelefton T’; moreover, if we set 4p(z) = plu o o)
for ueH,ve T, then themapping ¢’ —>ut’ 1s continuouson T".  Finally,
1f u, 4, are elements of H such that p(u;) = p(us), wehave wut’ =uyt's
hence, by passing to the quotient, we define a mapping (&', t') > u't’
of H' x T' mto T, such that #'—»u'#’ is continuous on T’ for all
weH' Show thatif v'eH' and »' e H', then u's’«H' and that the
law of composition so defined on H’ induces a group structure on G’
(wnth respect to which G’ is isomorphic to GK/K).

9 If weH, the relation ofx) = 9(») mphes p(u(x)) = p(u() and
consequently there 15 a unique mappmg & :Y — Y suchthat ¢ e u=@o g
Show that & 13 continuous and susjective and that & = #, if and only
of p{u) = pluy); this allows us to wnte % = i, where &' = p(u), and
defines an myective mapping ¢ - ' ~>& of H' into C,(¥; ¥). Show
that ¢ 15 contmuous and that ¢(w's') = §(&') ° 3(¢'); wsing ¢ to identify
H' with a subset of C, (Y, Y) and denoting by ' the topology on H'
induced by that of T, show that (H, O') satisfies property (A) of
Exercise 21

d) Show that, if G 15 endowed with the topology induced by ©, the
mappmg {#, 2) > ulx) of G %X X mto X 1s conunuous. [Show that,
for cvery continuous realvalued function f om X, the mapping
(4, §) —f (u(x)) 15 continuous on G x X, by using ¢) and Exerase 21;
then apply Chapter IX, § 1, no. 5, Proposition 4.]

€ 23) Let X be a compact space and let T be a subset of C(X; X)
Which 1s stable under the law of composition (w, 5) —>u o 7. Suppose
that T 13 endowed with a topology G finer than that of powntwise conver-
gence and with respect to which T 1s locally compact; also suppose that,
for everv countable stable subset S of T, the restnction to S X X of
the mapping = - (4, x) >u(%) of T x X mto X is continuous. Show
that, uncer these conditions, = 1s contnuous on T X X. [Let V be
a compact subset of T {wath respectto G); show that, for each countable
subset D of V, the closure of D with respect to G is contamed 1n the
closure of D with respect to the topology of unform convergence, by
usmg Corollary 1 of Theorem 3 {no. 4). Deduce that V 15 relatively
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ampactin €, (X; X) (Chapter I, § 4, Exercise 6), and hence equicon-
fimuous.]

o) Let X bea locally compact space, T a group of homeomorphisms
of X, & a locally compact topology on T, which is finer than the
topology of pointwise convergence and for which condition (A) of
fxercise 21 is satisfied.  Show that the mapping (4, ¥) - u(x) of T x X
e X is continuous with respect to ©. [Extend the elements of T
1o homeomorphisms of the one-point compactification X’ of X; then,
by using Exercise 22 d), show that the result of Exercise 23 is applicable.]

(95 Let G be a group endowed with a topology € with respect
towhich G is locally compact and the translations ¢->st and t—ts
are continuwous on G for all s G. Show that & is compatible with
the group structure of G (Theorem of R. Ellis). [Identify G with the
gioup of left translations of G, endowed with the topology of pointwise
convergence, so that G is identified with a group of homeomorphisms
of the one-point compactification X of G, endowed with the topology
of pointwise convergence. Using Exercise 24, deduce that on G the
topology of pointwise convergence in X is the same as the topology of
wiform convergence in X (no. 4, Theorem g, Corollary 1), and use
Proposition 11 of no. 5.}

{26) g Let X be a locally compact uniform space, G a group of
bomeomorphisms of X, and T the closure of G in & (X; X).
Show that T is compact with respect to the topology of pointwise conver-
gence and is a group of homeomorphisms if and only if G is relatively
wmpact in G, (X; X). [Use Exercises 12 and 24 and the Corollary
to Theorem 4 (no. 5).]

b) Let G be a locally compact, non-compact topological group and let
X be its one-point compactification; G can be identified with a group
9f homeomorphisms of X. Show that G is not equicontinuous, although
tsclosure in G (X3 X) is compact.

2) Let X be a Hausdorf uniform space and let G be an equicontinuous
group of homeomorphisms of X.

9 Apoint xyeX is said to be almost periodic with respect to G if the
ubit of x; with respect to G is relatively compact in X. Let Y be
the (compact) closure of this orbit in X; then #(Y)cY forall ueG.
hct i be ﬂ}e restriction of # to Y considered as an element of € (Y;Y);
;0‘." that # is 2 homeomorphism of Y onto itself and that the closure
. i G, (Y; Y) of the image of G under the mapping u->% is a
ompact group  of homeomorphisms (no. 6, Theorem 4, Corollary)
which is transitiye on Y.
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5) Suppose that X is complete. Then x, is almost periodic with
respect to G if and only if, for each neighbourhood V of x, in X,
there is a fimte number of elements #,€G such that, for all ue G, we
have 1 Hu(xy)) €V for at lcast one index i

¢) Suppose that z, is almost periodic and that G is endowed wath
a tapology compatible with its group structure.  With the notation of a),
the mappmg #—i of G inte I (endowed with the topology of uni-
form convergence) 15 continuous if and only i, for each parr of distinct
pomts %,y of Y, there s a neighbourhood U of ¢ 1n G and 2 neigh-
bourhood V' of » such that the relation ueU imphes u(x) ¢V [use
the fact that the topologies induced on I' by those of €, (Y; ¥) and
€, (Y, ¥) are thesame]

28) Let G be a topological group and let X be the Banach space of
bounded continuous mappings of G into C endowed with the norm

(/1) = sp L

Foreach f € X andeach s G, let U, f denote the function ¢ - f(s-3r),
which belongs to X, so that the U, as s runs through G, forma
group of isometrics G of X. Anelement feX issaid to be an almst
perwodsc function (on the left) on G if f is an almost periodie element of
X with respect to the group G, For this to be so it is necessary and suffi-
crent that, for each ¢ > o, there should exist a finite number of elements
5, &G with the property that, for each se G, there is at least one index
+ such that {f (%) —f(T){<e forall feG.
a) Suppose that f 1s almost periodic. Let Y be the closure in X of
the orbit of f under G/, andlet T be the closure in €; (Y;Y) of the
set of restriétions ¥, of the U, to Y (s=G). For cach gel, let
Je€Y betheimage of f under a. Foreach s&€G, we have

Jolt) = U fels)-
Deduce that there 13 a continuous function 7 on I' such that f(s) = F(¥,)
{use Exercise 27 ¢}].
5) Show by using o) that a function feX is almost periodic on G
if and only if 1t 15 of the form go g, where g 15 the canomcal mapping
of G 1nto the compact group G¢ assocrated wsth G (Set Theory, Chapter IV,
§ 3, no. 3, Example 8) and g 15 a continuous mapping of G mto C.
¢) Take G tobe the addiive group R. Show that1if £ is almost penodic
on R, thenfor each ¢ > o there exists a real number T > o0 such that
every interval of R oflength T contains a number s such that

17+ —f(l s forall xeR
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(¢ s called an “c-period” of ). [Use b) and Exercise 2 of Chapter V,
1)

x) Let X be a compact space and let G })e a topological. group oper-
ating continuously on X, such that every orbit of G isdensein X. Show
that if, for every continuous real-valued fux}ctlon S on X, there exists
5eX such that s —> S (s.%,) is almost periodic on G, then G is equi-
continuous (use the fact that X is homeomorphic to a closed subspace
ofacube)., Consider the converse, when G is abelian,

§ 4

i) Let X be a Lindelof space (Chapter I, § 9, Exercise 15), let H be a
divected set (with respect to the relation =) of continuous real-valued
functions on X such that the lower envelope g of the functions of H
is continuous.  Show that there exists a decreasing sequence of functions
(f) belonging to H which converges pointwise to g.

2) Let T be a compact interval in R and let (f,) be a sequence of
monotone real-valued functions defined on I which converges pointwise
in I to a continuous function g. Show that g is monotone and that the
sequence (f,) converges uniformly to g in I.

{99 Let T' be a simply transitive group of homeomorphisms of R
endowed with the topology of pointwise convergence. For cach xeR let
5; denote the element of T' such that s5,(0) = x. Show that the mapping
x-S, s a homeomorphism of R onto I’ [use the fact that if sel
is such that x < s(x) for some xeR, then y<s(y) for all yeR];
hence show that T' is isomorphic to R as a topological group [use Exer-
ase 17 a) of § 3 and Theorem 1 of Chapter V, § 3].

4) Let X bea compactspace and let H be a vector subspace of € (X; R)
such that l¢|eH whenever neH. Then a continuous real-valued
fnction f on X can be uniformly approximated by functions belonging
to‘H if and only if, for each pair x, y of points of X, the function f
satisfies every linear relation « F &) = 8f(») where (a, §) aresuch that
“_3?0 and og(x) = fg(y) for every function geH. [Apply Proposi-
tion 2 of no. 1, observing that the image of H under the mapping
"T’("(x) u()) is the whole plane R2, or a line of equation X =Y
vith of > o, "or else consists of the single point (0, 0).]

5)11'“ X 1.)e a compact space and let H be a set of continuous real-
IYa ted functl’?ns on X, Let R be the equivalence relation “u(x) = u( )
@all ueH”. A continuous real-valued function f on X can then be

wiformly  approximated by polynomials (resp. polynomials with no
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constant term) in the functions of H. if and only if £ is constant on each
cquivalence class mod R {resp. if and onlyif f is constant on each equiv-
alence class mod R and vamshes at all points x such that ufx) = o0
forall weH]

€6) Let X be a completely reqular space and let €= (X; R) denote
the normed bra of & (X; R) ing of all bounded i
real-valued functions on X, In order that every subalgebra of €2 (X; R),
which separates the points of X and contains the constant fanctions,
should be dense 1n €” (X; R), itis necessary and sufficient that X should
be compact._fLet §X be the Stone-Gech compactification of X (Chap-
ter IX, § 1, Exerease 7). Show that if BX —X is not empty then there
are non-dense subalgebras of €*(X; R) which separate the points of
X and contam the constant functions, by observing that € (X; R)
may be identified with € (3X; R).}

€ 7) Let X be 2 non-compact, completely regular space.

) Show that the following properties are equivalent:

) The subalgebra of €*(X; R) consisting of functions of the form
¢+, where ¢ is a constant and f has compact support (Chapter IX,
§4,no. 3), isdensean €= (X; R).

2) If gX is the Stone-Cech compactification of X, then pX—X
consists of a single pomnt.

) There 15 only one uniformity on X, compatible with its topology,
with respect to which X is precompact.

2) If A,B arc two completely scparated closed subscts of X (Chapter IX,
§ 1, Exercse 11) then one of A, B is compact.

2 If 4 is any umformuy on X compatible wath 1ts topology and if
V 1s any entourage of ¥, thereisa subset L of X whose complement
1s compact, such that L x LeV.

6) There 15 only onc umformity on X compatible wth 1ts topology.
{Note that ) tmphes that X 1s locally compact and therefore open m
28X, and hence show that a) =i 8); to prove that §)—>-a) use the
Weierstrass-Stone theorem. To show that ) =), use the fact that
the unifermuty indueed on X by that of §X is the finest uniformuty
compatible with the topology of N, with respect to which X 1s precom-
pact  To show that y) —-3), use Chapter IX, § 3, Exercise 11. To
show that 2) =33}, show first that1f V is any entourage of U, there
exists zeX such that V(z) is not compact; otherwise X would be
complete with respect to 4L and paracompact (Chapter 11, § 4, Exercisc g),
therefore normal, show then with the help of 2) that X would be
countably compact (Chapter IX, § 2, Excresse 14), and finally use Chapter
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1§ 4, fxercise 6. Then apply t'his result to an cnt.ourage V defined by

{5 RS where f is a continuous pseudometric on X, and deduce
tom §) that there is a subset L of X, whose complement is compact,
ach that L X LcV. Finally, to establish that {)==-46), observe
hat every ultrafilter on X either converges or is finer than the filter of
complements of relatively compact subsets of X.]

}) Show that a space X which satisfies the .equivalcnt conditions of a)
is pseudo-compact (Chapter IX, § 1, Exercise 22). [Use Exercisc 12
o Chapter IX, § 1, or else observe that if X is not pseudo-compact,
there is @ sequence (x;) of points of X which has no cluster point
and a continuous mapping f: X —[o, 1] such that f(x,,) =0 and

flim) = 1]

glee Y be a non-compact, completely regular space. Show that
the subspace X of BY which is the complement of a point of Y —Y
stisfies the conditions of ).

n
§ Let (X)i<ign be a finite family of compact spaces, let X =H X

i=1
be their product, and for each index ¢ let F; be a closed subset of X.
Show that every continuous real-valued function on X which vanishes

o the union of the sets F; X H X; (1<i<n) can be uniformly
, JRi
approximated by finite sums of functions of the form
(xl’ s xn) g ul(xl) e un("n):

where u; is a continuous real-valued function on X; which vanishes
mF (1<i<n).

* ) Let (ra)az1 be the sequence of distinct rational numbers belonging
to thc.interval I={o, 1] of R, arranged in some order. Define by
}nduc_txon a sequence of closed intervals I,c I, as follows: I, has as
is midpoint the point T with the smallest index not contained in

yﬂlp; itslengthis < 1/4® and it meets no interval 1, for which p < n;

(L) is thus a sequence of mutually disjoint closed intervals. On the
product space I X R we define a continuous real-valued function u
& follows: for each integer n > 1, the function x-—>u(x, #) is equal
toy atan interior point of I,, is equal to o on the exterior of I, and
fakes ts values in o, 1]; on the other hand, for each xel, the function
J=>u(x 5) is affine-linear in each of the intervals [#, n 4 1]. Show
y ;; u foalnno.t be uniformly approximated in I X R by linear combina-
and Z} unctions of the form u(x)w(y), where v is continuous on I
of e cOntnuous and bounded on R. [In the space €* (R; R)

‘“ntinvous bounded real-valued functions on R, consider the set of
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partal functions y —u(x, 3) a3 x runs through I; show that there
exists an infinitc soquence  (#,) of these functions such that [ju|| = 1
and |[un—u,f} = 7 whenever m3z£n, Deduce that there cannot exist
any finite-dimensional vector subspace E of C*(R; R) such that the
distance of each u, from E is < 1/4; for otherwise there would exist 2
sequence (s,) of pomts of E such that ||o] =2 and [[m— || > 1/2
whenever mwt s, contrary to the fact that every finite-dimensional
subspace of £ (R; R) is locally compact.]

10) Use the Weterstrass-Stone theorem to give a new proof of Uryschn’s
theorem (Chapter 1X, § 4, no 2, Theorem 2) for closed subspaces of a
compact space X. [If F 15 a closed subspace of X, consider the set
H of ¥ of ings X >R, and observe
that if feH and |f(x)|Sa forall xeF, then there exists a function
geH whichconcidéswith f on F and is such that [¢(x)| < ¢ in X

€ 11) a) Let X be a completely regular space and let Y be a closed
Subspace of X; themappmng ¢ :x—»u]Y of €= (X;R) into €= (Y;R)
1s a continuous lincar mapping of norm < 1. If X is normal, ¢ 1sa
surpectsze sirict morphism; and of Xy denotes the quotient space of X obtain-
ed by rdentifying all the points of Y (Xy is normal by Excrcise 15 of
Chapter 1X, § 4), then the kernel of g can be identified (as a normed
space) with the subspace of G® (Xy; R) consisting of functions which
vanish at o, the canomcal image of Y in Xy,

) Suppose that X 1s metrizable and that the frontier of Y in X 1s
of countable type Show that ¢ : x —u|Y 1s a strict morphism which
has a right snoerse (Chapter 111, § 6, no. 2, Proposition 3). [Let 4 bea
metric compatible with the topalogy of X; let (g,) be a sequence of
pomts of Fr(Y), dense mn Fr(Y), and let V,, be the set of pomts
xeX such that d(s,a,) < 1/m and d(z, Y) > 1/em, construct a family
of contmuous mappings f; m: X —>[o, 1] such that the support of
fum 1scontainedin V,, andsuchthat 3 f, o(x) =1 for all xefY,

nm

the faruly {f, ) bemg ble in some neighbourhood of
each point of [Y. Show then that, for every € €= (¥;R), the function
u which comades with » on Y and 1s equal to %, o(a)) fy.m () for

all x< (Y belongsto €= (X, R) and s such that o(u) =2 (%)

12) @) Let X be a compact space, and let f: X =»Y be a continuous
supection of X onto a compact space Y. Show that the mapping

(*) Ths result does not extend to the case where X is the non-metrizable
compact space N and Y 1s the closed st BN —N.
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fru-rof of E(Y;R) into G(X; R) isa (norm-preserving) isomorph-
anof C(Y; R) onto a closed subalgebra of € (X; R) containing the
ientity element.

§) Conversely, let A be a closed subalgebra of € (X; R) containing
he identity element. Show that there exists a continuous surjection f
o X onto a compact space Y such that ¢ is an isomorphism of
g@V;R) onto A. [If ()rey is a family which is dense in A, consider
the continuous mapping x — (1 (x)) of X into RT and use the Weier-
drass-Stone theorem.]

f) Deduce from &) that, for each sequence (u,) of elements of € (X; R),
there exists a mefrizable compact space Y and a continuous surjective
mpping f: X =Y such that the u, belong to the image of C (Y; R)
under .

€ 13) Let X be a compact space and let A denotc the normed algebra
O(X; R). For each subset M of A, let V(M) denote the set of all
seX such that u{x) = o for all ve M. For cach subset Y of X, let
J(Y) denote the set of all ue A such that u(x) = o forall xeY.

g V(M) is a closed subspace of X and 3J(Y) is a closed ideal of A.
Il s istheideal of A generated by asubset M of A, then V(M) = V(a);
Vand I are order-reversing mappings (with respect to the order relation
of inclusion), and we have V{of( = X; V(A) = @; V(gu}) =@ for
oery unit « of A;

V(UM)=v(Zm)=Von

rEL LEL PY=3

for every family (M), ey, of subsets of A; V(M.M') = V(M) u V(M');

W) ={o}; (@) = A; 3<U Y7‘> =) 3(Y,) for every family (Yy)yer
lel, LEL

of subsets of X,

'b) Show that if o is any ideal of A, then 3(V(a)) =34, and that
I Y is any subset of X, then V(3)(Y) =Y. (For the first of these
wlations, observe that V(a) == V(a) and that we may therefore suppose a
dod; note that if x, y are two distinct points of X— V(a),
there exists weq such that u(x) # u( »), and usc Proposition 4 of no. 2.
To prove the second relation, use Urysohn’s theorem.)

4 D.educe from ) that = -—>S({x§) is a bijection of X onto the set of
naxmal ideals of A, which are therefore closed. An ideal of A is
dosed if and only if it is an intersection of maximal ideals. The ring

bas 1o radical,

%) Show that the mapping ¢ — V( {e}) is a bijection of the set of idem-
Pienisof A onto the set of subsets of X which are both open and closed.
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A point xeX 15 isolated 1f and only if the maximal ideal 3 ({x}) i
principal.

14) Let X be a topological space. For each function xeC(X; R)
such that u(¥) >0 forall € X, let V, be the set of all fe(X;R)
such that | f] < u

) Show that the sets V, are neighbourhoods of o in A = ¢ (X; R}
with respect to a Hausdorff topology % compatible with the ring structure
of A,

) The topology induced by & on €= (X; R) 1s finer than the topology
of uniform convergence in X. These two topologies coincide 1f and only
if X is pscudo-compact (Chapter IX, § 1, Exercise 21). If X is not
pseudo-compact, the topology induced by © on the set of constant func-
tions is the discrete topology, so that § is not compatible with the R-vector
space structure of A.

¢) Showthat A isa Gelfand ring with respect to the topology & (Chapter
111, § 6, Exercise 11).

ﬂ 15) Let X be a completely regular space and let §X be its Stone-

Cech compactification. Endow the ring A = € (X; R) with the topol-

ogy © defined n Exercise 14. For cach feA, let V(f) be the

closure in X of the subsct (o) of X. For each subset M of A,

It V(M) denote [) V(f). For cach subset Y of BX, let 3(¥)
M

denote the set of all Fe A such that ¥ < V(f), and write 3() m place
of 3(§x}). Wehave V(f) =@ ifandonlyif f isaumtmn A

6) If f, g are two clements of A such that £'(0) n 2(0) = @, show that
V(f)n V() =g [Consder the function {f1/(1f] + |g]). Deduce
that, for cach subset M of A, we have V(M) = V(a), where a is the
\deal generated by M m A

¥) Show that, for each subset Y of 8X, S(Y) 1s an ideal of A [use a)]
and that V(3(Y)) 1s the closure Y of Y 1n gX

c) Let ue A besuch that u(x) >0 forall xeX, andlet ge A, Show
that there exists fe A such that |f—g| < and such that V(f)
1 a neighbourhood of V(g). [Define f to be equal to g+u if
ex) +u(®) <o, to g—u 1f glx) —u(x) >0, and to o otherwisc,
consider the function f* = inf ((u + g)* (¥—g)”) and wse a).]

d) Let a be an ideal of A. Show that if feA iy such that V(f})
1s a ncighbourhood of V(a), then fea. [Note first that there
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it 0€0 such that 'V(g) is contained in the' int.crior of V(f), and
fen consider the function h .deﬁned on X which is equal to f (x)/g(x)
1) #0 and equal to 0 if f(x) = o0.]

j Deduce from ¢) and d) that J(V(a)) =7 for every ideal a of A.
[how first that V(M) = V(M) for all subscts M of A, arguing by
wniradiction,]  Deduce that, for each subset Y of BX, J(Y) is a closed
dalof A [Note that J(Y) = J(V(I(Y))).]

f) Use ¢) to show that x —3J(x) is a bijection of X onto the set of
mavmal ideals (necessarily closed) of A. An ideal of A is closed if
ad only if it is an intersection of maximal ideals. The ring A has no

ndical.

£ 16) We retain the hypotheses and notation of Exercise 15.

g Let o be a closed ideal in the ring A. Show that in the quotient
rng Afa the set P of canonical images of functions f>o of A is
theset of elements > o with respect to an ordering which makes Afa
alittice-ordered ring [observe, using Exercise 15 ¢), that if f and g belong
o o, then so do |f| - |g] and every function ke A such that
i</}, The canonical image in Afa of the set of constant functions
sisomorphic to R as an ordered field.

) Inparticular, for each x e §X, the field A/3(x) is canonically endowed

with an ordered field structure. The maximal ideal 3(x) is said to be

mlif Af(x) is isomorphic to R, Ayper-real otherwise. For J(x) to be

‘hypebrcal it is necessary and sufficient that xe X — X and that there

sauit feA such that lim f(y) =o. Deduce that all the
X

I Y >z, yE)
masimal ideals of A are real if and only if X is pseudo-compact (Chapter
IX,§ 1, Exercise 21).

) Boreach xe X, let o, be the canonical homomorphism A — A/3(x).
For o(f) tobe >0 in A[3(x), it is necessary and sufficient that there
fold exist ge3(x) such that F(») =0 in g(o) [observe that the
tation ¢.(f) >0 is equivalent to f=|f| (mod 3(x))]. For e:(f)
bbe >a, it is necessary and sufficient that there should exist ge J(x)
wchihat f(3) >0 in F(0). [Note that, if fe3(x), there exists
8e3(s) such that }1(0) nZ(o) = @, by using Exercise 15.]

?]ghow that if J(x) is hyper-real, the transcendence degree of the
a° AR{5) over R'is at least equal to ¢ = Card (R). [Let f>o be
Shumt of A such that o:(f) = u is infinitely large with respect to R.
Mowthatas » runs through the elements of a base of R over Q (consist-

g of numbh, ;
i"dependentirs >0), the elements g, (f7) of AJI(x) are algebraically
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A pomnt xeX is isolated if and only if the maximal ideal 3 ({x}) is
principal.

14) Let X be a topological space. For each function se€ (X; R)
such that u(s) >0 forall xeX, let V, be the set of all fe€ (X: R)
such that | f] S u.

a) Show that the sets 'V, are neighbourhoods of o in A =€ (X;R)
with respect to a Hausdorff topology © compatible with the ring structure
of A.

5) The topology induced by  on € (X; R} is fincr than the topology
of uniform convergence m X. These two topologies comcide 1f and only
if X 1s pseudo-compact {Chapter IX, § 1, Exercise 21). If X is not
pseudo-compact, the topology induced by G on the set of constant func-
tions is the discrete topology, so that € is not compatible with the R-vector
space structure of A.

¢) Show that A is a Gelfand nng with respect to the topology © (Chapter
111, § 6, Exercise 11).

g 15) Let X be a completely regular space and let gX be its Stone-
CGech compactification. Endow the ring A = € (X; R) with the topol-
ogy © defined in Excrcise 14. For cach feA, let V(f) be the
closure in X of the subset £(0) of X. For each subset M of A,
let V(M) demote [) V(f). For each subset Y of pX, let 3(Y)
denote the set of all Je A such that ¥ < V(f), and write 3(x) tn place
of 3({x}). Wehave V(f} =@ ifand onlyif f 152 umem A

&) If f, g arc two elements of A such that 1'(0) n (o) = &, show that
V(f)nV(e) =@. [Consder the function |fi/([f]+ [¢]) Deduce
that, for each subset M of A, wehave V(M) = V{a), where o isthe
1deal generated by M in A%

8) Show that, for cach subset Y of $X, 3(Y) is an idcal of A fuse )]
and that V(3(Y)) s theclosure Yof Y in pX.

) Let ue A besuch that u(x) >0 forall xeX, andlet g=A. Shaw
that there exasts fe A such that |f—g| <u and such that V{(f)
13 a neighbowthood of V(g). [Define f to be equal to g-fu if
g(x) +u(x) <o, 1o g—u 1f g(x) —u(x) >0, and to o otherwise;
consider the function f* = inf ({z + g)*, («—g)~) and use a).]

d) Let o be an ideal of A. Show that if feA 1ssuch that V(f)
15 a neghbourhood of V(«), then fea. [Note first that there
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exists gea such that V(g) is contained in the interior of V(f), and
then consider the function % defined on X which is equal to f (x)/g(x)
if f(x)# 0, and equal to o if f(x) = 0.]

¢) Deduce from ¢) and d) that J(V(a)) =7 for every ideal a of A.
[Show first that V(M) = V(M) for all subsets M of A, arguing by
contradiction.] Deduce that, for each subset Y of gX, J(Y) is a closed
ideal of A. [Note that J(Y) = J(V(E(Y))).]

f) Use ¢) to show that x —J(x) is a bijection of gX onto the set of
maximal ideals (necessarily closed) of A. An ideal of A is closed if
and only if it is an intersection of maximal ideals. The ring A has no
radical,

0 16) We retain the hypotheses and notation of Exercise 15.

a) Let g be a closed ideal in the ring A. Show that in the quotient
ring Afa the set P of canonical images of functions f> o0 of A is
the set of elements > o with respect to an ordering which makes Afa
a latlige-ordered ring [observe, using Exercise 15 ¢), that if f and g belong
to o, then so do |f| -+ |g] and every function ke A such that
[} <|f]]. The canonical image in Afs of the set of constant functions
is isomorphic to R as an ordered field.

b) In particular, for each x e gX, the field A/J(x) is canonically endowed

with an ordered field structure. The maximal ideal J(x) is said to be

real if Af3(x) is isomorphic to R, Apper-real otherwise. For J(x) to be

hyper-real it is necessary and sufficient that x & X — X and that there

5 a unit feA such that lim f(y) ==o0. Deduce that all the
&z, X

y>z,y6
maximal ideals of A are real if ':nd onlyif X is pseudo-compact {Chapter
IX, § 1, Exercise 21).

¢) Foreach x<pX, let o, be the canonical homomorphism A — A/3(x).
For o.(f) tobe = o in AJ3(x), itis necessary and sufficient that there
should exist geS(x) such that f(y) >0 in g(0) [observe that the
relation ,(f) > o is equivalent to f=|f| (mod J(x))]. For ¢ (f)
to be > o, itis necessary and sufficient that there should exist ge 3(x)
such that #(y) >0 in g(0). [Note that, if f&3(x), there exists
g J(x) such that }l(o) n g(0) = @, by using Exercise 15.]

d) Show that if J(x) is hyper-real, the transcendence degree of the -
field Af3(x) over R is at least equal to ¢= Card (R). [Let f>o *

2 unit of A such that ¢,(f) = u is infinitely large with respect: *
Show that as r runs through the elements of a base of R over Q.

ing of numbers > o), the elements ¢,(f") of Af¥(x) are
independent.] .
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* ¢) For cach point a= (2, ..., a;) €R* let f(X) denote the poly-
nomial X*+ g X"-14 .-« 4 a, For each real number £, let y(f)
be the sum of the multiplicities of the zeros z of f, in C such that
R(z) = E; and for each nteger k such that 1<k <n, let pfo) be
the smallest real number § such that E‘V(ﬂ) 2 4. Show that cach

of the functions g, is continuous on R* (use Rouché’s theorem).

f) Show that, for each xepX, the ordered field Af3(x) is real~closed
{Let F(3X) = X" + ;X1 4+ +-- + fo be a polynomial of odd degree
with coefficients in A; the functions g(¥) = &(fi{3) ..., LGN,
where the p, arc the functions defined in'¢), are continuous on X,
and for each yeX there is an index & such that F (g,(3) = o
deduce that the product F(g)--- F {g,) belongs to 3(x).] 5

£) Let X be an infinite discrete space and let y-»F, be a bijection
of X onto the set of finite subsets of X; for cach ze&X let M, be
the set of all ye X such that ze F,; these sets forma basc of a filter § on
X. Let x beapomtof EX such that the corresponding ultrafilter on X
(Chapter I, § g, Exercise 27) is finer than § Let B be a subset of A
such that Card (B) < Card (X), andlet y—» g, bea surjective mapping
X—>B. For each zeX put f()=1+mpgle). Show that

et

F(2) > ge) for all zeM, and deduce that ¢.(f) > o.(g,) for all
yeY [usee)] Conclude that Card (Af3(x)) > Card X.

€ 17) We retun the hypotheses and notation of Exercise 15.
¢} A maximal ideal (x) is real if and only if; for every infinitc sequence
(g,) of elements of S(x), the intersection of the sets £,(0) is not empty.
[Use Excresc 16 6), to show that the condition 15 necessary show that,
of [V 2{0) = &, the function f(3) = 3] inf(g,(), 2~ is continuous,
a =
1savunitin A and tendsto o as y tends to x while remammg m X;
note that f(3) <2 for ye [|£x(0), and use Exercise15a) and the
m

fact that the V(g), where ge3(z), form a fundamental system of neigh-
bourhoods of x m 3X.]

b} X is said to be real-compact if the only real maximal ideals 3(x) are
those for which xeX. Show that every completely regular Lindelof
space (Chapter I, § 9, Exercisc 15) 15 real-compact [use g)]. A completely
regular pseud pact space is not real pact unless it is compact.

) Let vX be the set of all xeBX such that () is real, Show that
every continuous real-valued function f & A can be extended by continmity
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to vX, sothat € (X;R) and € (vX; R) can be canonically identified.
Show that the subspace vX of $X is real-compact [note that if f
isa unit in G (X; R), then its continuous extension to vX is a unit in
€ (vX; R) and that B(X) = pX]. wX is called the real-compactification

of X

d) Show that vX is the completion of X with respect to the coarsest
uniformity on X for which all the functions f & A are uniformly contin-
wous. (Note that a Cauchy filter & on X with respect to this
uniformity converges to a point xefX; if xeuvX, there would be a
function f € A which was unbounded in a set of F.]

¢) Deduce from d) that if »: X —Y is any continuous mapping of a
completely regular space X into a real-compact space Y, then # can
be extended by continuity to a mapping uvX —>7Y. The space vX is
therefore the solution of the universal mapping problem in which ¥ is
the structure of a real-compact space, and the a-mappings and morphisms
are continuous mappings (Set Theory, Chapter IV, § 3, no. 1).

f) Show that every closed subspace of a real-compact space is real-compact,
that every product of real-compact spaces is real~-compact, and that in a
Hausdorff space any intersection of real-compact subspaces is real-compact.
[For example, to show that a closed subspace X of a real-compact space

Y is real-compact, consider the extension ; to uvX of the canonical
injection j: X =Y, and note that ;! (X) = X; deduce that X
is closed in vX. The proofs are similar in the other two cases.]

g) Deduce from &), d) and f) that a completely regular space is
real-compact if and only if it is homeomorphic to a closed subspace of a
product R,

18) Let X be a real-compact space.

a) Show that, for each non-zero homomorphism u: C(X; R) =R,
there exists a unique point xeX such that u(f) =f(x) for all f
in C(X; R).

b) Let Y be another real-compact space. Show that, for every R-algebra
homomorphism »: € (Y; R) — € (X; R) which maps identity element
to identity element, there exists a unique continuous mapping w: X —Y
such that »(g) =gow for all geC (Y; R). In particular, C (X; R)
and C (Y;R) areisomorphicifand only if X and Y are homeomorphic.

ﬂ 19) Let X be a compact space, and let A be the normed C-algebra
C(X; C). For cach closed ideal a of A, show that the relation fea
implies f eq (note that F is the uniform limit of functions of the form
&f). Extend the results of Exercise 1 3 to the algebra A.
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€ 20) a) Let X be a compact space, let A be an R-2lgebra of fimite
rank with an identity element, and endow A with the topology defined
in Chapter VI, § 1, no. 5. Let B be a subalgebra of the Realgebra
€ (X, A}, and suppose that, for each ¢ > o, each pair of distinct pawnts %, 3
of X and cach pair of clements #, v of A, there exists feB such that
f(x—ull<e and If(;) —dl<e (| || being any norm defining
the topology of A); and suppose, further, that if ¥ and o belong to
R, there 1s a function feB satisfying these conditions and taking 1ts
valuesm R. Show that, under thesc hypotheses, B isdensein € (X; A)
with respeet to the topology of uniform convergence. [Show first that
every function of € (X; R) can be undormly approximated by functions
of B and then that the same 1s true of every constant a€A, by using
the hypotheses and a partition of unity.]

5) Take A = H, thc division ring of quaternions over R. Let B be
a subalgebra of the Realgebra € (X; H) such that: (i) for cach feB,
the conjugate J of f [defined by J(x) =7} forall xeX] belongs to
B, {(u) for each ¢ >0, each pair of distinct points x,y of X and each
pair of clements u, o of H, thercexists fe B such that ||f(x) —uf] < ¢
and {If(5) —di<e Show that B is demsc in € (X; H) [use a)]
¢) Extend the results of Exercise 13 to the algebra € (X; H), and show
w particular that cvery closed 1deal of this algebra is two-sided {argue
as 1n Exercise 19, using 5)].

€ 21) a) Let X be a totally disconnected compact space, and et A
be a topological ring. Endow the ring € (X; A) with the topology of
uruform convergence, which 18 compatble with the ring structure. Let
& bealeftideal of € (X; A) and, for each xeX, let J(x) be the
closurc m A of the set of f(x) for fea; 3(x) is a closed Ieft ideal
of A Show that 3 1sidentical with theset of all fe € (X; A} such that
F(x)€3(x) forall xeX (note that, for each xe X, the neighbourhoods
of x which are both open and closed form a fundamental system of
neighbourhoods of ).

5) Suppose 1n addition that A has a fund system

of o which are two-sided 1deals. Let B be a subring of € (X; A)
which contaimns the constants and scparates the points of X. Show that
B isdensein (X, A) [For cach closed subsct F of X, each x&F
and each neighbourhood U of o in A, show that there exists feB
such that f(x) =1 and f(#)eU forall yeF.]

£ neighbourhood:
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HISTORICAL NOTE

(Numbers in brackets refer to the bibliography at the end of this note.)

The notion of an arbitrary function was almost unknown at the beginning
of the nineteenth century. A4 fortiori, the idea of studying sets of functions
in general and of endowing them with a topological structure did not
appear before Riemann’s time (see the Historical Note to Chapter I),
and it was only towards the end of the nineteenth century that this idea
came into systematic use.

Nevertheless, the idea of convergence of a sequence of real-valued func-
tions had been used, more or less consciously, since the beginnings of the
infinitesimal calculus. Of course, by convergence we mean here pointwise
convergence; other types of convergence could not have been described
until the notions of a convergent series and a continuous function had
been precisely defined by Bolzano and Cauchy. The latter at first did
not recognize the distinction between pointwise convergence and uni-
form convergence, and believed that he had proved that the sum of any
convergent series of continuous functions is continuous ([1], (2), vol. 3,
p. 120). The error was pointed out almost immediately by Abel, who
at the same time showed that every power series is continuous inside its
interval of convergence, by a classical argument which, in this particular
case, used essentially the notion of uniform convergence ([2], pp. 223-224).
1t remained only to formulate this notion generally, and this was done
independently by Stokes and Seidel in 1847-1848, and by Cauchy himself
in 1853 ([1], (1), vol. 12, p. 50) (*).

Under the influence of Weierstrass and Riemann, the systematic
study of the notion of uniform convergence and related questions was
developed in the last third of the nineteenth century by the German
school (Hankel, du Bois-Raymond) and above all by the Italians; Dini
and Arzeld made precise the necessary conditions for the limit of a sequence
of continuous functions to be continuous, while Ascoli introduced the
fundamental notion of equicontinuity and proved the theorem which
characterizes compact sets of continuous functions [§] (a theorem popular-
ized later by Montel in his theory of “normal families”, which are rela-
tively compact sets of analytic functions).

(*) In a work dated 1841 but first published in 1894 ([44), p. 67), Weierstrass
wes with perfect clarity the notion of uniform convergence (which he calls by this
lame for the first time) for power series in one or several complex variables.
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INDEX OF NOTATION

The reference numbers indicate the chapter, section and subscction or
exercise, in that order.

T:V, 1,2

o® (a any real number > o, ¥ any rcal number) : V, 4, 1.

log, * (4, » real numbers >0,a51) 1 V, 4, 1.
VL, T

dlx, ) (Euclidean distance) : VI, 2, 1.

Il (Euclidean norm) : VI, 2, 1.

(x|y) (scalar product) : VI, 2, 2.

S, B, R¥: VI, 2, 3.

P(R), P,: VI, 3, 1.

R:VL 3, 3.

o (point of R) : VI, 3, 3.

P, ,(R), P, ,: VL, 3, 5.

1(G), d(G) (G any closed subgroup of R*) : VII, 1, 2.

G* (G any subgroup of R?) : VII, 1, 3.

T7: VII, 1, 4.

Ci: VI 1, 1.

R(z), 32), 2, |2] (z 2 complex number) : VIII, 1, 1.
Cx,U:VIIL, 1, g.

H: VI, 1, 4.

ex) (= ¢27=) ; VIII, o, 1.

——

Ay A5) (A, A, rays) : VIII, 2, 2.

4w VI 2, 2.

Am (z) (z a complex number) : VIII, 2, 2.

cos 6, sin 8, tan § (§ an angle) : VIII, 2, 2.

€os,%, sin, %, tan, x, cot, x (¥ a real number) : VIII, 2, 4.
cos,sin ¥, tan x, cot ¥ (x a real number) : VIII, 2, 4.
—~

(D, D)) (D, D, lines) : VIII, 2, 6.

% : VIII, 2, 6,

C*:VIIL, 4, 1.

P(C), € : VIIL 4, 5.
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HISTORICAL NOTE

On the other hand, Weiersteass humself discovered [43] the posabilty
of untform of a d function 1n one or
more real variables on a bounded set by polynonmls This result fmme-
duately aroused hively interest and led to many ““quantitative™ studies (*).
The modern contribution to thesc questions has been above all to
endow them with the full generality of which they are capable, by consider-
ing functions whose domam and range are no kmg:r testncted to R
or finste-dimensional spaces, and thus placing them in their natural context
with the help of general topological concepts. In particular, the theorem
of Weierstrass, which had already shown itself to be a powerful weapon in
classical analvsis, has becn z:xtend:d in recent years by M. H. Stone to
much more general an idea introd by H.
Lebesgue (in a proof of Weicrstrass's theorcm) he has shown clearly the
1mportant part played 1n the theory of approximation of continuous real-
valued functions by latuces of functions (approxxmanon by “lattice
polynomuals”, cf. § 4, Proposiion 2 and Theorem 2), and has shown
also how the gencmhzed Weierstrass theorem has as lmmedxatc conse-
quences a whole series of theorems of app
can thus be grouped together in a much more coherent fashmn w
have more or less followed hus exposition {5]
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INDEX OF TERMINOLOGY

The reference numbers indicate the chapter, section and subsection or
Exercise, in that order.

Abscissa : VI, 1, 4.

Abscissas, axis of : VI, 1, 4.

Absolute value : IX, 3, 2.

Absolute value, improper : IX, g, 2.

Absolute value, p-adic : IX, 3, 2.

Absolute values, equivalent : IX, 3, 2.

Absolute value of a complex number : VIII, 1, 1.

Absolutely convergent infinite product of complex numbers : VIII, 3, 3.
Absolutely convergent series (in a normed space) : IX, g, 6.
Absolutely convergent series of points in R* : VII, g, 2.
Absolutely summable family (in a normed space) : IX, 3, 6.
Acute angular sector : VIII, 2, 5.

Additive group of R* : V1, 1, 2.

Additive group of real numbers mod 2: 'V, 1, 2.

Additive uniformity of R*: V11, 1, 2.

Admissible subset : IX, 6, Exercise 12.

Affine linear varieties, orthogonal : VI, 2, 2.

Algebra, normed : IX, 3, 7.

Algebraic norm of a complex number : VIII, 1, 1.

Algebraic number : VIII, 1, Exercise 2.

Almost-open mapping : IX, 5, Exercise 24.

Almost-open set : IX, 5, Exercise 6.

Almost-periodic function : X, 3, Exercise 28.

Almost-periodic (point) : X, 8, Exercise 27.

Amplitude of a complex number : VIII, 2, 2 and VIII, 2, 3.
Angle, flat : VIII, 2, 2.

Angle of a pair of rays : VIII, 2, 2 and VIII, 2, 3.

Angle of an angular sector : VIII, 2, 5.

Angle, positive right : VIII, 2, 2.
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Angular sector (acute, nght, obtusc, flat, salient, re-entrant) : VIII, 2, 5.
Approximation, uniform : X, 4,

Arclimedean (limearly ordered group) V, 3, Exercise 1.
Archumedes’ axiom ¢

Argument of a complcx number VIII, 2, 2.

‘Ascolr’s theorem : X, 2, 5

‘Associated subgroup of & Subgroup of R* : VIT, 1, 3.
Axiom of Archimedes :

Axis, coordinate : VI, 1, 4

Axis, imaginary : VIII, 1, 2,

Axis of abscissas : VI, 1, 4.

Axis of ordinates : VI, 1, 4.

Axis, real : VIII, 1, 2.

Baire space : IX, 5, 3.

Baire’s theorem : 1X, 5, 3

Ball (closed, open) . IX, 2

Ball, Euclidean (open, doscd) VI, 2,3

Ball, umit : VI, 2, 3, and IX, 3

Base of a system of angular mcasurc VIII, 2, 3.
Base of a system of logarithms : V, 4, 1

Basts, canonical (of R™) : VI, 1, 3

Bisector of an angular sector VIII, 2, 5

Borel mapping : IX, 6, Exercise 16

Borel mapping of class & IX, 6, Exercisc 16.
Borel set : IX, 6, 3.

Bounded convergence, uniformity of : X, 1, 3.
Bounded mapping (into a metric space) : X, 3, I.
Bounded set (in a metric space) : 1X, 2, 2.
Bounded set in R* VI, 1, 1.

Box (closed, open) VI, 1, t

Broken line : VI, 1, Exeraise 6.

Canonical basis of R* VI, 1, 3

Capacitable set - 1X, 6, g

Capacity : 1X, 6, 9.

Central projection : VI, 2, 3

Centre of a ball : IX, 2, 2

Centre of a ball or sphere . VI, 2, 3and IX 2, 2.
Circle : 2, 3.

Class of  Borel mapping * IX, 6, Exercise 16.
Closed ball : IX, 2, 2.

Coltectively normal space - IX, 4, Exercise 18
Compact convergence, topology of : X, 1, 3.
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Compact convergence, uniformity of : X, 1, 3.
Compact-open topology :VX, 3, 4.

Compactification, Stone-Cech : IX, 1, Exercise 7.
Compatible (metric and topology) : IX, 2, 5.
Compatible (metric and uniformity) : IX, 2, 4.
Compatible (norm and algebra structure) : IX, 3, 7.
Completely normal space : IX, 4, Exercise 3.
Completely regular filter : IX, 1, Exercise 8.
Completely regular space : IX, 1, 5.

Completely regular space associated with a uniformizable space : IX, 1,

Exercise 4.

Completely separated (closed sets in a completely regular space) : IX, 1,

Exercise 11.
Complex hyperplane in C" : VIII, 4, 1.
Complex linear variety in C" : VIII, 4, 1.
Complex lines in C*: VIII, 4, 1.
Complex number : VIII, 1, 1.
Complex number space of n dimensions : VIII, 4, 1.
Complex planes in C* : VIII, 4, 1.
Complex projective line : VIII, 4, 3.
Complex projective plane : VIII, 4, 3.
Complex prajective space of # dimensions : VIII, 4, 3.
Conjugate of a complex number : VIII, 1, 1.
Continuous partition of unity : IX, 4, 3.

Convergent infinite product (in 2 normed algebra) : IX, Appendix, 3.

Convergent, normally : X, g, 2.

Convergent, pointwise : X, 1, 3.

Convergent, uniformly : X, 1, 1.

Coordinate axis : VI, 1, 4.

Coordinate variety : VI, 1, 4.

Cosine of an angle : VIII, 2, 2.

Cosine of a number : VIII, 2, 4.

Cotangent of an angle : VIII, 2, 2.

Cotangent of a number : VIII, 2, 4.
Countable type (metrizable space) : IX, 2, 8.
Countably compact space : IX, 2, Exercise 14.
Covering, divisible : IX, 4, Exercise 16.
Covering, even ; IX, 4, Exercise 16.

Covering, point-finite ; IX, 4, 3.

Cross of a pair of lines : VIII, 2, 6.

Cross, right : VIII, 2, 6.

Cube : IX, 1, 5.

Cube (open, closed) : VI, 1, 1.

Curve, Peano : VI, 1, Exercise 2.
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Degree (uml ofangnlar measure) : VIIL, 2, 3.
Duameter :
Diametral hyperp!ane VI, 2,4.

Diametrically opposite points of S, : V1, 3, 1.
Dimension of a closed subgroup of R* : VI, 1, 2.
Dint’s theorem : X, 4, 1.

Darection ratios of a line or ray : VI, 1, 4.
Direction vector of a line or ray : VI, 1, 4.

Disc {open, closed) : V1, 2, 3.

Dhscrete famuly of subsets : IX, 4, Excrcise 18,
Dusplacement, Euchdean : VI, 2, 2.

Distance between two sets : 1X, 2, 2,

Distance, Euchidean : VI, 2, 1.

Distance from a pomnt to a set : IX, 2, 2.
Divisible covening : IX, 4, Exercise 16.

Division ring of quaternions : VIIL, 1, 4.
Division ring, valued : IX, 3, 2.

e-period (of a function) : X, 3, Exercise 28,
Equicontinuous sct of mappings : X, 2, 1.
Equicontmuous at a pomnt : X, 2, 1.
Equicontinuous, unsformly : X, 2, 1.
Equipartitton mod 1 : VII, 1, Excraise 14.
Equivalent absolute values * IX, 3,2,

famnulies of ics: 1X, 1, 2.
Equivalent norms : IX, g, 3.
Equivalent pscudometrics - IX, 1, 2.
Equivalent sem-absolute values : 1X, 3, Exercise 10.
Essential mapping 1t P, : VI, 3, Exercisc 2.
Esscatial mapping nto S, ; VI, 2, Exercisc 6,
Enuclrdean ball (closed, open) . VI, 2, 3
Euclidean displacement VI, 2, 2
Euchdean distance * V1, 2, 1.
Euclidean norm i R* - VI, 2, 1
Euclidean sphere . VI, 2, 3
Even covering : IX, 4, Exercise 16,
Exponential fimction 1 V, 4, 1

Factors of a product (in a normed a]gebra) IX, Appendix, 1.
Farmly, absolutely summable . IX, 3, 6.

Farauly of functions subordinate to a l‘anuly of subsets : IX, 4, 3.
Farey seres : VII, 1, Exercise 13.

Field of complex numbers : VIIT, 1, 1.

Filter, completely regular : IX, 1, Exercise 8.
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Filter, maximal completely regular : IX, 1, Exercise 8.
Finite open coverings, uniformity of : IX,, 4, Exercise 17.
Flat angle : VIII, 2, 2.

Flat angular sector : VIII, 2, 5.

Function, almost-periodic : IX, 3, Exercise 28.
Function, exponential : V, 4, 1.

Function, periodic (defined on R?) : VII, 1, 6.

Function, ¢-ply periodic : VII, 1, 6.

Generated by a set of subsets (g-algebra) : IX, 6, 3.
Grade (unit of angular measure) : VIII, 2, 3.
Group, additive (of R") : VI, 1, 2.

Group, additive (of real numbers mod a) : V, 1, 2.
Group, metrizable : IX, 3, 1.

Group of Euclidean displacements : VI, 2, 2.
Group, one-parameter : V, 3.

Group, orthogonal : VI, 2, 2.

Halfline : VI, 1, 4.

Half-spaces (open, closed) determined by a hyperplane : VI, 1, 4.

Hausdorff semi-absolute value : IX, g, Exercise g.

Hausdorff semi-absolute value associated with a semi-absolute value :
IX, 3, Exercise g.

Hemisphere (open, closed) : VI, 2, 4.

Homographic function : VI, 3, 5.

Hyper-real maximal ideal : X, 4, Exercise 16.

Hyperplane at infinity : VI, g, 3.

Hyperplane, complex (in C*) : VIII, 4, 1.

Hyperplane, diametral : VI, 2, 4.

Hyperplane of projection (in a stereographic projection) : VI, 2, 4.

Imaginary axis : VIII, 1, 2.

Imaginary part of a complex number : VIII, 1, 1.
Imaginary, pure : VIII, 1, 1.

Improper absolute value : IX, 3, 2.

Inequality, triangle : VI, 2, 1, and IX, 1, 1.
Inessential mapping into P, : VI, 3, Exercise 2.
Inessential mapping into S, : VI, 2, Exercise. 6.
Infinite product : IX, Appendix, 3.

Invariant metric : IX, 3, 1.

Isometric mapping : IX, 2, 2,

Isometry : IX, o, 2.
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Lattice in R*: VIL, 1, 1.

Left-invariant metric : IX, 3, 1.

Left-invariant pseudometric ; IX, 3, Exercise 1.

Length of a segment in R*: VI, 2, 1.

Line, broken : VI, 1, Exercise 6.

Line, simple broken : VI, 1, Excrcise g.

Lune, complex projective : vm 43

Lume, real projective ; VI, 3

Linear combination of funcnons with coefficients in a normed space ;

s 4 4
Linear variety, complex (in € : VIIL, 4, 1
Linearly accessible : IX, 6, Exercise 11
Lines, complex {m C*) : VIIT, 4, 1.
Locally paracompact space : IX, 4, Exercise 27.
Logarithm to base a: V, 4, 1
Logarithmic spiral . VIII, 3, Exercise 5
Lusin space ¢ 1X, 6, 4-

Mapping, almost open - IX, 5, Excrcisc 24.
Mapping, Borel : IX, 6, Exercise 16.
Mapping induced by a sifting . IX, 6, 5.
Mapping into P,, essential or inessential : VI, 3, Exercise 2.
Mapping nto §;, essential or nessential : VI, g, Exercise 6,
Mapping, isometnc IX, 2, 2.
Mapping, precewise linear « VI, 1, Exercise 6.

Maximal comp]ctcly regular filter : X, 1, Exercise 8.
Meagre set : 1X, 5,
Measure of an angle VI, 2, 3
Measure of a cross . VIII, 2, 6
Measure, principal (of an angle) - VIH, 2, 3.
Measure, principal (of a cross) : VIII, 2, 6.
Metacompact space . IX, 4, Exercise 25.
Metnie . IX, 2, 1.
Metric associated, with a pseudometric 3 IX, 2, 1.
Metnic compatible with a topology . IX, 2, 5.
Metric compatible with a uniformuty  IX, g, 4.
Metric, left {right) nvanant . IX, 3, 1.
Metric space : IX, 2, 1
Metrtzable topological group IX, 3, 1.
M:mzab\: mpclogu:al space : IX, 2, 5

1 space of ble type : IX, 2, 8.

Metrizable umiform space IX 2,4
Metrizable uniformity: IX, 2,
Mulupliable sequence (i a ommed algebra) : IX, Appendix, 1.
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Nagata-Smirnov theorem : IX, 4, Exercise 22.
Negative real semi-axis : VIII, 1, 2.
Non-meagre space : IX, 5, Exercise 7.

Norm (on a vector space) : IX, 3, 3

Norm, algebraic (of a complex number) : VIII, 1, 1.
Norm compatible with an algebra structure : IX, 3, 7.

Norm, Euclidean (in R") : V1, 2, 1.

Normal space : IX, 4, 1.

Normally convergent series : X, 3, 2.

Normed algebra : IX, 3, 7.

Normed space : IX, 3, 3.

Norms, equivalent : IX, 3, 3.

Nowhere dense set : IX, 5, 1.

Number, algebraic : VIII, 1. Exercise 2.
Number, complex : VIII, 1, 1.

Number space of dimension n, complex : VIII, 4, 1.
Number space of dimension n, real : VI, 1, 1.

Obtuse angular sector : VI, 2, 5.
One-parameter groups : V, 3.

Open ball : IX, 2, 2.

Opposite rays : VI, 1, 4.

Ordered partition : IX, Appendix, Exercise 2.
Ordinate : VI, 1, 4.

Ordinates, axis of : VI, 1, 4.

Origin of a ray : VI, 1, 4.

Orthogonal affine linear varieties : VI, 2, 2.
Orthogonal group : VI, 2, 2.

Orthogonal transformation : VI, 2, 2.
Orthogonal vectors, vector subspaces : VI, 2, 2.
Oscillation of a function at a point : IX, 2, 3.
Oscillation of a function in a set : IX, 2, 3.

}-adic absolute value : IX, 3, 7.

Parallelotope (open, closed) : VI, 1, 3.
Part%tion of unity, continuous : IX, 4, 3.
Partition, ordered : IX, Appendix, Exercise 2.
Peano curve : VI, 1, Exercise 2.

Perfcctly normal space : IX, 4, Exercise 7.
Per}odic function, defined on R* : VII, 1, 6.
Pf:nods. of a periodic function : VII, 1, 6.
Piecewise linear mapping : VI, 1, Exercise 6.
Pigeon-hole principle : VII, 1, Exercise 11.
Plane, complex projective : VIII, 4, 3.
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Plane, real projective : VI, 3
Planes, complex (n C*) : vm, 41

Point at infimity : VI, 3, 3.

Point-finite covering : IX, 4, 3.

Point of uniform convergence ¢ X, 1, Exercise 9.

Pointwise convergence in a subset ofX X, 1,3

Porntwise convergence, topology of : X, 1, 3 and 3 4e
Pointwise convergence, uniformity of ; x 1,3

Pointwise convergent (filter) : X, 1, 3,

Polish space : 1X, 6, .

Polynomial in funcnons belongmg toagivenset: X, 4,2 and 4, 4.
Polynomual, trigonometric 1 X, 4, 4

Pos:trve real seros-axis : VIII, 3, 2

of: X, 1, 3.

Principal measure of an angle ; VIII, 2, 3.

Principal measure of a cross : VIIL, 2, 6.

Prmcxpal system of periods of a g-ply ‘periodsc function : VIL, 1, 6.
(of complex :VIIL 3, 3

Product, infinite : IX, Appendix, 3

Product of a multipliable sequence 1n a normed algebra : IX, Appendix, 1.

Product, scalar : VI, 2, 2.

Projection, central : VI 2, 3.

Projection, hyperplane of : VI, 2, 4.

Projection, stereographic : VI, 2, 4

Projection, vertex of - VI, 2, 4.

Projectuve space of dimension n, complex : VIIL, 4, 3.

Projective space of dimension n, real : VI, 3, 1.

Proper at a point {group of operators} ; X, 2, Exercise 18.

Pscudo-compact space : IX, 1, Exeruse 22,

Pseudometric ; IX, 1, 1.

Pseudometric, invarant I‘(, 3, Exermse 1.

Pseudometrics, equivalent :

Purc imagmary (complex numbcr) vILL, 1, 1

g-ply periodic function on R*: VIL, 1, 6.
uadnic (in P,) - VI, 3, Exeraise 10,
uadric (in R") : VI, 2, Exercise 1o,
uadric cone (in P,) VI, 3, Exercise 11,
uadric cone (in R VI, 2, Exercise 11,
uaternion VLI, 1, 4

foyelolele)

Radian, measure : VIIL, 2, 3.
Radws of a ball : IX, 2, 2.
Raduus of a ball or sphere : VI, 2, 3 and IX, 2, 2,
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Rational rank of a subgroup of R” : VII, 1.
Ratios, direction : VI, 1, 4.

Ray (closed, open) : VL, 1, 4.

Rays, opposite : VI, 1, 4.

Real axis : VIII, 1, 2.

Real-compact space : X, 4, Exercise 17.

Real compactification of a space : X, 4, Exercise 17.
Real linear variety (in C7) : VIII, 4, 1.

Real maximal ideal : X, 4, Exercise 16.

Real number space of n dimensions : VI, 1, 1,
Real part of a complex number : VIII, 1, 1.
Real projective line : VI, g, 1.

Real projective plane : VI, g, 1.

Real projective space of n dimensions : VI, g, 1.
Real valuation of a division ring : IX, 3, 2.
Rectangle (open, closed) : VI, 1, 1.

Re-entrant angular sector : VIII, 2, 5.

Right angle, positive : VIII, 2, 2.

Right angular sector : VIII, 2, 5.

Right cross : VIII, 2, 6.

Right-invariant metric : IX, 3, 1.

Right-invariant pseudometric : IX, 3, Exercise 1.

g-algebra: IX, 6, 3.

Salient angular sector : VIII, 2, 5.

Saturated family of pseudometrics : IX, 1, 2.

Saturated set of subsets : X, 1, Exercise 5.

Scalar product : VI, 2, 2.

Sector, angular : VIII, 2, 5.

Segment (closed, open, open at x and closed at ) : VI, 1, 4.

Segment, length of : VI, 2, 1.

Semi-absolute value : IX, 3, Exercise g.

Semi-absolute value, Hausdorff : IX, 3, Exercise g.

Semi-absolute values, equivalent : IX, 3, Exercise 10.

Semi-axis, negative real : VIII, 1, 2,

Semi-axis, positive real : VIII, 1, 2.

Semicircle (open, closed) : VI, 2, 4.

Separable metrizable space : IX, 2, 8.

Separating set of functions ; X, 4, 1.

Separation of points of a set by a set of functions : X, 4, I.

Sequence, multipliable : IX, Appendix, 1.

Serfes, absolutely convergent (of points of R?) : VII, 3, 2.
eries, Farey : VII, 1, Exercise 1 3.

Set, almost open : IX, 5, Exercise 6.
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Set, Borel : IX, 6, 3.

Set, bounded : IX, 2, 2.

Set, bounded (in R") : VI, 1, 1.

Set, capacitable : IX, 6, g.

Set, meagre : 1X, 5, 2.

Set, nowhere densc : 1X, 5, 1.

Set, Soushn : IX, 6, 2.

8et, starlike (in R") : VI, 2, Exercise 12.

Set, thin : IX, 5, Exercse 2.

Shell of a starlike set : VI, 2, Exercise 12.

8ide of a cube : VI, 1, 1.

Sides of a broken line . VI, 1, Exercise 6,

Sieve 1 IX, 6, 5

Sifting : IX, 6, 5.

Sifung, mapping induced by : IX, 6, 5.

Simple broken line * VI, 1, Exercise g.

Sine of an angle : VIII, 2, 2.

Sine of a number . VIIT, 2, 4.

Slice (1n a lmearly ordered set) : IX, Appendix, Exercsse 2.

Slope of a line . VIII, 2, 6

Soushn set : IX, 6, 2

Soushin space ¢

Space associated wnh a sifung : 1X, 6, 5.

Space, Baire : IX, 5, 3.

Space, collectively normal : IX, 4, Exercise 18.

Space, completely normal  IX, 4, Exerase 3

Space, completely regular : IX, 1, 5.

Space, complex number : VIII, 4, 1

Space, complex projective . VIII, 4, 3

Space, countably compact : IX, 2, Exercise 14.

Space, locally paracompact . IX, 4, Exercise 27.

Space, Lusin : IX, 6, 4.

Space, metacompact I\ 4, Exerase 25.

Space, metric - IX, 2, 1

Space, metrizable of countable type - IX, 2, 8.

Space, metnizable topological - IX, 2, 5

Space, metrizable uniform - IX, 2, 4

Space, non-meagre : IX, 5, Exercise 7.

Space, normal - IX, 4, 1

Space, normed : 1X, 3, 3

Space of loops : X, 3, ¢

Space of paths - X, 3, 4

Space of projective linear varieties of dimension p in complex projective
space of dimension # : VIIL, 4, 3.
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Space of projective linear varieties of dimension p in real projective space
of dimension 2 : VI, 8, 5. '

Space, perfectly normal : IX, 4, Exercise 7.

Space, Polish : IX, 6, 1. )

Space, pseudo-compact : XI, 1, E}.{CI‘CISG 21.

Space, real-compact : X, 4, Exercise 17,

Space, real number : Vi, 1, 1.

Space, real projective : VI, g, 1.

Space, separable metrizable : IX, 2, 8.

Space, Souslin : X, 6, 2. ]

Space, strongly zero-dimensional : IX, 6, Exercise 1.

Space, submetrizable : IX, 2, Exercise 23.

Space, totally non-meagre : 1X, 5, Exercise 12.

Space, ultrametric : IX, 2, Exercise 4.

Space, zero-dimensional : IX, 6, 4.

Sphere : IX, 2, 2, VI, 2, 3.

Spiral, logarithmic : VIII, 3, Exercise 5.

Square (closed, open) : VI, 1, 1.

Starlike set in R™ : VI, 2, Exercise 12.

Stereographic projection : VI, 2, 4.

Stone-Cech compactification : IX, 1, Exercise 7.

Stone’s theorem : X, 4, 1.

Stone-Weierstrass theorem : X, 4, 2.

Strict sifting : IX, 6, 5.

Strongly zero-dimensional space : IX, 6, Exercise 1.,

Subgroup, associated : VII, 1, 3.

Submetrizable space : 1X, 2, Exercise 23.

Subordinate to a family of subsets (family of functions) : IX, 4, 3.

Support of a function : IX, 4, 3.

Tangent of an angle : VIII, 2, 2.

Tangent of a cross : VIII, 2, 6.

Tangent of a number : VIII, 2, 4.

Theorem, Ascoli’s : X, 2, 5.

Theorem, Baire’s : IX, 5, 3.

Theorem, Dini’s : X, 4, 1.

Theorem of R. Eliis : X, 3, Exercise 25.

Theorem of Nagata-Smirnov : IX, 4, Exercise 22.
Theorem, Stone’s : X, 4, 1.

Theorem, Stone-Weierstrass : X, 4, 2.

Thgorems, Urysohn’s : IX, 4, 1 and 4, 2.

Thin set : IX, 5, Exercise 2.

Topology, compact-open : X, 3, 4.

Topology of compact convergence : X, 1, § and 3, 4.
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Topology of pointwise convergence : X, 1, 3.
Topology of pointwise convergence in a subset of X : X, 1, 3.
Topology of S-convergence : X, 1, 2.

Topology of uniform convergence : X, 1,

Topology of uniform convergence ina subset of X 1 X153
Torus, one-cimensional : V, 1, 2.

Torus, n-dimensional : VIL, 1, 4.

‘Torus of revolution : VII, 1, Exercise 15

Totally non-meagre space : 1X, 5, Exercise 12.
Transformation, orthogonal ; VI, 2, 2

‘Tnangle inequality : IX, 1, 1.

Triangle mequaltty : VI, 2, 1.

‘Trigonometric form of a complex number : VIII, 2, 2.
Trigonometnic polynormuals in m variables : X, 4, 4.
Ultrametric space : 1X, 2, Exercise 4.
Uniform imation of a i \!

Tued function by continuous

functions belonging to a given set : X, 4, 1.

Uniform convergence in a subset of X : X, 1, 3.

Unform convergence m the sets of & : X, 1, 2.

Uniform convergence, point of . X, 1, Exercise 9.

Untform convergence, tapology of : X, 1, 1.

Umform convergence, umformty of * X, 1, 1.

Unuformuty, additive (of RY) : VI, 1, 2.

Umformity of bounded convergence : X, 1, 3

Unuformity of compact convergence : X, 1, 3.

Uniformity defined by a family of pseudometrics : IX, 1, 2.

Uniformity defined by a pseudometnc : IX, 1, 2.

Uniformuty of finite open coverings : IX, 4, Exercise 17.

Uniformity of pointwise convergence * X, 1, 3

Unaformuty of pomtwise convergence in a subset of X : X, 1, 3.

Uniforrmty of precompact convergence X, 1, 3.

Uniformty of &-convergence X, 1, 2.

‘Umniformuty of uniform convergence * X, 1, 1.

Uniformuey of uniform convergence 1n a subset of X : X, 1, 3.

Uniformuty of uniform convergence in the sets of $: X, 1, 2.

Uniformty, universal : IX, 1, Exercse 5.

Uniformly convergent (filter) * X, 1, 1.

Uniformly convergent in every set of G (family of mappings, filter, sequence,
senes) X, 1, 2.

Unuform}: iconti: set of ings : X, 2, 1.

Unsformly summable farmily . X, 1, 2.

Unit ball, sphere : VI, 2, 3 and IX, 3, 3.

Unit of angular measure . VIII, 2, 3.
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