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Introduction

Introduction

The aim of this presentation

» Study convergence rate for numerical optimization with noisy

objective function

Reduce the gap between upper and lower bounds
» for a given family of noisy objective function
> under some assumptions
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Considered family F of objective functions
f;(*ﬁﬁ : [Ov 1]d - {Ov 1}

[ — x|

Nz >ﬁ+(1—v)

P

x— B 7(

v

fxr 8 € F : a stochastic objective function (a random variable)

v

B(p) : the Bernoulli distribution with parameter p

v

d € N* : the dimension of the domain of £« g

v

x* €[0,1]9 : the optimum

> 3 € RY : the "flatness” of the expectation Ef around x*

v

~v € [0,1] : a noise parameter (variance at x*) .
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Considered objective functions

Expectation with respect to z (d=1)
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Considered objective functions

» we assume that the optimum is unique

> we consider noisy optimization in the case of local convergence

All families including the family of function F are also concerned
by this presentation
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The simulation protocol for our noisy optimization setting

Require: w, w’, x*, 3, v and (unknown).
forall n=1,2,3,... do
. . /
Xx* n,w,w! = Optlmlze(xx*,l,w,w’7 cee oy Xt p—lw,w!’y Y1, o-ee 5 V-1, W )
if wy, <Efex gy (Xex n,0,07) then

return Xy« o o/

The framework requires:

» w uniform random variable for simulating the Bernoulli in

> w’ a random seed of the algorithm (optimizer's internal randomness)
> x* the optimum (that minimizes Eu f= 5,4(X, w))
| 4

B and « two fixed parameters of f 8
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The simulation protocol for our noisy optimization setting

Require: w, w’, x*, 3, v and (unknown).
forall n=1,2,3,... do
Xt pww’ = OPtiMize(Xer 1wy -« 5 Xt n—Liw,w's Y1y «-« 5 Ya—1, @')
if wy, <Efex gy (Xex n,0,07) then
yn=1
else
Yn=0
end if
end for
return  Xe n o o

It's an iterative process. For each iteration:

> Optimize (the optimization algorithm) returns the next point to visit

> looking for x*
» according to some inputs

> This point is evaluated by the fitness function (it-then-else statement) R
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The simulation protocol for our noisy optimization setting

Require: w, w’, x*, 3, v and (unknown).
forall n=1,2,3,... do
Xt pww’ = OPtiMize(Xer 1wy -« 5 Xt n—Liw,w's Y1y «-« 5 Ya—1, @')
if wy, <Efex gy (Xex n,0,07) then
yn=1
else
Yn=0
end if
end for
return  Xe n o o

Optimize makes its recommendation according to:
> the sequence of former visited points x,
» their binary noisy fitness values y,

> the optimizer's internal randomness w’

Decock

Noisy Optim n Complexity



Framework
0000000 e000

Framework

The simulation protocol for our noisy optimization setting

Require: w, w’, x*, 3, v and (unknown).
forall n=1,2,3,... do
Xt pww’ = OPtiMize(Xer 1wy -« 5 Xt n—Liw,w's Y1y «-« 5 Ya—1, @')
if wy, <Efex gy (Xex n,0,07) then
yn=1
else
Yn=0
end if
end for
return  Xe n o o

The fitness function f;= 5., outputs
> 1if random (= wy) is less than Efix 5,4 (Xx* nw,w’)

» 0 otherwise
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The simulation protocol for our noisy optimization setting

Require: w, w’, x*, 3, v and (unknown).
forall n=1,2,3,... do
. . /
Xx* n,w,w! = Optlmlze(xx*,l,w,w’7 cee oy Xt p—lw,w!’y Y1, o-ee 5 V-1, W )
if wy, <Efex gy (Xex n,0,07) then

return Xy« o o/

Eventually, the estimation of the optimum is returned
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Sampling strategies

Sampling close to the current estimation of the optimum

» most evolution strategies do that

Sampling far from the current estimation of the optimum

» when f is learnable

> the optimizer can uses a model of f to sample far from x*
> optimize's outputs can have different meanings

» be the most informative points to sample (exploration)
» provide an estimate of arg min Ef (recommendation)

These strategies lead to different convergence rates.

Decock

Noisy Optimization Complexity



Framework
0000000000 e

Framework

Our assumptions

We assume that the optimization algorithm
» doesn’t require a model of the objective function

» samples close to the optimum (first strategy)

The locality assumption
Vf € F, P<Vi§n, lIx; — x*|| §C(:)> Zl—g
1
» for some 0 < 0 < 1/2

» C(d) > 0: a constant depending on d only

» «a > 0: convergence speed (large o implies a fast convergence)
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Complexity

Noisy optimization complexity

What is the best theoretical convergence rate of an optimization
algorithm on f € F assuming this locality assumption 7

Vf € F, P(Vign, Ixi —x*|| < (d))21—5

N

That is to say...
What is the supremum of possible o 7
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State of art

Complexity of the optimization algorithm on f (subject to probability):

|[xn —x*|| = O ('C’g(”))

nO[
~v =1 (small noise) | v < 1 (large noise)

Proved rate for R-EDA % <a % <a
Former lower bounds a<l a<l
i -1 - 1

R-EDA experimental rates a=3 o =35
. . 1 1

Rate by active learning a=j; a=3

Decock

Noisy Optimization Complexity



Complexity

State of art

B=1~=1 (small noise)

log(n)/n®

log(n)/n®
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B=2 v=1 (small noise)

———

log(n)/n®

3=2 4<1 (large noise)

— rate with locality assumption|
rate for learnable case

— rate with locality assumption
--_rate for learnable case

10

8=3 y=1 (small noise)

0t

og(n)/n®

1f

log(n) /n"




Complexity
000080

Complexity

The aim of this presentation (that we prove)

Complexity of the optimization algorithm on f (subject to probability):

lIxp —x*|| = O ('0;57((1”))

v =1 (small noise) | v <1 (large noise)
Proved rate for R-EDA % <a i <a
Former lower bounds a<l a<l
This paper (lower bounds) a < % a< %
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New possible values of v whith our theorem

B=1~=1 (small noise)

B=2 v=1 (small noise)

:,m‘f_\
o0
<}

il ate with Tocalty assumption
ate for learnable case
f 5

8=3 y=1 (small noise)

log(n)/n®
2) /n®

) e
n

n

3=2 1<1 (large noise)

T

ate with locality assumption| §
! rate for learable case !
0 G
n

3 10
n

logsn)/n”

log(n)/n®

ate with locality assumption|
rate for learable case

0

G 10
n
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Introduction

With probability at least 1 — §/2:

Expectation with respect to z (d=1)

* Eyfos0s(@w)
o 5208(Tw)
- Eufossos(@w)
3
8] o A B=1
= |
«fo 3=2
3
W . 3=3
o = S 1-v 1 2 3 & 5 6 7 8 8 1011 12 13 14 15 16 17
Iteration n
a” 22
%80 0.2 0.4 0.6 0.8 1.0
T
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Lemma 1

Lemma 1

Definition
Xnq = the set of all the X+ 4, o for all x* (with Q = (w,w’))

Combinatorial lemma (number of possible outcomes)
The cardinality of X, o is at most 2N where N is the cardinality of

, ) o, 7 C(a)y
<< : < < —_—
1<i<n; Ef(x") < w; < I[*Zf(x)%—dﬁ/2 “af

1—v 1—

24
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Lemma 1 - Proof

Require: w, w’, x*, 8 and 7.
foralln=1,23,... do
Xg* noww! = OPtiMize(Xes 1 0 w5

/
sy Xt n—lw,w’s Y1y ey Yn—1, W )

if w, S Ef;(*7ﬁ7,y(xx*’n7w’wl) then

yn=1
else
Yn=0
end if
end for

return Xyx p o, o/

25
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Lemma 1

Lemma 1 - Proof

Xex 1w = Optimize(w”)
vV, | X1l = 1
y 1 ifwr S Efe gy (e 1,0,07)
. =
0 otherwise
Xyt 2 ww! = Optimize(xx*,l‘w,wﬁ Y1, w/)
VQ, [ Xl < 2
v 1 if wy < E&*,B,'y(xx*,Z,w,w’)
n =
0 otherwise
Xyx* 3w, w’ = Optimize(xx*,l‘w,w’v Xt 2w w’s Y1 Y2, ‘—'),)
VQ,[Xz0] < 4
VQ, [Xpa < 2771

26
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Lemma 1

Lemma 1 - Proof

X

Wg X

Wi

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Iteration i

B _ | ) . o, 1 C(d)P
N=|d1<i<n; Ef(x) < w < Ef(x’) dB/2jaB
1—~ 1—v 27
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Lemma 2

Definition (reminder)
N is the cardinality of

, . o, 7 Cd)f
<i < ; < ;< —
1<i<n; Ef(x) < w, < Ef(x )+d5/2 “aB

Lemma (number of ones)

N has expectation and variance at most

n
— BN jaB
Z2= 55 C(d) ;/

29
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Lemma 2 oose
Lemma 2
. v C(d)? . v C(d)”
v C(d)”
Zi~B (dﬂ/2 joB

C(d)? C(d)? C(d)?
E(Z)= 5 ,(aﬁ) v(z) = 2 <) (1—613/2 ,(aﬁ)>

30
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Expectation of N = ZE(Z,‘)
i=1
B i v C(d)’
B par dB/2  jaB
- ¢ i 1
T dB/2 — jaB
= z
n
Variance of N = Z V(Z)
i=1
< YEZ) (s V(Z) <B(Z)
i—1
< z

31
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Lemma 3

Lemma 3
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Lemma 3

Lemma 3

Lemma (Lemma 2 + Chebyshev's inequality)
Consider ¢ € [0, 1]

N<z+yz(6/2)7Y?

with probability at least 1 — /2

33
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Lemma 3

The cardinality of X q

Lemmas 1 and 3 together imply that the cardinality of X, q is at
most

N
RGE

with probability at least 1 — ¢/2 and with

z= dﬁ/z Z/*aﬁ

34
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Main result

Theorem

Theorem
Assume the objective function f € F

Assume the locality assumption

Vf e F, P<Vi§ n, |x; —x*|| < C(d)> >1—§

Then a < 1/8.

36
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Main result

Proof

Let us show that a8 <1

In order to do so, let us assume, in order to get a contradiction,
that a8 > 1

37
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Main result

Proof

Knowing convergence of Riemann series for a8 > 1

n

1 af
Zio‘iﬁ<aﬁfl

i=1

lemma 2 leads to

1C(d)P aB .
< 1=\
S TG a1 if af >1
That is to say...
When a8 > 1, X, q is a finite set

38
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Main result

Proof

Definition

Consider R a set of points with
lower bounded distance to each
other:

» two distinct elements of R
are at distance greater than
2¢ from each other with

C(d)

,‘ «

39
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Main result

Reminder

The locality assumption

C(d J
vVf e F, P<Vi§n, Hx,-—x*||<.()>21—2

- I(Y

40
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Proof

If x* is uniformly drawn in R...

Then to respect the locality
assumption:

> X, q should have points at
maximum distance € of a
certain percentage (1 — 4/2) of
R’s elements

That is to say:

> optimize should have the
opportunity to choose points
which are at most at distance €
to (almost) each possible x*

41
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Proof

But...

> if ¢ decreases (x; approach x*)
then |R| increases

> and X, q is finite (with great
probability)

Up to a certain timestep, the locality
assumption can't be respected.

We have a contradiction on our
assumption.

af > 1 is wrong

42
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Conclusion

We proved that o <

VfEF, P (v,' <n, |x

% for f € F assuming...

—x'| <

C(d

)21-

>1

I\)\Qq

Conclusion
(o] Jelele]

1 (small noise)

v = ~v < 1 (large noise)
Proved rate for R-EDA % <a % <a
Former lower bounds a<l a<l
This paper (lower bounds) a< % a< %

Decock
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Conclusion
v =1 (small noise) | v < 1 (large noise)
. . . 1 1 1
Rate with locality assumption o=z 35 <a< 3
. . _ 1 _ 1
Rate by active learning a=3 a=3

Second conclusion

faster rates can only be obtained by sampling far from the
optimum (it requires an appropriate objective function and an
accurate model of it)

45
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Conclusion

Future work

> reduce the remaining gap between the upper and the lower
bound (in the large noise case 7 < 1)

> investigate on intermediate models (sampling both close and
far from the optimum)

> consider the case of global convergence

» find a dependency in d 7

46
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Conclusion

Thank you for your attention

Questions ?

47
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Lemmas - Introduction (1)

The objective function

o * B
() = B (v (P2) va- v))

and the locality assumption

v e F, P(Vign, ||x;—x*|§C(d)>21—g

imply

. o, 7 C(d)°
Ef(x*) < Ef(xn) < Ef(x )+d5/2 ,Sag
1—~ 1—y

with probability at least 1 — §/2
(f and Ef(x) are short notations for = 5., and Eo f(x,w)) 1
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Lemmas - Introduction (2)

C(d
x; —x*|| < ( ) the locality assumption
i

e (B san < o (3)

Ef(x*) 4+ (,ii;%)ﬁ

C(d)?
. ( ),@
i“B\/d

~ Ef(x,)

IN

<~ Ef(x,)

IN

Ef(x

49
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Proof

Consider fyx = fi+ 3., with x* uniformly distributed in R. Then:

P(llxn —x*[| <€)

< Eq Py (X;k S EI"I|()(,,’Q7 6))
< P(#Xn0 < C)Pes (X" € Enl(X,,.0,€)|[#Xna < C)
+P(#X,,19 > C)
6, C 0
< _y= 4 Z
( 2) c’ * 2
6
1-2
< 2

where Enl(U, €) is the e-enlargement of U defined as:
Enl(U,e) = {x;3x" € U,||x = X'|| < €}.

This contradicts the locality assumption.

This concludes the proof of a8 < 1. I
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R-EDA (1)

Algorithm 2 R-EDA: algorithm for optimizing noisy fit-
ness functions. Bernstein denotes a Bernstein race, as de-
fined in Algorithm 3. The initial domain is [z} , x| € R?,
4 is the confidence parameter. This algorithm goes back to
(15, 16].
n <+« 0
while True do
// Pick the coordinate with highest uncertainty
cn = argmax;(w,; )i — (x5 )i
O™ = (@ e — (¥ )en
for i € [[1,3]] do
// Consider the middle point
als, 4 3 (wn + o)
// The ¢! coordinate may take 3 # values
(@ n)en ¢ (@n)en + 5 (@0 —20)en
end for
(good,,, bad,,) = Bernstein(a', z'n, a5, ﬁ)
// A good and a bad point
Let H,, be the halfspace
{x € B [|a — good | < [z — bad |}

Split the domain: [z, |, o}, ] = H, N [z, , 7]
n+—n+1
end while 51
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R-EDA (2)

Algorithm 3 Bernstein race between 3 points. Eq. 3 is
Bernstein’s inequality to compute the precision for empirical
estimates (see e.g. [18, p124]); &; is the empirical estimate
of the standard deviation of point x;’s associated random
variable Fy(z;) (it is 0 in the first iteration, which does not
alter the algorithm’s correctness); f(z) is the average of the
fitness measurements at .

Bernstein(x1,x2,x3,0")
T7=0
repeat
T+T1T+1
Evaluate the fitness of points x1, x2, 3 once, i.e. eval-
uate the noisy fitness at each of these points.
Evaluate the precision:

3272 3272

T al o {sal

€r) = 3log (W) /T +max g 2log (765’ ) JT.

. . 3)

until Two points (good ,bad) satisfy f(bad)— f(good) > 2¢
return (good, bad)

52
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R-EDA (3)

First removed
part of the domain
(1/4th of the domain)

Third removed part
of the domain
(1/4 of the remaining part)

Optimum

Fourth removed part
of the domain
(1/4 of the remaining part)

=

Second removed
part of the domain
(12 of the remaining part)

Fig. 1. Noisy optimization algorithm (cf Algorithm 2). At each iteration, a main axis
is selected (the one on which the domain has maximum range). Three equally spaced
points are generated in the domain on this axis (this is the offspring). Then, a Bernstein
race is applied for choosing a “good” and a “bad” arm among these points. The domain
is reduced thanks to this knowledge, removing one fourth or one half of the domain
(depending on the position of the good arm and of the bad arm - the best case is when
the good and the bad arm are diametrically opposed: see Fig. 2).
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